PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1240833)

Clipboard (0)
None

Related Articles

1.  Honoring our helpers 
This special issue of the Journal of Radiology Case Reports honors the reviewers who donated their time and expertise throughout the year 2009 to the high quality and success of this journal.
doi:10.3941/jrcr.v4i1.404
PMCID: PMC3303340  PMID: 22470688
2.  Honoring our helpers 
This special issue of the Journal of Radiology Case Reports honors the reviewers who donated their time and expertise throughout the year 2010 to the high quality and success of this journal.
doi:10.3941/jrcr.v4i12.671
PMCID: PMC3303365  PMID: 22470702
3.  Honoring our helpers 
This special issue of the Journal of Radiology Case Reports honors the reviewers who donated their time and expertise throughout the year 2011 to the high quality and success of this journal.
doi:10.3941/jrcr.v5i12.994
PMCID: PMC3303426
4.  Honoring our helpers 
This special issue of the Journal of Radiology Case Reports honors the reviewers who donated their time and expertise throughout the year 2012 to the high quality and success of this journal.
doi:10.3941/jrcr.v6i12.1504
PMCID: PMC3557126
5.  Honoring our helpers 
This special issue of the Journal of Radiology Case Reports honors the reviewers who donated their time and expertise throughout the year 2013 to the high quality and success of this journal.
doi:10.3941/jrcr.v8i1.2119
PMCID: PMC4037246  PMID: 24967015
6.  The Relationship of Previous Training and Experience of Journal Peer Reviewers to Subsequent Review Quality 
PLoS Medicine  2007;4(1):e40.
Background
Peer review is considered crucial to the selection and publication of quality science, but very little is known about the previous experiences and training that might identify high-quality peer reviewers. The reviewer selection processes of most journals, and thus the qualifications of their reviewers, are ill defined. More objective selection of peer reviewers might improve the journal peer review process and thus the quality of published science.
Methods and Findings
306 experienced reviewers (71% of all those associated with a specialty journal) completed a survey of past training and experiences postulated to improve peer review skills. Reviewers performed 2,856 reviews of 1,484 separate manuscripts during a four-year study period, all prospectively rated on a standardized quality scale by editors. Multivariable analysis revealed that most variables, including academic rank, formal training in critical appraisal or statistics, or status as principal investigator of a grant, failed to predict performance of higher-quality reviews. The only significant predictors of quality were working in a university-operated hospital versus other teaching environment and relative youth (under ten years of experience after finishing training). Being on an editorial board and doing formal grant (study section) review were each predictors for only one of our two comparisons. However, the predictive power of all variables was weak.
Conclusions
Our study confirms that there are no easily identifiable types of formal training or experience that predict reviewer performance. Skill in scientific peer review may be as ill defined and hard to impart as is “common sense.” Without a better understanding of those skills, it seems unlikely journals and editors will be successful in systematically improving their selection of reviewers. This inability to predict performance makes it imperative that all but the smallest journals implement routine review ratings systems to routinely monitor the quality of their reviews (and thus the quality of the science they publish).
A survey of experienced reviewers, asked about training they had received in peer review, found there are no easily identifiable types of formal training and experience that predict reviewer performance.
Editors' Summary
Background.
When medical researchers have concluded their research and written it up, the next step is to get it published as an article in a journal, so that the findings can be circulated widely. These published findings help determine subsequent research and clinical use. The editors of reputable journals, including PLoS Medicine, have to decide whether the articles sent to them are of good quality and accurate and whether they will be of interest to the readers of their journal. To do this they need to obtain specialist advice, so they contact experts in the topic of the research article and ask them to write reports. This is the process of scientific peer review, and the experts who write such reports are known as “peer reviewers.” Although the editors make the final decision, the advice and criticism of these peer reviewers to the editors is essential in making decisions on publication, and usually in requiring authors to make changes to their manuscript. The contribution that peer reviewers have made to the article by the time it is finally published may, therefore, be quite considerable.
Although peer review is accepted as a key part of the process for the publishing of medical research, many people have argued that there are flaws in the system. For example, there may be an element of luck involved; one author might find their paper being reviewed by a reviewer who is biased against the approach they have adopted or who is a very critical person by nature, and another author may have the good fortune to have their work considered by someone who is much more favorably disposed toward their work. Some reviewers are more knowledgeable and thorough in their work than others. The editors of medical journals try to take in account such biases and quality factors in their choice of peer reviewers or when assessing the reviews. Some journals have run training courses for experts who review for them regularly to try to make the standard of peer review as high as possible.
Why Was This Study Done?
It is hard for journal editors to know who will make a good peer reviewer, and there is no proven system for choosing them. The authors of this study wanted to identify the previous experiences and training that make up the background of good peer reviewers and compare them with the quality of the reviews provided. This would help journal editors select good people for the task in future, and as a result will affect the quality of science they publish for readers, including other researchers.
What Did the Researchers Do and Find?
The authors contacted all the regular reviewers from one specialist journal (Annals of Emergency Medicine). A total of 306 of these experienced reviewers (71% of all those associated with the journal) completed a survey of past training and experiences that might be expected to improve peer review skills. These reviewers had done 2,856 reviews of 1,484 separate manuscripts during a four-year study period, and during this time the quality of the reviews had been rated by the journal's editors. Surprisingly, most variables, including academic rank, formal training in critical appraisal or statistics, or status as principal investigator of a grant, failed to predict performance of higher-quality reviews. The only significant predictors of quality were working in a university-operated hospital versus other teaching environment and relative youth (under ten years of experience after finishing training), and even these were only weak predictors.
What Do These Findings Mean?
This study suggest that there are no easily identifiable types of formal training or experience that predict peer reviewer performance, although it is clear that some reviewers (and reviews) are better than others. The authors suggest that it is essential therefore that journals routinely monitor the quality of reviews submitted to them to ensure they are getting good advice (a practice that is not universal).
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/doi:10.1371/journal.pmed.0040040
• WAME is an association of editors from many countries who seek to foster international cooperation among editors of peer-reviewed medical journals
• The Fifth International Congress on Peer Review and Biomedical Publication is one of a series of conferences on peer review
• The PLoS Medicine guidelines for reviewers outline what we look for in a review
• The Council of Science Editors promotes ethical scientific publishing practices
• An editorial also published in this issue of PLoS Medicine discusses the peer review process further
doi:10.1371/journal.pmed.0040040
PMCID: PMC1796627  PMID: 17411314
7.  Anatomy of the Epidemiological Literature on the 2003 SARS Outbreaks in Hong Kong and Toronto: A Time-Stratified Review 
PLoS Medicine  2010;7(5):e1000272.
Weijia Xing and colleagues reviewed the published epidemiological literature on SARS and show that less than a quarter of papers were published during the epidemic itself, suggesting that the research published lagged substantially behind the need for it.
Background
Outbreaks of emerging infectious diseases, especially those of a global nature, require rapid epidemiological analysis and information dissemination. The final products of those activities usually comprise internal memoranda and briefs within public health authorities and original research published in peer-reviewed journals. Using the 2003 severe acute respiratory syndrome (SARS) epidemic as an example, we conducted a comprehensive time-stratified review of the published literature to describe the different types of epidemiological outputs.
Methods and Findings
We identified and analyzed all published articles on the epidemiology of the SARS outbreak in Hong Kong or Toronto. The analysis was stratified by study design, research domain, data collection, and analytical technique. We compared the SARS-case and matched-control non-SARS articles published according to the timeline of submission, acceptance, and publication. The impact factors of the publishing journals were examined according to the time of publication of SARS articles, and the numbers of citations received by SARS-case and matched-control articles submitted during and after the epidemic were compared. Descriptive, analytical, theoretical, and experimental epidemiology concerned, respectively, 54%, 30%, 11%, and 6% of the studies. Only 22% of the studies were submitted, 8% accepted, and 7% published during the epidemic. The submission-to-acceptance and acceptance-to-publication intervals of the SARS articles submitted during the epidemic period were significantly shorter than the corresponding intervals of matched-control non-SARS articles published in the same journal issues (p<0.001 and p<0.01, respectively). The differences of median submission-to-acceptance intervals and median acceptance-to-publication intervals between SARS articles and their corresponding control articles were 106.5 d (95% confidence interval [CI] 55.0–140.1) and 63.5 d (95% CI 18.0–94.1), respectively. The median numbers of citations of the SARS articles submitted during the epidemic and over the 2 y thereafter were 17 (interquartile range [IQR] 8.0–52.0) and 8 (IQR 3.2–21.8), respectively, significantly higher than the median numbers of control article citations (15, IQR 8.5–16.5, p<0.05, and 7, IQR 3.0–12.0, p<0.01, respectively).
Conclusions
A majority of the epidemiological articles on SARS were submitted after the epidemic had ended, although the corresponding studies had relevance to public health authorities during the epidemic. To minimize the lag between research and the exigency of public health practice in the future, researchers should consider adopting common, predefined protocols and ready-to-use instruments to improve timeliness, and thus, relevance, in addition to standardizing comparability across studies. To facilitate information dissemination, journal managers should reengineer their fast-track channels, which should be adapted to the purpose of an emerging outbreak, taking into account the requirement of high standards of quality for scientific journals and competition with other online resources.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every now and then, a new infectious disease appears in a human population or an old disease becomes much more common or more geographically widespread. Recently, several such “emerging infectious diseases” have become major public health problems. For example, HIV/AIDS, hepatitis C, and severe acute respiratory syndrome (SARS) have all emerged in the past three decades and spread rapidly round the world. When an outbreak (epidemic) of an emerging infectious disease occurs, epidemiologists (scientists who study the causes, distribution, and control of diseases in populations) swing into action, collecting and analyzing data on the new threat to human health. Epidemiological studies are rapidly launched to identify the causative agent of the new disease, to investigate how the disease spreads, to define diagnostic criteria for the disease, to evaluate potential treatments, and to devise ways to control the disease's spread. Public health officials then use the results of these studies to bring the epidemic under control.
Why Was This Study Done?
Clearly, epidemics of emerging infectious diseases can only be controlled rapidly and effectively if the results of epidemiological studies are made widely available in a timely manner. Public health bulletins (for example, the Morbidity and Mortality Weekly Report from the US Centers from Disease Control and Prevention) are an important way of disseminating information as is the publication of original research in peer-reviewed academic journals. But how timely is this second dissemination route? Submission, peer-review, revision, re-review, acceptance, and publication of a piece of academic research can be a long process, the speed of which is affected by the responses of both authors and journals. In this study, the researchers analyze how the results of academic epidemiological research are submitted and published in journals during and after an emerging infectious disease epidemic using the 2003 SARS epidemic as an example. The first case of SARS was identified in Asia in February 2003 and rapidly spread around the world. 8,098 people became ill with SARS and 774 died before the epidemic was halted in July 2003.
What Did the Researchers Do and Find?
The researchers identified more than 300 journal articles covering epidemiological research into the SARS outbreak in Hong Kong, China, and Toronto, Canada (two cities strongly affected by the epidemic) that were published online or in print between January 1, 2003 and July 31, 2007. The researchers' analysis of these articles shows that more than half them were descriptive epidemiological studies, investigations that focused on describing the distribution of SARS; a third were analytical epidemiological studies that tried to discover the cause of SARS. Overall, 22% of the journal articles were submitted for publication during the epidemic. Only 8% of the articles were accepted for publication and only 7% were actually published during the epidemic. The median (average) submission-to-acceptance and acceptance-to-publication intervals for SARS articles submitted during the epidemic were 55 and 77.5 days, respectively, much shorter intervals than those for non-SARS articles published in the same journal issues. After the epidemic was over, the submission-to-acceptance and acceptance-to-publication intervals for SARS articles was similar to that of non-SARS articles.
What Do These Findings Mean?
These findings show that, although the academic response to the SARS epidemic was rapid, most articles on the epidemiology of SARS were published after the epidemic was over even though SARS was a major threat to public health. Possible reasons for this publication delay include the time taken by authors to prepare and undertake their studies, to write and submit their papers, and, possibly, their tendency to first submit their results to high profile journals. The time then taken by journals to review the studies, make decisions about publication, and complete the publication process might also have delayed matters. To minimize future delays in the publication of epidemiological research on emerging infectious diseases, epidemiologists could adopt common, predefined protocols and ready-to-use instruments, which would improve timeliness and ensure comparability across studies, suggest the researchers. Journals, in turn, could improve their fast-track procedures and could consider setting up online sections that could be activated when an emerging infectious disease outbreak occurred. Finally, journals could consider altering their review system to speed up the publication process provided the quality of the final published articles was not compromised.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000272.
The US National Institute of Allergy and Infectious Diseases provides information on emerging infectious diseases
The US Centers for Control and Prevention of Diseases also provides information about emerging infectious diseases, including links to other resources, and information on SARS
Wikipedia has a page on epidemiology (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The World Health Organization has information on SARS (in several languages)
doi:10.1371/journal.pmed.1000272
PMCID: PMC2864302  PMID: 20454570
8.  Incorporating resident research into the dermatology residency program 
Programmatic changes for the dermatology residency program at The University of Texas Medical Branch were first introduced in 2005, with the faculty goal incorporating formal dermatology research projects into the 3-year postgraduate training period. This curriculum initially developed as a recommendation for voluntary scholarly project activity by residents, but it evolved into a program requirement for all residents in 2009. Departmental support for this activity includes assignment of a faculty mentor with similar interest about the research topic, financial support from the department for needed supplies, materials, and statistical consultation with the Office of Biostatistics for study design and data analysis, a 2-week elective that provides protected time from clinical activities for the purpose of preparing research for publication and submission to a peer-reviewed medical journal, and a departmental award in recognition for the best resident scholarly project each year. Since the inception of this program, five classes have graduated a total of 16 residents. Ten residents submitted their research studies for peer review and published their scholarly projects in seven dermatology journals through the current academic year. These articles included three prospective investigations, three surveys, one article related to dermatology education, one retrospective chart review, one case series, and one article about dermatopathology. An additional article from a 2012 graduate about dermatology education has also been submitted to a journal. This new program for residents was adapted from our historically successful Dermatology Honors Research Program for medical students at The University of Texas Medical Branch. Our experience with this academic initiative to promote dermatology research by residents is outlined. It is recommended that additional residency programs should consider adopting similar research programs to enrich resident education.
doi:10.2147/AMEP.S44389
PMCID: PMC3726645  PMID: 23901305
dermatology; resident; research; education; accreditation
9.  Perceived Role of the Journal Clubs in Teaching Critical Appraisal Skills: A Survey of Surgical Trainees in Nigeria 
Background:
Critical appraisal skills allow surgeons to evaluate the literature in an objective and structured manner, with emphasis on the validity of the evidence. The development of skills in critical acquisition and appraisal of the literature is crucial to delivering quality surgical care. It is also widely accepted that journal clubs are a time-honored educational paradigm for teaching and development of critical appraisal skills. The aim of this study is to determine the perceived role of journal clubs in teaching critical appraisal skills amongst the surgical trainees in Nigeria.
Materials and Methods:
The West African College of Surgeons and the National Postgraduate College of Nigeria have mandated that all residency programs teach and assess the ability to develop critical appraisal skills when reviewing the scientific literature. Residents at the revision course of the West African College of Surgeons in September 2012 evaluated the role of journal clubs in teaching critical appraisal skills using a 17-item questionnaire. The questionnaire addressed four areas: Format, teaching and development of critical appraisal s kills, and evaluation.
Results:
Most of the journal clubs meet weekly [39 (59%)] or monthly [25 (38%)]. Thirty-nine residents (59%) perceived the teaching model employed in the development of critical appraisal skills in their institutions was best characterized by “iscussion/summary by consultants” and “emphasis on formal suggestion for improvement in research.” Rating the importance of development of critical appraisal skills to the objectives of the residency program and practice of evidence-based medicine, majority of the residents [65 (98%)] felt it was “very important.” The commonest form of feedback was verbal from the consultants and residents [50 (76%)].
Conclusion:
The perceived importance of journal clubs to the development of critical appraisal skills was rated as very important by the residents. However, residents indicated a need for a formal evaluation of the journal clubs. It is our hope that the results of this survey will encourage postgraduate coordinators to evaluate the quality of their journal clubs in the development of skills in critical appraisal of the literature.
doi:10.4103/1117-6806.137292
PMCID: PMC4141447  PMID: 25191095
Critical appraisal skills; evaluation; journal club; literature; research; surgical trainees
10.  The CARE (CAse REport) guidelines and the standardization of case reports 
Case reports comprise the core of Journal of Medical Case Reports, are a time-honored tradition firmly established within the medical literature, and represent a growing importance of valuable clinical medical information in our modern information-flowing times. While there is already a body of published literature on how and when to write a case report and both Journal of Medical Case Reports and BioMed Central make known their own criteria, case report quality across all of the medical literature is still variable. Additionally, although health reporting agencies do have standardization guidelines for other aspects of health-care reporting, there has never been an organizational body responsible for international standardization of how to write a case report. With the newly-published CARE (CAse REport) guidelines, Gagnier and colleagues hope to change this. This editorial serves as a brief introduction to the CARE guidelines and briefly examines the proposed standardization of case reports. We invite feedback on the CARE guidelines from all of our readers and encourage their trial run implementation by our own case report authors.
doi:10.1186/1752-1947-7-261
PMCID: PMC4219182  PMID: 24283496
11.  A guide to writing case reports for the Journal of Medical Case Reports and BioMed Central Research Notes 
Case reports are a time-honored, important, integral, and accepted part of the medical literature. Both the Journal of Medical Case Reports and the Case Report section of BioMed Central Research Notes are committed to case report publication, and each have different criteria. Journal of Medical Case Reports was the world’s first international, PubMed-listed medical journal devoted to publishing case reports from all clinical disciplines and was launched in 2007. The Case Report section of BioMed Central Research Notes was created and began publishing case reports in 2012. Between the two of them, thousands of peer-reviewed case reports have now been published with a worldwide audience. Authors now also have Cases Database, a continually updated, freely accessible database of thousands of medical case reports from multiple publishers. This informal editorial outlines the process and mechanics of how and when to write a case report, and provides a brief look into the editorial process behind each of these complementary journals along with the author’s anecdotes in the hope of inspiring all authors (both novice and experienced) to write and continue writing case reports of all specialties. Useful hyperlinks are embedded throughout for easy and quick reference to style guidelines for both journals.
doi:10.1186/1752-1947-7-239
PMCID: PMC3879062  PMID: 24283456
12.  Conflicts of Interest at Medical Journals: The Influence of Industry-Supported Randomised Trials on Journal Impact Factors and Revenue – Cohort Study 
PLoS Medicine  2010;7(10):e1000354.
Andreas Lundh and colleagues investigated the effect of publication of large industry-supported trials on citations and journal income, through reprint sales, in six general medical journals
Background
Transparency in reporting of conflict of interest is an increasingly important aspect of publication in medical journals. Publication of large industry-supported trials may generate many citations and journal income through reprint sales and thereby be a source of conflicts of interest for journals. We investigated industry-supported trials' influence on journal impact factors and revenue.
Methods and Findings
We sampled six major medical journals (Annals of Internal Medicine, Archives of Internal Medicine, BMJ, JAMA, The Lancet, and New England Journal of Medicine [NEJM]). For each journal, we identified randomised trials published in 1996–1997 and 2005–2006 using PubMed, and categorized the type of financial support. Using Web of Science, we investigated citations of industry-supported trials and the influence on journal impact factors over a ten-year period. We contacted journal editors and retrieved tax information on income from industry sources. The proportion of trials with sole industry support varied between journals, from 7% in BMJ to 32% in NEJM in 2005–2006. Industry-supported trials were more frequently cited than trials with other types of support, and omitting them from the impact factor calculation decreased journal impact factors. The decrease varied considerably between journals, with 1% for BMJ to 15% for NEJM in 2007. For the two journals disclosing data, income from the sales of reprints contributed to 3% and 41% of the total income for BMJ and The Lancet in 2005–2006.
Conclusions
Publication of industry-supported trials was associated with an increase in journal impact factors. Sales of reprints may provide a substantial income. We suggest that journals disclose financial information in the same way that they require them from their authors, so that readers can assess the potential effect of different types of papers on journals' revenue and impact.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Medical journals publish many different types of papers that inform doctors about the latest research advances and the latest treatments for their patients. They publish articles that describe laboratory-based research into the causes of diseases and the identification of potential new drugs. They publish the results of early clinical trials in which a few patients are given a potential new drug to check its safety. Finally and most importantly, they publish the results of randomized controlled trials (RCTs). RCTs are studies in which large numbers of patients are randomly allocated to different treatments without the patient or the clinician knowing the allocation and the efficacy of the various treatments compared. RCTs are best way of determining whether a new drug is effective and have to be completed before a drug can be marketed. Because RCTs are very expensive, they are often supported by drug companies. That is, drug companies provide grants or drugs for the trial or assist with data analysis and/or article preparation.
Why Was This Study Done?
Whenever a medical journal publishes an article, the article's authors have to declare any conflicts of interest such as financial gain from the paper's publication. Conflict of interest statements help readers assess papers—an author who owns the patent for a drug, for example, might put an unduly positive spin on his/her results. The experts who review papers for journals before publication provide similar conflict of interest statements. But what about the journal editors who ultimately decide which papers get published? The International Committee of Medical Journal Editors (ICMJE), which produces medical publishing guidelines, states that: “Editors who make final decisions about manuscripts must have no personal, professional, or financial involvement in any of the issues that they might judge.” However, the publication of industry-supported RCTs might create “indirect” conflicts of interest for journals by boosting the journal's impact factor (a measure of a journal's importance based on how often its articles are cited) and its income through the sale of reprints to drug companies. In this study, the researchers investigate whether the publication of industry-supported RCTs influences the impact factors and finances of six major medical journals.
What Did the Researchers Do and Find?
The researchers determined which RCTs published in the New England Journal of Medicine (NEJM), the British Medical Journal (BMJ), The Lancet, and three other major medical journals in 1996–1997 and 2005–2006 were supported wholly, partly, or not at all by industry. They then used the online academic citation index Web of Science to calculate an approximate impact factor for each journal for 1998 and 2007 and calculated the effect of the published RCTs on the impact factor. The proportion of RCTs with sole industry support varied between journals. Thus, 32% of the RCTs published in the NEJM during both two-year periods had industry support whereas only 7% of the RCTs published in the BMJ in 2005–2006 had industry support. Industry-supported trials were more frequently cited than RCTs with other types of support and omitting industry-supported RCTs from impact factor calculations decreased all the approximate journal impact factors. For example, omitting all RCTs with industry or mixed support decreased the 2007 BMJ and NEJM impact factors by 1% and 15%, respectively. Finally, the researchers asked each journal's editor about their journal's income from industry sources. For the BMJ and The Lancet, the only journals that provided this information, income from reprint sales was 3% and 41%, respectively, of total income in 2005–2006.
What Do These Findings Mean?
These findings show that the publication of industry-supported RCTs was associated with an increase in the approximate impact factors of these six major medical journals. Because these journals publish numerous RCTs, this result may not be generalizable to other journals. These findings also indicate that income from reprint sales can be a substantial proportion of a journal's total income. Importantly, these findings do not imply that the decisions of editors are affected by the possibility that the publication of an industry-supported trial might improve their journal's impact factor or income. Nevertheless, the researchers suggest, journals should live up to the same principles related to conflicts of interest as those that they require from their authors and should routinely disclose information on the source and amount of income that they receive.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000354.
This study is further discussed in a PLoS Medicine Perspective by Harvey Marcovitch
The International Committee of Medical Journal Editors provides information about the publication of medical research, including conflicts of interest
The World Association of Medical Editors also provides information on conflicts of interest in medical journals
Information about impact factors is provided by Thomson Reuters, a provider of intelligent information for businesses and professionals; Thomson Reuters also runs Web of Science
doi:10.1371/journal.pmed.1000354
PMCID: PMC2964336  PMID: 21048986
13.  Place and Cause of Death in Centenarians: A Population-Based Observational Study in England, 2001 to 2010 
PLoS Medicine  2014;11(6):e1001653.
Catherine J. Evans and colleagues studied how many and where centenarians in England die, their causes of death, and how these measures have changed from 2001 to 2010.
Please see later in the article for the Editors' Summary
Background
Centenarians are a rapidly growing demographic group worldwide, yet their health and social care needs are seldom considered. This study aims to examine trends in place of death and associations for centenarians in England over 10 years to consider policy implications of extreme longevity.
Methods and Findings
This is a population-based observational study using death registration data linked with area-level indices of multiple deprivations for people aged ≥100 years who died 2001 to 2010 in England, compared with those dying at ages 80-99. We used linear regression to examine the time trends in number of deaths and place of death, and Poisson regression to evaluate factors associated with centenarians’ place of death. The cohort totalled 35,867 people with a median age at death of 101 years (range: 100–115 years). Centenarian deaths increased 56% (95% CI 53.8%–57.4%) in 10 years. Most died in a care home with (26.7%, 95% CI 26.3%–27.2%) or without nursing (34.5%, 95% CI 34.0%–35.0%) or in hospital (27.2%, 95% CI 26.7%–27.6%). The proportion of deaths in nursing homes decreased over 10 years (−0.36% annually, 95% CI −0.63% to −0.09%, p = 0.014), while hospital deaths changed little (0.25% annually, 95% CI −0.06% to 0.57%, p = 0.09). Dying with frailty was common with “old age” stated in 75.6% of death certifications. Centenarians were more likely to die of pneumonia (e.g., 17.7% [95% CI 17.3%–18.1%] versus 6.0% [5.9%–6.0%] for those aged 80–84 years) and old age/frailty (28.1% [27.6%–28.5%] versus 0.9% [0.9%–0.9%] for those aged 80–84 years) and less likely to die of cancer (4.4% [4.2%–4.6%] versus 24.5% [24.6%–25.4%] for those aged 80–84 years) and ischemic heart disease (8.6% [8.3%–8.9%] versus 19.0% [18.9%–19.0%] for those aged 80–84 years) than were younger elderly patients. More care home beds available per 1,000 population were associated with fewer deaths in hospital (PR 0.98, 95% CI 0.98–0.99, p<0.001).
Conclusions
Centenarians are more likely to have causes of death certified as pneumonia and frailty and less likely to have causes of death of cancer or ischemic heart disease, compared with younger elderly patients. To reduce reliance on hospital care at the end of life requires recognition of centenarians’ increased likelihood to “acute” decline, notably from pneumonia, and wider provision of anticipatory care to enable people to remain in their usual residence, and increasing care home bed capacity.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
People who live to be more than 100 years old—centenarians—are congratulated and honored in many countries. In the UK, for example, the Queen sends a personal greeting to individuals on their 100th birthday. The number of UK residents who reach this notable milestone is increasing steadily, roughly doubling every 10 years. The latest Office of National Statistics (ONS) figures indicate that 13,350 centenarians were living in the UK in 2012 (20 centenarians per 100,000 people in the population) compared to only 7,740 in 2002. If current trends continue, by 2066 there may be more than half a million centenarians living in the UK. And similar increases in the numbers of centenarians are being seen in many other countries. The exact number of centenarians living worldwide is uncertain but is thought to be around 317,000 and is projected to rise to about 18 million by the end of this century.
Why Was This Study Done?
Traditional blessings often include the wish that the blessing’s recipient lives to be at least 100 years old. However, extreme longevity is associated with increasing frailty—declining physical function, increasing disability, and increasing vulnerability to a poor clinical outcome following, for example, an infection. Consequently, many centenarians require 24-hour per day care in a nursing home or a residential care home. Moreover, although elderly people, including centenarians, generally prefer to die in a home environment rather than a clinical environment, many centenarians end up dying in a hospital. To ensure that centenarians get their preferred end-of-life care, policy makers and clinicians need to know as much as possible about the health and social needs of this specific and unique group of elderly people. In this population-based observational study, the researchers examine trends in the place of death and factors associated with the place of death among centenarians in England over a 10-year period.
What Did the Researchers Do and Find?
The researchers extracted information about the place and cause of death of centenarians in England between 2001 and 2010 from the ONS death registration database, linked these data with area level information on deprivation and care-home bed capacity, and analyzed the data statistically. Over the 10-year study period, 35,867 centenarians (mainly women, average age 101 years) died in England. The annual number of centenarian deaths increased from 2,823 in 2001 to 4,393 in 2010. Overall, three-quarters of centenarian death certificates stated “old age” as the cause of death. About a quarter of centenarians died in the hospital, a quarter died in a nursing home, and a third died in a care home without nursing; only one in ten centenarians died at home. The proportion of deaths in a nursing home increased slightly over the study period but there was little change in the number of hospital deaths. Compared with younger age groups (80–84 year olds), centenarians were more likely to die from pneumonia and “old age” and less likely to die from cancer and heart disease. Among centenarians, dying in the hospital was more likely to be reported to be associated with pneumonia or heart disease than with dementia; death in the hospital was also associated with having four or more contributing causes of death and with living in a deprived area. Finally, living in an area with a higher care-home bed capacity was associated with a lower risk of dying in the hospital.
What Do These Findings Mean?
These findings suggest that many centenarians have outlived death from the chronic diseases that are the common causes of death among younger groups of elderly people and that dying in the hospital is often associated with pneumonia. Overall, these findings suggest that centenarians are a group of people living with a risk of death from increasing frailty that is exacerbated by acute lung infection. The accuracy of these findings is likely to be affected by the quality of UK death certification data. Although this is generally high, the strength of some of the reported associations may be affected, for example, by the tendency of clinicians to record the cause of death in the very elderly as “old age” to provide some comfort to surviving relatives. Importantly, however, these findings suggest that care-home capacity and the provision of anticipatory care should be increased in England (and possibly in other countries) to ensure that more of the growing number of centenarians can end their long lives outside hospital.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001653.
The US National Institute on Aging provides information about healthy aging, including information on longevity (in English and Spanish)
The National End of Life Care Intelligence Network, England is a government organization that gathers data on care provided to adults approaching the end of life to improve service quality and productivity
The Worldwide Palliative Care Alliance promotes universal access to affordable palliative care through the support of regional and national palliative care organizations
The non-for-profit organization AgeUK provides information about all aspects of aging
Wikipedia has a page on centenarians (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The International Longevity Centre-UK is an independent, non-partisan think tank dedicated to addressing issues of longevity, ageing and population; its “Living Beyond 100” report examines the research base on centenarians and calls for policy to reflect the ongoing UK increase in extreme longevity
This study is part of GUIDE_Care, a project initiated by the Cicely Saunders Institute to investigate patterns in place of death and the factors that affect these patterns
doi:10.1371/journal.pmed.1001653
PMCID: PMC4043499  PMID: 24892645
14.  Reporting and Methods in Clinical Prediction Research: A Systematic Review 
PLoS Medicine  2012;9(5):e1001221.
Walter Bouwmeester and colleagues investigated the reporting and methods of prediction studies in 2008, in six high-impact general medical journals, and found that the majority of prediction studies do not follow current methodological recommendations.
Background
We investigated the reporting and methods of prediction studies, focusing on aims, designs, participant selection, outcomes, predictors, statistical power, statistical methods, and predictive performance measures.
Methods and Findings
We used a full hand search to identify all prediction studies published in 2008 in six high impact general medical journals. We developed a comprehensive item list to systematically score conduct and reporting of the studies, based on recent recommendations for prediction research. Two reviewers independently scored the studies. We retrieved 71 papers for full text review: 51 were predictor finding studies, 14 were prediction model development studies, three addressed an external validation of a previously developed model, and three reported on a model's impact on participant outcome. Study design was unclear in 15% of studies, and a prospective cohort was used in most studies (60%). Descriptions of the participants and definitions of predictor and outcome were generally good. Despite many recommendations against doing so, continuous predictors were often dichotomized (32% of studies). The number of events per predictor as a measure of statistical power could not be determined in 67% of the studies; of the remainder, 53% had fewer than the commonly recommended value of ten events per predictor. Methods for a priori selection of candidate predictors were described in most studies (68%). A substantial number of studies relied on a p-value cut-off of p<0.05 to select predictors in the multivariable analyses (29%). Predictive model performance measures, i.e., calibration and discrimination, were reported in 12% and 27% of studies, respectively.
Conclusions
The majority of prediction studies in high impact journals do not follow current methodological recommendations, limiting their reliability and applicability.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
There are often times in our lives when we would like to be able to predict the future. Is the stock market going to go up, for example, or will it rain tomorrow? Being able predict future health is also important, both to patients and to physicians, and there is an increasing body of published clinical “prediction research.” Diagnostic prediction research investigates the ability of variables or test results to predict the presence or absence of a specific diagnosis. So, for example, one recent study compared the ability of two imaging techniques to diagnose pulmonary embolism (a blood clot in the lungs). Prognostic prediction research investigates the ability of various markers to predict future outcomes such as the risk of a heart attack. Both types of prediction research can investigate the predictive properties of patient characteristics, single variables, tests, or markers, or combinations of variables, tests, or markers (multivariable studies). Both types of prediction research can include also studies that build multivariable prediction models to guide patient management (model development), or that test the performance of models (validation), or that quantify the effect of using a prediction model on patient and physician behaviors and outcomes (impact assessment).
Why Was This Study Done?
With the increase in prediction research, there is an increased interest in the methodology of this type of research because poorly done or poorly reported prediction research is likely to have limited reliability and applicability and will, therefore, be of little use in patient management. In this systematic review, the researchers investigate the reporting and methods of prediction studies by examining the aims, design, participant selection, definition and measurement of outcomes and candidate predictors, statistical power and analyses, and performance measures included in multivariable prediction research articles published in 2008 in several general medical journals. In a systematic review, researchers identify all the studies undertaken on a given topic using a predefined set of criteria and systematically analyze the reported methods and results of these studies.
What Did the Researchers Do and Find?
The researchers identified all the multivariable prediction studies meeting their predefined criteria that were published in 2008 in six high impact general medical journals by browsing through all the issues of the journals (a hand search). They then scored the methods and reporting of each study using a comprehensive item list based on recent recommendations for the conduct of prediction research (for example, the reporting recommendations for tumor marker prognostic studies—the REMARK guidelines). Of 71 retrieved studies, 51 were predictor finding studies, 14 were prediction model development studies, three externally validated an existing model, and three reported on a model's impact on participant outcome. Study design, participant selection, definitions of outcomes and predictors, and predictor selection were generally well reported, but other methodological and reporting aspects of the studies were suboptimal. For example, despite many recommendations, continuous predictors were often dichotomized. That is, rather than using the measured value of a variable in a prediction model (for example, blood pressure in a cardiovascular disease prediction model), measurements were frequently assigned to two broad categories. Similarly, many of the studies failed to adequately estimate the sample size needed to minimize bias in predictor effects, and few of the model development papers quantified and validated the proposed model's predictive performance.
What Do These Findings Mean?
These findings indicate that, in 2008, most of the prediction research published in high impact general medical journals failed to follow current guidelines for the conduct and reporting of clinical prediction studies. Because the studies examined here were published in high impact medical journals, they are likely to be representative of the higher quality studies published in 2008. However, reporting standards may have improved since 2008, and the conduct of prediction research may actually be better than this analysis suggests because the length restrictions that are often applied to journal articles may account for some of reporting omissions. Nevertheless, despite some encouraging findings, the researchers conclude that the poor reporting and poor methods they found in many published prediction studies is a cause for concern and is likely to limit the reliability and applicability of this type of clinical research.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001221.
The EQUATOR Network is an international initiative that seeks to improve the reliability and value of medical research literature by promoting transparent and accurate reporting of research studies; its website includes information on a wide range of reporting guidelines including the REMARK recommendations (in English and Spanish)
A video of a presentation by Doug Altman, one of the researchers of this study, on improving the reporting standards of the medical evidence base, is available
The Cochrane Prognosis Methods Group provides additional information on the methodology of prognostic research
doi:10.1371/journal.pmed.1001221
PMCID: PMC3358324  PMID: 22629234
15.  Towards evidence‐based medicine for paediatricians 
To give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence‐based” answers to common questions that are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format that has been successfully developed by Kevin Mackway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, although they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor to search the grey, unpublished literature. What Archimedes offers is practical, best evidence‐based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching2 and obtaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question (http://www.cebm.net). A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as the number needed to treat), books by Sackett4 and Moyer5 may help. To pull the information together, a commentary is provided, but to make it all much more accessible, a box provides the clinical bottom lines.
Electronics‐only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include the following.
Can steroids be used to reduce post tonsillectomy pain?
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the instructions for authors at www.archdischild.com. Three topics are covered in this issue of the journal:
Is teething the cause of minor ailments?
Should steroid creams be used in cases of labial fusion?
Does erythromycin cause pyloric stenosis?
References
1 Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
2 Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3 Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4 Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
5 Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
Can: doing, using and replicating evidence‐based child health
The practice of evidence‐based child health is said to be the five‐step way of asking questions, acquiring information, appraising the evidence, applying the results and assessing our performance.
If the truth be known, for the vast majority of the time, most of us perform our clinical practice replicating what we have done previously. Most of the time this is based on the combination of excellent education, skilled interpretation of clinical findings, and good discussions with children and families. We hope that the education we rely on was (and remains) based on the best available scientific evidence. If it is, we are practising a form of “micro‐evidence‐based healthcare (EBHC)” (doing just step 4).
Sometimes, we question our knowledge (or more uncomfortably, someone does this for us), and will head off to top up our understanding of an area. This “using” mode, if we use well‐appraised resources to supply our thirst for information, will also promote the practice of evidence‐based care. This midi‐EBHC asks us to go through steps 1, 2 and 4.
Occasionally, we also actually need to go through the entire process of getting “down and dirty” with the primary research and appraising it to influence our practice. Maxi‐EBHC is considerably more demanding in time, but largely more satisfying intellectually.
If we reframe the practice of EBHC as using the family and child values, the best evidence, and our clinical expertise, then we can do it by micro‐methods, midi‐methods or maxi‐methods, and choose the most appropriate approach for the situation we confront.
Acknowledgement
I thank Dr Sharon Straus, Director of the Center for Evidence‐based Medicine, University of Toronto, Toronto, Ontario, Canada.
doi:10.1136/adc.2006.110080
PMCID: PMC2083440
16.  Neuronal injury in simian immunodeficiency virus and other animal models of neuroAIDS 
Journal of neurovirology  2008;14(4):327-339.
The success of antiretroviral therapy has reduced the incidence of severe neurological complication resulting from human immunodeficiency virus (HIV) infection. However, increased patient survival has been associated with an increased prevalence of protracted forms of HIV encephalitis leading to moderate cognitive impairment. NeuroAIDS remains a great challenge to patients, their families, and our society. Thus development of preclinical models that will be suitable for testing promising new compounds with neurotrophic and neuroprotective capabilities is of critical importance. The simian immunodeficiency virus (SIV)-infected macaque is the premiere model to study HIV neuropathogenesis. This model was central to the seminal work of Dr. Opendra “Bill” Narayan. Similar to patients with HIV encephalitis, in the SIV model there is injury to the synaptodendritic structure of excitatory pyramidal neurons and inhibitory calbindin-immunoreactive interneurons. This article, which is part of a special issue of the Journal of NeuroVirology in honor of Dr. Bill Narayan, discusses the most important neurodegenerative features in preclinical models of neuroAIDS and their potential for treatment development.
doi:10.1080/13550280802132840
PMCID: PMC2562423  PMID: 18780234
encephalitis; gp120; HIV; macaque; SIV; transgenic
17.  Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil 
Cancer biology & therapy  2008;7(7):986-994.
Thymidylate synthase is a target of 5-fluoruracil, a pyrimidine analog used to treat gastrointestinal and other cancers. The 5-fluorouracil metabolite, fluoro-deoxyuridine monophosphate, forms a ternary complex with thymidylate synthase and 5,10-methylene tetrahydrofolate. The purpose of this study was to evaluate the time-honored connection between thymidylate synthase and 5-fluorouracil. From our literature search spanning reports from 1995 to 2007 published in journals having an impact factor greater than two, we stratified the tumors within each article, according to low versus high thymidylate synthase expression. These groups were subdivided into responders, stable disease or disease progression. The relationship between thymidylate synthase expression and 5-fluorouracil response was analyzed for the overall group, as well as for subsets. Overall, the literature supported an approximately two-fold inverse relationship between thymidylate synthase expression and response to 5-fluoruracil. We found no change in the trend for a relationship between thymidylate synthase and 5-fluorouracil when the literature was stratified by date of publication, impact factor of the journal in which the report was published, or substrate (mRNA versus protein) for measuring thymidylate synthase expression. Of note, there is no significant change in the trend when comparing 5-fluorouracil treatment alone or in combination with leucovorin. We found a decline of this trend when certain chemotherapeutics were used in combination with 5-fluorouracil. In sum, the connection between thymidylate synthase expression and patient response to 5-fluorouracil does not satisfy expectations for an effective drug-target relationship; and thus, studies of the thymidylate synthase tandem repeat status might only be clinically valuable in regards to patient toxicity. Thus, we question the reliability of thymidylate synthase expression as a clinical predictor of 5-fluorouracil response. Future research could perhaps be directed towards alternate targets and metabolites of 5-fluorouracil, in an effort to find a clinically relevant biomarker panel for response and to optimize fluoropyrimidine-based therapy.
PMCID: PMC3081718  PMID: 18443433
thymidylate synthase; 5-fluorouracil; clinical response; pharmacogenomics; chemotherapeutic resistance; pharamocogenetic window; resistance; sensitivity
18.  Towards evidence based medicine for paediatricians 
In order to give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format which has been successfully developed by Kevin Macaway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, through they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching,2 and gaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question.4 A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as number needed to treat, NNT) books by Sackett5 and Moyer6 may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal:
Does neonatal BCG vaccination protect against tuberculous meningitis?
Does dexamethasone reduce the risk of extubation failure in ventilated children?
Should metformin be prescribed to overweight adolescents in whom dietary/behavioural modifications have not helped?
REFERENCES
1. Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
2. Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3. Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4. http://cebm.jr2.ox.ac.uk/docs/levels.htm (accessed July 2002).
5. Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
6. Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
How to read your journals
Most people have their journals land, monthly, weekly, or quarterly, on their desk, courtesy of their professional associations. Then they sit, gathering dust and guilt, for a period of time. When the layer of either is too great for comfort (or the desk space is needed for some proper work), the wrapper is removed and the journal scanned. But does how people read reflect their information needs or their entertainment requirements?
It is not uncommon to find people straying from the editorial introduction to the value added sections (like obituaries, Lucina‐like summary pages, and end‐of‐article fillers) rather than face the impenetrable science that sits between them. I think that this is probably unhelpful, and would urge readers to do one more thing before placing the journal in the recycling. Scan the table of contents; if it mentions a systematic review or a randomised trial, then read at least the title and the abstract's conclusions. If you agree, pat yourself warmly on the back for being evidence based and up‐to‐date. If you disagree, ask if it will make any impact on your clinical (or personal) life. If it might, run through the methods and quickly appraise them. Does it supply higher quality evidence than that you already possess? If it does, it's worth reading. If it doesn't, don't bother too much.
There are new innovations which might aid the tedious task of consuming research effort. The on‐line Précis section of the Archives provides a highly readable version of the contents page to whet one's appetite. Finally, it's worth mentioning that evidence based summary materials (like Archimedes, or Journal Watch) are always worth reading—and if you didn't think that you wouldn't be here, would you?
PMCID: PMC2082933
Archimedes; evidence based medicine
19.  What's so special about Osler? 
Sir William Osler was an outstanding figure in American and British Medicine during the early years of this century. Over fifty years after his death, his name is still remembered and honored, whereas other leaders who were equally important in the eyes of their contemporaries have been relegated to the realm of history. This brief review attempts to discover what special qualities have kept Osler's memory vivid. No single characteristic of his skill, science, or personality seems in itself to explain his continuing reputation. Rather, a combination of his eminence in several different medical schools, his presence at a time of revolution in medical teaching and thought, his authorship of one of the most successful medical textbooks, and an enthusiastic claque of ex-students and colleagues seem to have combined to maintain his memory as a leader of medicine.
PMCID: PMC2595874  PMID: 6996343
20.  Preventing and Treating Lower Extremity Stress Reactions and Fractures in Adults 
Journal of Athletic Training  2006;41(4):466-469.
Reference/Citation: Rome K, Handoll HH, Ashford R. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev.20052:CD000450. Update from Gillespie WJ, Grant I. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database Syst Rev.20002: CD000450.
Clinical Question: Do evidence-based interventions exist for the prevention and treatment of stress reactions and stress fractures in young active adults?
Data Sources: This systematic review is an update of the original article, which was published in 2000. The authors conducted a literature review of computerized databases that included the Cochrane Musculoskeletal Injuries Group Specialized Register (April 2004), the Cochrane Central Register of Controlled Trials, MEDLINE (1966 to September 2004), EMBASE (1988 to 2004, week 36), CINAHL (1982 to 2004, September, week 1), Index to Theses (1990 to 2004), and Dissertation Abstracts (1990 to 2004). In addition, the authors searched the Current Controlled Trials at http://www.controlled-trials.com (June 2004, week 1) and the United Kingdom National Research Registrar at http://www.update-software.com/national/ (to issue 1, 2004) for current or recently completed studies. They also reviewed the British Journal of Podiatry, International Journal of Podiatric Biomechanics, Physiotherapy, and the Australian Journal of Podiatric Medicine for relevant studies. Furthermore, they contacted the Medical Departments of Defense Forces in Europe and North America to identify unpublished or unlisted military studies. Reference lists of all identified studies and Cochrane reviews were also investigated. The computer search strategy included 61 separate entries and included such terms as stress fractures, stress reactions, shin splints, overuse, athletic injuries, cumulative trauma disorders, running, and randomized controlled trial. The 3 authors of this updated review independently selected new articles for inclusion. Furthermore, the 12 articles that were included in the original systematic review were also reevaluated to ensure they met the defined inclusion criteria.
Study Selection: To qualify for inclusion, studies had to be randomized or quasirandomized control trials, involve interventions to prevent or treat lower extremity stress reactions and fractures, and include physically active adults (adolescence to middle age) who were involved in athletics or military training. Clinical and radiographic (bone scan or x-ray) evidence of a lower extremity stress reaction or stress fracture was also required for inclusion of treatment-based studies. Specifically, skeletal overuse injuries are considered the result of a cumulative and repetitive process that produces initial microstructural changes or stress reactions that are identified by bone scans or magnetic resonance imaging but not conventional radiographs. If cumulative stresses continue, structural changes are visualized on radiographs and are referred to as stress fractures. In addition, research studies involving the treatment of medial tibial stress syndrome or shin splints were excluded. Desired outcome measures for treatment studies included return to training time, return to normal physical activity, functional performance, quality of life measures, resource management (eg, costs, health care visits, diagnostic procedures), adverse effects, and compliance.
The inclusion criteria for stress fracture prevention studies were similar, except that the authors did not have to provide radiographic evidence of a stress fracture or stress reaction. Prevention studies included a combination of the following outcome measures: occurrence and location of stress fracture, stratification of diagnosis, incidence of other lower limb injuries, complications and adverse effects of prevention techniques, resource management, and compliance with the prevention strategy.
Data Extraction: At least 2 reviewers independently extracted the demographic and outcome data from the newly identified studies, and 1 author verified the data and results from the 12 studies included in the 2000 Cochrane review. Inconsistencies from the original review and data from all new studies were also checked by an additional reviewer. All 3 reviewers then independently evaluated the quality of inclusion studies using a quality scoring scheme ( Table). The categories considered included randomization or group allocation (A), intention-to-treat analysis (B), examiner blinding (C), comparison of experimental and control groups at baseline (D), use of a placebo treatment (E), clearly defined subject inclusion and exclusion criteria (F), and methods of outcome assessments (G). Items A through F were scored from 0 to 2 and item G from 0 to 3, for a total “best” quality assessment score (QAS) of 15. Inconsistencies among reviewers' QAS scores were resolved by discussion and with the aid of a discrepancies form.
Main Results: Search criteria identified 24 new studies since the previous review, 8 of which fulfilled the inclusion criteria. In addition, 4 of the 12 studies included in the original 2000 review were excluded. Three were excluded as a result of insufficient indication of subject or group randomization or quasirandomization, and the fourth excluded study included subjects with the diagnosis of medial tibial stress syndrome. Overall, 16 studies were included.
The authors of 13 studies focused on prevention, and 3 groups evaluated the treatment of stress fractures and reactions. The average number of subjects for prevention and treatment studies, respectively, was 1091 (range = 206 to 3025) and 34 (range = 21 to 60). All 13 prevention studies involved military personnel who performed physical training over a 9-to-14–week period. Quality assessment scores for prevention studies ranged from 4 to 10 (mean score = 7). In 9 prevention studies, the effectiveness of insoles or orthoses was evaluated, and the QAS for these studies ranged from 4 to 9 (mean = 6.2). The investigators in 4 studies assessed “shock-absorbing” insoles or orthoses in shoes or boots versus a control (shoes or boots alone), and an additional 5 groups compared insoles and orthoses against one another. One study's authors also evaluated military training in a modified high-top shoe versus standard military boots (QAS = 8). Two groups assessed the influence of pre-exercise stretching (QAS = 8 and 9, respectively), and one investigated the effects of calcium supplementation (QAS = 10).
In none of the prevention studies were adequate randomization and concealment of treatment before group allocation (item A) accomplished, and the researchers in 3 studies randomized groups (team or platoon) instead of individual participants. Attrition rates exceeded 50% in 2 studies, and missing subjects' data were unaccounted for in the final analysis of 3 studies (item B, intention-to-treat analysis). Also, in only 2 of 13 studies were examiners blinded to group assignment (item C). Radiographic (bone scan or x-ray) evidence for diagnostic confirmation of a stress reaction or fracture was used in 12 studies. The method of diagnosis (item G) was based solely on clinical examination or a self-report questionnaire in 2 studies, and diagnostic methods were not described in 2 studies.
Overall fewer osseous stress injuries were reported in the experimental groups for all 4 studies comparing military personnel in “shock absorbing insoles” with controls (no insoles). However, none of these 4 studies demonstrated a statistically significant reduction in lower extremity overuse osseous injuries. In addition, statistically significant results were reported in only 1 of 5 studies that compared various orthoses and insoles. The authors reported a significant reduction in tibial stress fractures for soldiers wearing custom-made semirigid or soft-foot orthoses versus those wearing standard insoles (relative risk = 0.46, 95% confidence interval = 0.22 to 0.93). In a follow-up study, no significant difference in stress fracture rates was seen between subjects who wore custom-made semirigid orthoses and those who wore biomechanical soft orthoses, thus precluding the ability to identify one best design for stress fracture reduction. No significant stress fracture or lower extremity injury rate differences were seen between the control and experimental groups involved in lower extremity stretching studies. Participants taking calcium supplements did not demonstrate a significant reduction in stress fractures (tibial only) versus controls. The differences among the prevention studies prohibited pooling of the data and subsequent meta-analysis. Authors of all 3 treatment studies investigated the effects of a pneumatic ankle foot orthosis (Aircast Corp, Summit, NJ). Follow-up for outcome measures ranged from 78 days to 6 months. Two studies were conducted with military recruits, and the other was conducted with competitive and recreational athletes (n = 18, age range = 18 to 45 years). Treatment QASs ranged from 7/15 to 11/ 15, with an average score of 9.3/15. Proper randomization (item A) and evaluator blinding (item C) were confirmed in 1 of the 3 treatment studies. Data pooled from all 3 studies reached statistical significance for mean number of days until returning to full activities (weighted mean difference with brace versus without brace = −33.39 days, 95% confidence interval = −44.18 to −22.59 days).
Conclusions: Currently, no solid evidence-based interventions to prevent lower extremity stress reactions or fractures exist. Limited evidence suggests that “shock absorbing” insoles may reduce the overall incidence of lower extremity osseous injuries in military personnel. Unfortunately, research does not support the best design for inserts or footwear modifications. There is also insufficient evidence to determine if pre-performance stretching or calcium supplementation offers added protection from lower extremity osseous overuse injuries. Initial evidence supports the use of a pneumatic brace and early mobilization for the treatment of tibal stress reactions and fractures, but additional studies are required to validate these findings. Further investigation concerning the prevention and treatment of lower extremity stress fractures is needed and would assist researchers in establishing and clarifying evidence-based intervention guidelines. Future randomized control trials that clearly define (ie, provide clinical and radiographic evidence for) the diagnosis of a stress fracture or reaction, implement appropriate randomization, and use intervention and outcome measures (functional and performance measurements) that are appropriate for active adults would assist this ongoing and necessary process.
PMCID: PMC1748425  PMID: 17273474
athletic injuries; outcomes assessment
21.  A report on case reports 
Case reports are defined as the scientific documentation of a single clinical observation and have a time-honored and rich tradition in medicine and scientific publication. This article discusses the role and relevance of case reports in the current evidence-based medical literature. It also seeks to help and guide authors to understand how to prepare a reasonable and well-written case report and how they may anticipate concerns that peer reviewers may express when scrutinizing their manuscript. An overview of the Journal of Conservative Dentistry’s review process of a manuscript submission is provided for the benefit of future authors. It is important to be able to read a case report critically and to use the information they contain appropriately. This article also discusses the factors to consider in evaluating individual case reports, and discusses a practical conceptual scheme for evaluating the potential value and educational content of a case report.
doi:10.4103/0972-0707.73375
PMCID: PMC3010033  PMID: 21217956
Case report; dental writing; publishing
22.  Reviewing for Clinical Orthopaedics and Related Research 
Peer review in science was established in the 17th Century and while not without detractors and some controversy, has been a mainstay of high-quality scientific publications ever since. Most believe peer review adds substantially to the value of papers that achieve publication. However, in practice, peer review can be practiced with varying degrees of rigor and the value of the review depends on rigor. The two primary tasks of a reviewer are to determine whether the manuscript makes a substantial contribution (in an age of information overload) and to determine whether there are any “fatal” flaws. If the reviewer recommends rejection, then he or she need only note the major flaws. If, however, the material is sufficiently novel and would substantially add to the literature, the reviewer’s secondary task is to ensure completeness and clarity by noting information that should be added and identifying unclear points; in these cases more detailed reviews are merited. To achieve this task, the reviewer must ask numerous questions related to the background and rationale, questions or purposes, study design and methods, findings, and synthesis with the literature. In this brief review I outline such key questions. An invitation to review is an honor and reflects the confidence of the editor in the reviewer’s expertise and accomplishments. Given proper reviews and recommendations, the majority of authors believe peer review adds great value to their papers and the reviewer makes contributions to the community and their own knowledge.
doi:10.1007/s11999-012-2447-8
PMCID: PMC3830107  PMID: 22752799
23.  A new generation of journals is born 
The 21st century has provided new technical and educational opportunities as well as challenges which have not been approached and exploited sufficiently by traditional scientific journals. Furthermore, case reports are usually “neglected” by traditional journals for a variety of reasons, including limited space in the hardcopy version of the journal issue and priority over original research and review articles. The Journal of Radiology Case Reports is a new generation of journals, which is dedicated to provide open-access, high-quality, peer-reviewed and interactive Radiology case reports.
doi:10.3941/jrcr.v2i1.26
PMCID: PMC3303230  PMID: 22470580
24.  Epidemiology and Reporting Characteristics of Systematic Reviews 
PLoS Medicine  2007;4(3):e78.
Background
Systematic reviews (SRs) have become increasingly popular to a wide range of stakeholders. We set out to capture a representative cross-sectional sample of published SRs and examine them in terms of a broad range of epidemiological, descriptive, and reporting characteristics, including emerging aspects not previously examined.
Methods and Findings
We searched Medline for SRs indexed during November 2004 and written in English. Citations were screened and those meeting our inclusion criteria were retained. Data were collected using a 51-item data collection form designed to assess the epidemiological and reporting details and the bias-related aspects of the reviews. The data were analyzed descriptively. In total 300 SRs were identified, suggesting a current annual publication rate of about 2,500, involving more than 33,700 separate studies including one-third of a million participants. The majority (272 [90.7%]) of SRs were reported in specialty journals. Most reviews (213 [71.0%]) were categorized as therapeutic, and included a median of 16 studies involving 1,112 participants. Funding sources were not reported in more than one-third (122 [40.7%]) of the reviews. Reviews typically searched a median of three electronic databases and two other sources, although only about two-thirds (208 [69.3%]) of them reported the years searched. Most (197/295 [66.8%]) reviews reported information about quality assessment, while few (68/294 [23.1%]) reported assessing for publication bias. A little over half (161/300 [53.7%]) of the SRs reported combining their results statistically, of which most (147/161 [91.3%]) assessed for consistency across studies. Few (53 [17.7%]) SRs reported being updates of previously completed reviews. No review had a registration number. Only half (150 [50.0%]) of the reviews used the term “systematic review” or “meta-analysis” in the title or abstract. There were large differences between Cochrane reviews and non-Cochrane reviews in the quality of reporting several characteristics.
Conclusions
SRs are now produced in large numbers, and our data suggest that the quality of their reporting is inconsistent. This situation might be improved if more widely agreed upon evidence-based reporting guidelines were endorsed and adhered to by authors and journals. These results substantiate the view that readers should not accept SRs uncritically.
Data were collected on the epidemiological, descriptive, and reporting characteristics of recent systematic reviews. A descriptive analysis found inconsistencies in the quality of reporting.
Editors' Summary
Background.
In health care it is important to assess all the evidence available about what causes a disease or the best way to prevent, diagnose, or treat it. Decisions should not be made simply on the basis of—for example—the latest or biggest research study, but after a full consideration of the findings from all the research of good quality that has so far been conducted on the issue in question. This approach is known as “evidence-based medicine” (EBM). A report that is based on a search for studies addressing a clearly defined question, a quality assessment of the studies found, and a synthesis of the research findings, is known as a systematic review (SR). Conducting an SR is itself regarded as a research project and the methods involved can be quite complex. In particular, as with other forms of research, it is important to do everything possible to reduce bias. The leading role in developing the SR concept and the methods that should be used has been played by an international network called the Cochrane Collaboration (see “Additional Information” below), which was launched in 1992. However, SRs are now becoming commonplace. Many articles published in journals and elsewhere are described as being systematic reviews.
Why Was This Study Done?
Since systematic reviews are claimed to be the best source of evidence, it is important that they should be well conducted and that bias should not have influenced the conclusions drawn in the review. Just because the authors of a paper that discusses evidence on a particular topic claim that they have done their review “systematically,” it does not guarantee that their methods have been sound and that their report is of good quality. However, if they have reported details of their methods, then it can help users of the review decide whether they are looking at a review with conclusions they can rely on. The authors of this PLoS Medicine article wanted to find out how many SRs are now being published, where they are being published, and what questions they are addressing. They also wanted to see how well the methods of SRs are being reported.
What Did the Researchers Do and Find?
They picked one month and looked for all the SRs added to the main list of medical literature in that month. They found 300, on a range of topics and in a variety of medical journals. They estimate that about 20% of reviews appearing each year are published by the Cochrane Collaboration. They found many cases in which important aspects of the methods used were not reported. For example, about a third of the SRs did not report how (if at all) the quality of the studies found in the search had been assessed. An important assessment, which analyzes for “publication bias,” was reported as having been done in only about a quarter of the cases. Most of the reporting failures were in the “non-Cochrane” reviews.
What Do These Findings Mean?
The authors concluded that the standards of reporting of SRs vary widely and that readers should, therefore, not accept the conclusions of SRs uncritically. To improve this situation, they urge that guidelines be drawn up regarding how SRs are reported. The writers of SRs and also the journals that publish them should follow these guidelines.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040078.
An editorial discussing this research article and its relevance to medical publishing appears in the same issue of PLoS Medicine
A good source of information on the evidence-based approach to medicine is the James Lind Library
The Web site of the Cochrane Collaboration is a good source of information on systematic reviews. In particular there is a newcomers' guide and information for health care “consumers”. From this Web site, it is also possible to see summaries of the SRs published by the Cochrane Collaboration (readers in some countries can also view the complete SRs free of charge)
Information on the practice of evidence-based medicine is available from the US Agency for Healthcare Research and Quality and the Canadian Agency for Drugs and Technologies in Health
doi:10.1371/journal.pmed.0040078
PMCID: PMC1831728  PMID: 17388659
25.  Influence of medical journal press releases on the quality of associated newspaper coverage: retrospective cohort study 
Objective To determine whether the quality of press releases issued by medical journals can influence the quality of associated newspaper stories.
Design Retrospective cohort study of medical journal press releases and associated news stories.
Setting We reviewed consecutive issues (going backwards from January 2009) of five major medical journals (Annals of Internal Medicine, BMJ, Journal of the National Cancer Institute, JAMA, and New England Journal of Medicine) to identify the first 100 original research articles with quantifiable outcomes and that had generated any newspaper coverage (unique stories ≥100 words long). We identified 759 associated newspaper stories using Lexis Nexis and Factiva searches, and 68 journal press releases using Eurekalert and journal website searches. Two independent research assistants assessed the quality of journal articles, press releases, and a stratified random sample of associated newspaper stories (n=343) by using a structured coding scheme for the presence of specific quality measures: basic study facts, quantification of the main result, harms, and limitations.
Main outcome Proportion of newspaper stories with specific quality measures (adjusted for whether the quality measure was present in the journal article’s abstract or editor note).
Results We recorded a median of three newspaper stories per journal article (range 1-72). Of 343 stories analysed, 71% reported on articles for which medical journals had issued press releases. 9% of stories quantified the main result with absolute risks when this information was not in the press release, 53% did so when it was in the press release (relative risk 6.0, 95% confidence interval 2.3 to 15.4), and 20% when no press release was issued (2.2, 0.83 to 6.1). 133 (39%) stories reported on research describing beneficial interventions. 24% mentioned harms (or specifically declared no harms) when harms were not mentioned in the press release, 68% when mentioned in the press release (2.8, 1.1 to 7.4), and 36% when no press release was issued (1.5, 0.49 to 4.4). 256 (75%) stories reported on research with important limitations. 16% reported any limitations when limitations were not mentioned in the press release, 48% when mentioned in the press release (3.0, 1.5 to 6.2), and 21% if no press release was issued (1.3, 0.50 to 3.6).
Conclusion High quality press releases issued by medical journals seem to make the quality of associated newspaper stories better, whereas low quality press releases might make them worse.
doi:10.1136/bmj.d8164
PMCID: PMC3267473  PMID: 22286507

Results 1-25 (1240833)