Search tips
Search criteria

Results 1-25 (887052)

Clipboard (0)

Related Articles

1.  Regression-Based Ranking of Pathogen Strains with Respect to Their Contribution to Natural Epidemics 
PLoS ONE  2014;9(1):e86591.
Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory method to investigate differences among pathogen strains in their performance in the field. The method exploits epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.
PMCID: PMC3909007  PMID: 24497956
2.  Historical Introgression of the Downy Mildew Resistance Gene Rpv12 from the Asian Species Vitis amurensis into Grapevine Varieties 
PLoS ONE  2013;8(4):e61228.
The Amur grape (Vitis amurensis Rupr.) thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.). A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance–a hypersensitive response in leaves challenged with P. viticola–was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old ‘Zarja severa’ and ‘Michurinets’. Before this knowledge, the chromosome segment around Rpv12+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3) only by phenotypic selection. Rpv12+ has an additive effect with Rpv3+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3+ plants.
PMCID: PMC3625174  PMID: 23593440
3.  Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts 
Plant Methods  2012;8:35.
The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis.
Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment.
The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.
PMCID: PMC3522566  PMID: 22937820
Arabidopsis thaliana; Conidiospores; Golovinomyces orontii; Powdery mildew; Quantification; qPCR
4.  A functional–structural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment 
Annals of Botany  2010;107(5):747-764.
Background and Aims
Functional–structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine's architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine's features: (a) plasticity of the vine's architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth.
Using the L-system modelling platform, a functional–structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf.
Key Results
Several simulations were performed to illustrate the model's potential to reproduce the major features of the vine's behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon.
The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable tool for refining our understanding of kiwifruit growth and for identifying strategies to improve production.
PMCID: PMC3077975  PMID: 20855486
Actinidia deliciosa; kiwifruit; L-systems; plant architecture; carbon allocation; functional–structural plant model
5.  A hyperparasite affects the population dynamics of a wild plant pathogen 
Molecular Ecology  2014;23(23):5877-5887.
Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of the Åland archipelago (southwest Finland). Regionally, the pathogen persists through a balance of extinctions and colonizations, yet factors affecting extinction rates remain poorly understood. Mycoparasites of the genus Ampelomyces appear as good candidates for testing the role of a hyperparasite, i.e. a parasite of other parasites, in the regulation of their fungal hosts' population dynamics. For this purpose, we first designed a quantitative PCR assay for detection of Ampelomyces spp. in field-collected samples. This newly developed molecular test was then applied to a large-scale sampling within the Åland archipelago, revealing that Ampelomyces is a widespread hyperparasite in this system, with high variability in prevalence among populations. We found that the hyperparasite was more common on leaves where multiple powdery mildew strains coexist, a pattern that may be attributed to differential exposure. Moreover, the prevalence of Ampelomyces at the plant level negatively affected the overwinter survival of its fungal host. We conclude that this hyperparasite may likely impact on its host population dynamics and argue for increased focus on the role of hyperparasites in disease dynamics.
PMCID: PMC4282315  PMID: 25204419
disease; hyperparasite; metapopulation; molecular detection; plant pathogen; regulation
6.  Integrated Analysis of Climate, Soil, Topography and Vegetative Growth in Iberian Viticultural Regions 
PLoS ONE  2014;9(9):e108078.
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.
PMCID: PMC4176712  PMID: 25251495
7.  The Powdery Mildew Disease of Arabidopsis: A Paradigm for the Interaction between Plants and Biotrophic Fungi 
The powdery mildew diseases, caused by fungal species of the Erysiphales, have an important economic impact on a variety of plant species and have driven basic and applied research efforts in the field of phytopathology for many years. Although the first taxonomic reports on the Erysiphales date back to the 1850's, advances into the molecular biology of these fungal species have been hampered by their obligate biotrophic nature and difficulties associated with their cultivation and genetic manipulation in the laboratory. The discovery in the 1990's of a few species of powdery mildew fungi that cause disease on Arabidopsis has opened a new chapter in this research field. The great advantages of working with a model plant species have translated into remarkable progress in our understanding of these complex pathogens and their interaction with the plant host. Herein we summarize advances in the study of Arabidopsis-powdery mildew interactions and discuss their implications for the general field of plant pathology. We provide an overview of the life cycle of the pathogens on Arabidopsis and describe the structural and functional changes that occur during infection in the host and fungus in compatible and incompatible interactions, with special emphasis on defense signaling, resistance pathways, and compatibility factors. Finally, we discuss the future of powdery mildew research in anticipation of the sequencing of multiple powdery mildew genomes. The cumulative body of knowledge on powdery mildews of Arabidopsis provides a valuable tool for the study and understanding of disease associated with many other obligate biotrophic pathogen species.
PMCID: PMC3243333  PMID: 22303240
8.  Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis 
Journal of Experimental Botany  2010;62(6):2117-2129.
To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the formation of a callosic encasement of the haustorial complex (EHC) and hypersensitive response (HR), which appears to be controlled by both salicylic acid (SA)-dependent and SA-independent defence pathways, as supported by the susceptibility of the pad4/sid2 double mutant to the pathogen. While the broad-spectrum resistance protein RPW8.2 enhances post-penetration resistance against G. cichoracearum UCSC1, a well-adapted powdery mildew pathogen, RPW8.2, is dispensable for post-penetration resistance against G. cichoracearum UMSG1, and its specific targeting to the extrahaustorial membrane is physically blocked by the EHC, resulting in HR cell death. Taken together, the present work suggests an evolutionary scenario for the Arabidopsis–powdery mildew interaction: EHC formation is a conserved subcellular defence evolved in plants against haustorial invasion; well-adapted powdery mildew has evolved the ability to suppress EHC formation for parasitic growth and reproduction; RPW8.2 has evolved to enhance EHC formation, thereby conferring haustorium-targeted, broad-spectrum resistance at the post-invasion stage.
PMCID: PMC3060691  PMID: 21193574
Callose; encasement of haustorial complex; extrahaustorial membrane; haustorium; jasmonic acid; non-host resistance; post-invasion resistance; powdery mildew; RPW8; salicylic acid
9.  Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance 
PLoS Pathogens  2012;8(6):e1002752.
Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner.
Author Summary
Plants utilize a multilayered immune system to protect themselves against pathogens. One layer of innate immunity is controlled by intracellular immune receptors called disease resistance (R) proteins. Plant R proteins are powerful molecules capable of triggering host cell suicide thereby restricting pathogen growth. Therefore, it is crucial for plants to control R protein activity in signaling cell death to avoid harmful autoimmune responses. The Barley MLA locus encodes a number of immune receptors that each recognizes a specific powdery mildew fungal strain. Upon pathogen recognition MLAs trigger host defenses concomitant with a rapid cell death response. We here show that MLA10 cell death-inducing activity is tightly regulated by conserved motifs located in two of its domains and by specific cellular chaperone components. Furthermore, we show distinct functions for the nuclear and cytoplasmic MLA10 pools in disease resistance and cell death signaling and provide evidence for a model uncoupling MLA10 cell death signaling from its disease resistance activity. Our results suggest that plant immune receptors integrate signals from multiple sub-cellular compartments to coordinate effective immune responses against pathogen attack.
PMCID: PMC3369952  PMID: 22685408
10.  A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata 
Journal of Experimental Botany  2010;61(6):1719-1737.
Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback; and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays comprising 14 500 probes were used to compare, under three experimental conditions (in vitro, in the greenhouse, and in the vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S–R+), and healthy plants (S–R–). These plants were characterized by symptom notation after natural (vineyard) or experimental (in vitro and greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative real-time PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (Erysiphe necator, Plasmopara viticola, and Botrytis cinerea). (i) Five functional categories of genes, that is those involved in metabolism, defence reactions, interaction with the environment, transport, and transcription, were up-regulated in S+R+ plants compared with S–R– plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also up-regulated after infection by powdery mildew, downy mildew, and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and the polypeptide fraction secreted by Eutypa.
PMCID: PMC2852663  PMID: 20190040
Eutypa dieback; Eutypa lata; grapevine; microarrays; transcriptome; Vitis vinifera
11.  Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease 
PLoS Medicine  2006;3(8):e295.
Cutaneous leishmaniasis (CL) is one of the main emergent diseases in the Americas. As in other vector-transmitted diseases, its transmission is sensitive to the physical environment, but no study has addressed the nonstationary nature of such relationships or the interannual patterns of cycling of the disease.
Methods and Findings
We studied monthly data, spanning from 1991 to 2001, of CL incidence in Costa Rica using several approaches for nonstationary time series analysis in order to ensure robustness in the description of CL's cycles. Interannual cycles of the disease and the association of these cycles to climate variables were described using frequency and time-frequency techniques for time series analysis. We fitted linear models to the data using climatic predictors, and tested forecasting accuracy for several intervals of time. Forecasts were evaluated using “out of fit” data (i.e., data not used to fit the models). We showed that CL has cycles of approximately 3 y that are coherent with those of temperature and El Niño Southern Oscillation indices (Sea Surface Temperature 4 and Multivariate ENSO Index).
Linear models using temperature and MEI can predict satisfactorily CL incidence dynamics up to 12 mo ahead, with an accuracy that varies from 72% to 77% depending on prediction time. They clearly outperform simpler models with no climate predictors, a finding that further supports a dynamical link between the disease and climate.
Using mathematical models, the authors show that cutaneous leishmaniasis has cycles of approximately three years that are related to temperature cycles and indices of the El Niño Southern Oscillation.
Editors' Summary
Every year, 2 million people become infected with a pathogenic species of Leishmania, a parasite that is transmitted to humans through the bites of infected sand flies. These flies—the insect vectors for disease transmission—pick up parasites by biting infected animals—the reservoirs for the parasite. Once in a person, some species of Leishmania can cause cutaneous leishmaniasis, a condition characterized by numerous skin lesions. These usually heal spontaneously but can leave ugly, sometimes disabling scars. Leishmaniasis is endemic and constantly present in many tropical and temperate countries, but as with other diseases that are transmitted by insect vectors (for example, malaria), the occurrence of cases has a strong seasonal pattern and also varies from year to year (interannual variability). These fluctuations suggest that leishmaniasis transmission is sensitive to seasonal changes in the climate and to climatic events like the El Niño Southern Oscillation (ENSO), a major cause of interannual weather and climate variation around the world that repeats every 3–4 years. This sensitivity arises because the climate directly affects the abundance of sand flies and how quickly the parasites replicate.
Why Was This Study Done?
It would be very useful to have early warning systems for leishmaniasis and other vector-transmitted diseases so that public health officials could prepare for epidemics—or spikes in the number of cases—of these diseases. Monitoring of climatic changes could form the basis of such systems. But although it is clear that the transmission of cutaneous leishmaniasis is affected by fluctuations in the climate, there have been no detailed studies into the dynamics of its seasonal or yearly variation. In this study, the researchers used climatic data and information about cutaneous leishmaniasis in Costa Rica to build statistical models that investigate how climate affects leishmaniasis transmission.
What Did the Researchers Do and Find?
The researchers obtained the monthly records for cutaneous leishmaniasis in Costa Rica for 1991 to 2001. They then used several advanced statistical models to investigate how these data relate to climatic variables such as the sea surface temperature (a measure of El Niño, a large-scale warming of the sea), average temperature in Costa Rica, and the MEI (the Multivariate ENSO Index, a collection of temperature and air pressure measurements that predicts when the ENSO is going to occur). Their analyses show that cutaneous leishmaniasis cases usually peak in May and that the incidence of the disease (number of cases occurring in the population over a set time period) rises and falls in three-year cycles. These cycles, they report, match up with similar-length cycles in the climatic variables that they investigated. Furthermore, when the researchers tested the models they had constructed with data that had not been used to construct the models (“out of fit” data), the models predicted variations in the incidence of cutaneous leishmaniasis for up 12 months with an accuracy of about 75% (that is, the predictions were correct three times out of four).
What Do These Findings Mean?
The finding that interannual cycles of climate variables and cutaneous leishmaniasis coincide provides strong evidence that climate does indeed affect the transmission of this disease. This link is strengthened by the ability of the statistical models described by the researchers to predict outbreaks with high accuracy. The researchers' new insights into how climate affects the transmission of cutaneous leishmaniasis are important because they open the door to the possibility of setting up an early warning system for this increasingly common disease. The same statistical approach could be used to improve understanding of how climate affects the dynamics of other vector-transmitted diseases and to design early warning systems for them as well—the World Health Organization has identified 18 diseases for which climate-based early warning systems might be useful but no such systems are currently being used to plan disease control strategies. Finally, the improved understanding of the relationship between climate and disease transmission that the researchers have gained through their study is an important step towards being able to predict how the incidence and distribution of leishmaniasis and other vector-transmitted diseases will be affected by global warming.
Additional Information.
Please access these Web sites via the online version of this summary at
United States Centers for Disease Control and Prevention fact sheet on leishmaniasis
MedlinePlus encyclopedia entry on leishmaniasis
World Health Organization information on leishmaniasis and on climate change and health
Wikipedia pages on leishmaniasis and on the El Niño Southern Oscillation (note that Wikipedia is a free online encyclopedia that anyone can edit)
PMCID: PMC1539092  PMID: 16903778
12.  Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator 
BMC Genomics  2014;15(1):1081.
Powdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator.
A shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide.
Taken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1081) contains supplementary material, which is available to authorized users.
PMCID: PMC4298948  PMID: 25487071
Fungal genomics; Copy number variation; Genetic adaptation; Fungicide resistance; Cytochrome p450; CYP51
13.  VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine 
Journal of Experimental Botany  2011;62(15):5671-5682.
RING finger proteins comprise a large family and play important roles in regulation of growth and development, hormone signalling, and responses to biotic and abiotic stresses in plants. In this study, the identification and functional characterization of a C4C4-type RING finger protein gene from the Chinese wild grapevine Vitis pseudoreticulata (designated VpRFP1) are reported. VpRFP1 was initially identified as an expressed sequence tag (EST) from a cDNA library constructed from leaves of V. pseudoreticulata inoculated with the grapevine powdery mildew Uncinula necator. Sequence analysis of the deduced VpRFP1 protein based on the full-length cDNA revealed an N-terminal nuclear localization signal (NLS) and a C-terminal C4C4-type RING finger motif with the consensus sequence Cys-X2-Cys-X13-Cys-X1-Cys-X4-Cys-X2-Cys-X10-Cys-X2-Cys. Upon inoculation with U. necator, expression of VpRFP1 was rapidly induced to higher levels in mildew-resistant V. pseudoreticulata plants. In contrast, expression of VpRFP1 was down-regulated in mildew-susceptible V. vinifera plants. Western blotting using an antibody raised against VpRFP1 showed that VpRFP1 was also induced to higher levels in V. pseudoreticulata plants at 12–48 hours post-inoculation (hpi). However, there was only slight increase in VpRFP in V. vinifera plants in the same time frame, even though a more significant increase was observed at 96–144 hpi in these plants. Results from transactivation assays in yeast showed that the RING finger motif of VpRFP1 exhibited some activity of transcriptional activation; however, no activity was seen with the full-length VpRFP1. Overexpression of VpRFP1 in Arabidopsis plants was found to enhance resistance to Arabidopsis powdery mildew Golovinomyces cichoracearum, which seemed to be correlated with increased transcript levels of AtPR1 and AtPR2 in the pathogen-infected tissues. In addition, the Arabidopsis transgenic lines showed enhanced resistance to a virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Taken together, the results suggested that VpRFP1 may be a transcriptional activator of defence-related genes in grapevines.
PMCID: PMC3223060  PMID: 21862480
C4C4-type RING finger; Chinese wild Vitis pseudoreticulata; disease resistance; powdery mildew; VpRFP1
14.  The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis 
Plant Signaling & Behavior  2011;6(9):1408-1410.
Autophagy is a conserved intracellular recycling system that traffics cellular organelles and cytosolic proteins within lysosomes for reuse or breakdown in eukaryotes. Increased evidence indicates that autophagy is involved in programmed cell death and disease resistance in plants. We recently showed that atg2, atg5, atg7 and atg10 displayed early senescence and cell death in later growth stage under nutrient-rich conditions in Arabidopsis thaliana. These mutants also exhibited powdery mildew resistance and mildew-induced cell death. Salicylic acid (SA) signaling is required for atg2-mediated powdery mildew resistance, however, inactivation of SA signaling is not sufficient to fully suppress powdery mildew-induced cell death in atg2 mutant.1 Here, we show that atg18a-2 is also resistant to the powdery mildew pathogen, Golovinomyces cichoracearum, and it shows mildew-induced cell death similar to the atg2 mutant. Taken together, our study reveals that autophagy plays important roles in suppression of cell death and defense response to the biotrophic pathogen, the powdery mildew fungus. Future work on autophagy in plants will shine light on how autophagy is involved in cell death and defense response in plants.
PMCID: PMC3258078  PMID: 21847024
autophagy; cell death; defense response; ATG2; ATG18a; powdery mildew
15.  Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India 
PLoS Computational Biology  2010;6(9):e1000898.
Malaria epidemics in regions with seasonal windows of transmission can vary greatly in size from year to year. A central question has been whether these interannual cycles are driven by climate, are instead generated by the intrinsic dynamics of the disease, or result from the resonance of these two mechanisms. This corresponds to the more general inverse problem of identifying the respective roles of external forcings vs. internal feedbacks from time series for nonlinear and noisy systems. We propose here a quantitative approach to formally compare rival hypotheses on climate vs. disease dynamics, or external forcings vs. internal feedbacks, that combines dynamical models with recently developed, computational inference methods. The interannual patterns of epidemic malaria are investigated here for desert regions of northwest India, with extensive epidemiological records for Plasmodium falciparum malaria for the past two decades. We formulate a dynamical model of malaria transmission that explicitly incorporates rainfall, and we rely on recent advances on parameter estimation for nonlinear and stochastic dynamical systems based on sequential Monte Carlo methods. Results show a significant effect of rainfall in the inter-annual variability of epidemic malaria that involves a threshold in the disease response. The model exhibits high prediction skill for yearly cases in the malaria transmission season following the monsoonal rains. Consideration of a more complex model with clinical immunity demonstrates the robustness of the findings and suggests a role of infected individuals that lack clinical symptoms as a reservoir for transmission. Our results indicate that the nonlinear dynamics of the disease itself play a role at the seasonal, but not the interannual, time scales. They illustrate the feasibility of forecasting malaria epidemics in desert and semi-arid regions of India based on climate variability. This approach should be applicable to malaria in other locations, to other infectious diseases, and to other nonlinear systems under forcing.
Author Summary
Malaria epidemics can exhibit pronounced variation from year to year that can be driven by external forcings, such as climate, or can be generated instead by dynamic feedbacks within the disease system itself. For example, levels of immunity in the population (or control efforts) can rise and fall as the result of past levels of infection. This type of feedback is found in the dynamics of all (nonlinear) biological systems. Feedbacks can interact in complex ways with external drivers, for example by creating refractory periods. It remains a challenge to identify internal feedbacks vs. external forcings from available temporal records of aggregated reported cases and forcing variables. We propose a quantitative approach that can statistically compare the hypotheses of feedbacks vs. forcings (epidemiological vs. climate) based on dynamical and mechanistic models. Our approach is computational, based on a large number of computer simulations of the different models. We illustrate and apply the approach to the analysis of extensive monthly records for malaria incidence in desert regions of India that span two decades. Our analyses confirm the strong role of rainfall, and quantify this effect with transmission model(s) for malaria that include rainfall and are shown to exhibit a remarkable prediction skill.
PMCID: PMC2932675  PMID: 20824122
16.  The role of nitric oxide in the interaction of Arabidopsis thaliana with the biotrophic fungi, Golovinomyces orontii and Erysiphe pisi 
Powdery mildews are a diverse group of pathogenic fungi that can infect a large number of plant species, including many economically important crops. However, basic and applied research on these devastating diseases has been hampered by the obligate biotrophic lifestyle of the pathogens, which require living host cells for growth and reproduction, and lacking genetic and molecular tools for important host plants. The establishment of Arabidopsis thaliana as a host of different powdery mildew species allowed pursuing new strategies to study the molecular mechanisms governing these complex plant–pathogen interactions. Nitric oxide (NO) has emerged as an important signaling molecule in plants, which is produced upon infection and involved in activation of plant immune responses. However, the source and pathway of NO production and its precise function in the regulatory network of reactions leading to resistance is still unknown. We studied the response of Arabidopsis thaliana to infection with the adapted powdery mildew, Golovinomyces orontii (compatible interaction) and the non-adapted, Erysiphe pisi (incompatible interaction). We observed that NO accumulated rapidly and transiently at infection sites and we established a correlation between the resistance phenotype and the amount and timing of NO production. Arabidopsis mutants with defective immune response accumulated lower NO levels compared to wild type. Conversely, increased NO levels, generated by treatment with chemicals or expression of a NO-synthesizing enzyme, resulted in enhanced resistance, but only sustained NO production prevented excessive leaf colonization by the fungus, which was not achieved by a short NO burst although this reduced the initial penetration success. By contrast, lowered NO levels did not impair the ultimate resistance phenotype. Although our results suggest a function of NO in mediating plant immune responses, a direct impact on pathogen growth and development cannot be excluded.
PMCID: PMC3766854  PMID: 24058365
disease resistance; plant defense signaling; plant immunity; plant-microbe interaction; powdery mildew; Golovinomyces orontii; Erysiphe pisi
17.  Reductions in biomass accumulation, photosynthesis in situ and net carbon balance are the costs of protecting Vitis vinifera ‘Semillon’ grapevines from heat stress with shade covering 
AoB Plants  2011;2011:plr023.
Shade cloth can be used to protect grapevines from high temperatures. However, the resulting low light intensity is shown to reduce photosynthesis, leading to lower carbon allocation to vegetative growth and sugar accumulation. Protection from heat by shading is, therefore, costly for the carbon economy of the vines.
Background and aims
Covering whole vines with shade cloth is used to protect the vines from heat stress, but may have costs on vine productivity through reduced light availability. Our aim was to assess the carbon balance of vines growing with and without shade to quantify the impact of the covering.
Whole vines were covered with 70 % shade cloth, and shoot leaf area and leaf, stem and bunch growth were followed over two growing seasons. Photosynthesis was measured in situ in all leaves along selected shoots over the growing season. A carbon balance was constructed from the difference in acquisition of carbon and the sequestration of carbon as biomass across the growing seasons.
Principal results
Shade covering had no initial impact on shoot growth but later reduced leaf growth and later still bunch growth. Stem growth was unaffected. Photosynthetic properties were characteristic of shade leaves, with lower rates and lower light saturation compared with well-exposed leaves. Overall, net photosynthesis was reduced by 40 % by the shade covering and was attributed to the reduced photon flux densities. From the carbon balance, vines were reliant on carbon reserves over 6 weeks after budbreak until current photosynthate increased sufficiently to supply the growth. Shade covering impacted most on biomass accumulation to leaves and bunches at the stage when the vines became autotrophic, consistent with the reduction in carbon acquisition. The markedly high carbon demand by bunches caused a mid-season negative carbon balance, implying that shoots had to draw further on reserves to supply the carbon.
Shade covering over whole grapevines exacerbated the imbalance between the supply of and demand for carbon and greatly reduced vine biomass, especially reproductive allocation. Covering vines with shade cloth to protect the vines from heat events, therefore, had major costs in the carbon economy.
PMCID: PMC3176522  PMID: 22476493
18.  A Generic Model to Simulate Air-Borne Diseases as a Function of Crop Architecture 
PLoS ONE  2012;7(11):e49406.
In a context of pesticide use reduction, alternatives to chemical-based crop protection strategies are needed to control diseases. Crop and plant architectures can be viewed as levers to control disease outbreaks by affecting microclimate within the canopy or pathogen transmission between plants. Modeling and simulation is a key approach to help analyze the behaviour of such systems where direct observations are difficult and tedious. Modeling permits the joining of concepts from ecophysiology and epidemiology to define structures and functions generic enough to describe a wide range of epidemiological dynamics. Additionally, this conception should minimize computing time by both limiting the complexity and setting an efficient software implementation. In this paper, our aim was to present a model that suited these constraints so it could first be used as a research and teaching tool to promote discussions about epidemic management in cropping systems. The system was modelled as a combination of individual hosts (population of plants or organs) and infectious agents (pathogens) whose contacts are restricted through a network of connections. The system dynamics were described at an individual scale. Additional attention was given to the identification of generic properties of host-pathogen systems to widen the model's applicability domain. Two specific pathosystems with contrasted crop architectures were considered: ascochyta blight on pea (homogeneously layered canopy) and potato late blight (lattice of individualized plants). The model behavior was assessed by simulation and sensitivity analysis and these results were discussed against the model ability to discriminate between the defined types of epidemics. Crop traits related to disease avoidance resulting in a low exposure, a slow dispersal or a de-synchronization of plant and pathogen cycles were shown to strongly impact the disease severity at the crop scale.
PMCID: PMC3511473  PMID: 23226209
19.  Multiple Candidate Effectors from the Oomycete Pathogen Hyaloperonospora arabidopsidis Suppress Host Plant Immunity 
PLoS Pathogens  2011;7(11):e1002348.
Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (∼70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.
Author Summary
Hyaloperonospora arabidopsidis (Hpa) is an obligate biotroph whose population coevolves with its host, Arabidopsis thaliana. The Hpa isolate Emoy2 genome has been sequenced, allowing the discovery of dozens of secreted candidate effectors. We set out to assign functions to these candidate effectors, investigating if they suppress host defenses. We analyzed a sub-set of Hpa candidate effectors (HaRxLs) that carry the RxLR motif, using a bacterial system for in planta delivery. To our surprise, we found that most of the HaRxLs enhanced plant susceptibility on at least some accessions, while few decreased it. These phenotypes were mostly confirmed on Arabidopsis transgenic lines stably expressing HaRxLs that became more susceptible to compatible Hpa isolates. Furthermore, effectors that conferred enhanced virulence generally suppressed callose deposition, a hallmark of plant defense. This indicates that the “effectorome” of Hpa comprises multiple distinct effectors that can attenuate Arabidopsis immunity. We found that many HaRxLs did not confer enhanced virulence on all host accessions, and also that only ∼50% of the effectors that conferred enhanced Pst growth on Arabidopsis, were able to do so on turnip, a non-host for Hpa. Our data reveal interesting HaRxLs for detailed mechanistic investigation in future experiments.
PMCID: PMC3207932  PMID: 22072967
20.  Gene Gain and Loss during Evolution of Obligate Parasitism in the White Rust Pathogen of Arabidopsis thaliana 
PLoS Biology  2011;9(7):e1001094.
Biotrophic eukaryotic plant pathogens require a living host for their growth and form an intimate haustorial interface with parasitized cells. Evolution to biotrophy occurred independently in fungal rusts and powdery mildews, and in oomycete white rusts and downy mildews. Biotroph evolution and molecular mechanisms of biotrophy are poorly understood. It has been proposed, but not shown, that obligate biotrophy results from (i) reduced selection for maintenance of biosynthetic pathways and (ii) gain of mechanisms to evade host recognition or suppress host defence. Here we use Illumina sequencing to define the genome, transcriptome, and gene models for the obligate biotroph oomycete and Arabidopsis parasite, Albugo laibachii. A. laibachii is a member of the Chromalveolata, which incorporates Heterokonts (containing the oomycetes), Apicomplexa (which includes human parasites like Plasmodium falciparum and Toxoplasma gondii), and four other taxa. From comparisons with other oomycete plant pathogens and other chromalveolates, we reveal independent loss of molybdenum-cofactor-requiring enzymes in downy mildews, white rusts, and the malaria parasite P. falciparum. Biotrophy also requires “effectors” to suppress host defence; we reveal RXLR and Crinkler effectors shared with other oomycetes, and also discover and verify a novel class of effectors, the “CHXCs”, by showing effector delivery and effector functionality. Our findings suggest that evolution to progressively more intimate association between host and parasite results in reduced selection for retention of certain biosynthetic pathways, and particularly reduced selection for retention of molybdopterin-requiring biosynthetic pathways. These mechanisms are not only relevant to plant pathogenic oomycetes but also to human pathogens within the Chromalveolata.
Author Summary
Plant pathogens that cannot grow except on their hosts are called obligate biotrophs. How such biotrophy evolves is poorly understood. In this study, we sequenced the genome of the obligate biotroph white rust pathogen (Albugo laibachii, Oomycota) of Arabidopsis. From comparisons with other oomycete plant pathogens, diatoms, and the human pathogen Plasmodium falciparum, we reveal a loss of important metabolic enzymes. We also reveal the appearance of defence-suppressing “effectors”, some carrying motifs known from other oomycete effectors, and discover and experimentally verify a novel class of effectors that share a CHXC motif within 50 amino acids of the signal peptide cleavage site. Obligate biotrophy involves an intimate association within host cells at the haustorial interface (where the parasite penetrates the host cell's cell wall), where nutrients are acquired from the host and effectors are delivered to the host. We found that A. laibachii, like Hyaloperonospora arabidopsidis and Plasmodium falciparum, lacks molybdopterin-requiring biosynthetic pathways, suggesting relaxed selection for retention of, or even selection against, this pathway. We propose that when defence suppression becomes sufficiently effective, hosts become such a reliable source of nutrients that a free-living phase can be lost. These mechanisms leading to obligate biotrophy and host specificity are relevant not only to plant pathogenic oomycetes but also to human pathogens.
PMCID: PMC3130010  PMID: 21750662
21.  Foliar Application of Plant Growth-Promoting Rhizobacteria Increases Antifungal Compounds in Pea (Pisum sativum) Against Erysiphe pisi 
Mycobiology  2007;35(3):129-134.
Systemic effect of two plant growth-promoting rhizobacterial (PGPR) strains,viz., Pseudomonas fluorescens (Pf4) and P. aeruginosa (Pag), was evaluated on pea (Pisum sativum) against the powdery mildew pathogen Erysiphe pisi. Foliar spray of the two PGPR strains was done on specific nodal leaves of pea and conidial germination of E. pisi was observed on other nodal leaves,distal to the treated ones. Conidial germination was reduced on distant leaves and at the same time,specific as well as total phenolic compounds increased in the leaves distal to those applied with PGPR strains,thereby indicating a positive correlation. The strains induced accumulation of phenolic compounds in pea leaves and the amount increased when such leaves were get inoculated with E. pisi conidia. Between the two strains, Pag was found to be more effective than Pf4 as its effect was more persistent in pea leaves. Foliar application of PGPR strains for the control of powdery mildew of pea is demonstrated in vitro while correlating it with the increased accumulation of plant phenolics.
PMCID: PMC3763140  PMID: 24015083
Erysiphe pisi; Foliar spray; Induced resistance; Pseudomonas aeruginosa; Pseudomonas fluorescens
22.  Olfactory Cues from Plants Infected by Powdery Mildew Guide Foraging by a Mycophagous Ladybird Beetle 
PLoS ONE  2011;6(8):e23799.
Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical “moldy” odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.
PMCID: PMC3158101  PMID: 21876772
23.  A Three-dimensional Statistical Reconstruction Model of Grapevine (Vitis vinifera) Simulating Canopy Structure Variability within and between Cultivar/Training System Pairs 
Annals of Botany  2008;101(8):1167-1184.
Background and Aims
In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar–training system (C × T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods.
This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C × T pairs.
Key Results and Conclusions
The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a wide range of individual digitized plants. Simulated leaf area density and the distribution of light interception among leaves were consistent with measurements. However, at the level of individual organs, the model tended to underestimate light interception.
PMCID: PMC2710267  PMID: 18202006
Canopy; architecture; hemispherical; picture; light interception; radiative; balance; stochastic; modelling; virtual; plants
24.  Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic–virtual plant model 
Annals of Botany  2011;108(6):1179-1194.
Background and Aims
The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat–Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments.
A field experiment was performed with winter wheat ‘Soissons’ grown at three contrasted densities. Plant architecture was characterized to parameterize the wheat model, and disease dynamic was monitored to compare with simulations. Three simulation scenarios, differing in the degree of detail with which plant variability of development was represented, were defined.
Key Results
Despite architectural differences between density treatments, few differences were found in disease progress; only the lower-density treatment resulted in a slightly higher rate of lesion development. Model predictions were consistent with field measurements but did not reproduce the higher rate of lesion progress in the low density. The canopy reconstruction scenario in which inter-plant variability was taken into account yielded the best agreement between measured and simulated epidemics. Simulations performed with the canopy represented by a population of the same average plant deviated strongly from the observations.
It was possible to compare the predicted and measured epidemics on detailed variables, supporting the hypothesis that the approach is able to provide new insights into the processes and plant traits that contribute to the epidemics. On the other hand, the complex and dynamic responses to sowing density made it difficult to test the model precisely and to disentangle the various aspects involved. This could be overcome by comparing more contrasted and/or simpler canopy architectures such as those resulting from quasi-isogenic lines differing by single architectural traits.
PMCID: PMC3189839  PMID: 21724656
Crop architecture; modelling; Septoria tritici; wheat; Triticum aestivum; sowing density; 3-D virtual plant model; plant–pathogen interaction
25.  Host Growth Can Cause Invasive Spread of Crops by Soilborne Pathogens 
PLoS ONE  2013;8(5):e63003.
Invasive soilborne plant pathogens cause substantial damage to crops and natural populations, but our understanding of how to prevent their epidemics or reduce their damage is limited. A key and experimentally-tested concept in the epidemiology of soilborne plant diseases is that of a threshold spacing between hosts below which epidemics (invasive spread) can occur. We extend this paradigm by examining how plant-root growth may alter the conditions for occurrence of soilborne pathogen epidemics in plant populations. We hypothesise that host-root growth can 1) increase the probability of pathogen transmission between neighbouring plants and, consequently, 2) decrease the threshold spacing for epidemics to occur. We predict that, in systems initially below their threshold conditions, root growth can trigger soilborne pathogen epidemics through a switch from non-invasive to invasive behaviour, while in systems above threshold conditions root growth can enhance epidemic development. As an example pathosystem, we studied the fungus Rhizoctonia solani on sugar beet in field experiments. To address hypothesis 1, we recorded infections within inoculum-donor and host-recipient pairs of plants with differing spacing. We translated these observations into the individual-level concept of pathozone, a host-centred form of dispersal kernel. To test hypothesis 2 and our prediction, we used the pathozone to parameterise a stochastic model of pathogen spread in a host population, contrasting scenarios of spread with and without host growth. Our results support our hypotheses and prediction. We suggest that practitioners of agriculture and arboriculture account for root system expansion in order to reduce the risk of soilborne-disease epidemics. We discuss changes in crop design, including increasing plant spacing and using crop mixtures, for boosting crop resilience to invasion and damage by soilborne pathogens. We speculate that the disease-induced root growth observed in some pathosystems could be a pathogen strategy to increase its population through host manipulation.
PMCID: PMC3648505  PMID: 23667560

Results 1-25 (887052)