PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1106746)

Clipboard (0)
None

Related Articles

1.  Glycosylation of Candida albicans Cell Wall Proteins Is Critical for Induction of Innate Immune Responses and Apoptosis of Epithelial Cells 
PLoS ONE  2012;7(11):e50518.
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.
doi:10.1371/journal.pone.0050518
PMCID: PMC3511564  PMID: 23226301
2.  Mucosal Immunity and Candida albicans Infection 
Interactions between mucosal surfaces and microbial microbiota are key to host defense, health, and disease. These surfaces are exposed to high numbers of microbes and must be capable of distinguishing between those that are beneficial or avirulent and those that will invade and cause disease. Our understanding of the mechanisms involved in these discriminatory processes has recently begun to expand as new studies bring to light the importance of epithelial cells and novel immune cell subsets such as Th17 T cells in these processes. Elucidating how these mechanisms function will improve our understanding of many diverse diseases and improve our ability to treat patients suffering from these conditions. In our voyage to discover these mechanisms, mucosal interactions with opportunistic commensal organisms such as the fungus Candida albicans provide insights that are invaluable. Here, we review current knowledge of the interactions between C. albicans and epithelial surfaces and how this may shape our understanding of microbial-mucosal interactions.
doi:10.1155/2011/346307
PMCID: PMC3137974  PMID: 21776285
3.  Cytokine and Chemokine Production by Human Oral and Vaginal Epithelial Cells in Response to Candida albicans  
Infection and Immunity  2002;70(2):577-583.
Oropharyngeal and vaginal candidiases are the most common forms of mucosal fungal infections and are primarily caused by Candida albicans, a dimorphic fungal commensal organism of the gastrointestinal and lower female reproductive tracts. Clinical and experimental observations suggest that local immunity is important in host defense against candidiasis. Accordingly, cytokines and chemokines are present at the oral and vaginal mucosa during C. albicans infections. Since mucosal epithelial cells produce a variety of cytokines and chemokines in response to microorganisms and since C. albicans is closely associated with mucosal epithelial cells as a commensal, we sought to identify cytokines and/or chemokines produced by primary oral and vaginal epithelial cells and cell lines in response to C. albicans. The results showed that proinflammatory cytokines were produced by oral and/or vaginal epithelial cells at various levels constitutively with considerable interleukin-1α (IL-1α) and tumor necrosis factor alpha, but not IL-6, produced in response to C. albicans. In contrast, Th1-type (IL-12 and gamma interferon) and Th2-type-immunoregulatory (IL-10 and transforming growth factor β) cytokines and the chemokines monocyte chemoattractant protein 1 and IL-8 were produced in low to undetectable concentrations with little additional production in response to C. albicans. Taken together, these results indicate that cytokines and chemokines are variably produced by oral and vaginal epithelial cells constitutively, as well as in response to C. albicans, and are predominated by proinflammatory cytokines.
doi:10.1128/IAI.70.2.577-583.2002
PMCID: PMC127706  PMID: 11796585
4.  Th17 cells in immunity to Candida albicans 
Cell host & microbe  2012;11(5):425-435.
Our understanding of immunity to fungal pathogens has advanced considerably in recent years. Particularly significant have been the parallel discoveries in the C-type lectin receptor family and the Th effector arms of immunity, especially Th17 cells and their signature cytokine IL-17. Many of these studies have focused on the most common human fungal pathogen Candida albicans, which is typically a commensal microbe in healthy individuals but causes various disease manifestations in immunocompromised hosts, ranging from mild mucosal infections to lethal disseminated disease. Here, we discuss emerging fundamental discoveries with C. albicans that have informed our overall molecular understanding of fungal immunity. In particular, we focus on the importance of pattern recognition receptor-mediated fungal recognition and subsequent IL-17 responses in host defense against mucosal candidiasis. In light of these recent advances, we also discuss the implications for anti-cytokine biologic therapy and vaccine development.
doi:10.1016/j.chom.2012.04.008
PMCID: PMC3358697  PMID: 22607796
5.  IL-17 Signaling in Host Defense Against Candida albicans 
Immunologic Research  2011;50(2-3):181-187.
The discovery of the Th17 lineage in 2005 triggered a major change in how immunity to infectious diseases is viewed. Fungal infections, in particular, have long been a relatively understudied area of investigation in terms of the host immune response. Candida albicans is a commensal yeast that colonizes mucosal sites and skin. In healthy individuals it is non-pathogenic, but in conditions of immune deficiency, this organism can cause a variety of infections associated with considerable morbidity. Candida can also cause disseminated infections that have a high mortality rate and are a major clinical problem in hospital settings. Although immunity to Candida albicans was long considered to be mediated by Th1 cells, new data in both rodent models and in humans have revealed an essential role for the Th17 lineage, and in particular its signature cytokine IL-17.
doi:10.1007/s12026-011-8226-x
PMCID: PMC3257840  PMID: 21717069
IL-17; Th17; Candida albicans; fungal infections; cytokine
6.  Hyphal Guidance and Invasive Growth in Candida albicans Require the Ras-Like GTPase Rsr1p and Its GTPase-Activating Protein Bud2p 
Eukaryotic Cell  2005;4(7):1273-1286.
Candida albicans, the most prevalent fungal pathogen of humans, causes superficial mycoses, invasive mucosal infections, and disseminated systemic disease. Many studies have shown an intriguing association between C. albicans morphogenesis and the pathogenesis process. For example, hyphal cells have been observed to penetrate host epithelial cells at sites of wounds and between cell junctions. Ras- and Rho-type GTPases regulate many morphogenetic processes in eukaryotes, including polarity establishment, cell proliferation, and directed growth in response to extracellular stimuli. We found that the C. albicans Ras-like GTPase Rsr1p and its predicted GTPase-activating protein Bud2p localized to the cell cortex, at sites of incipient daughter cell growth, and provided landmarks for the positioning of daughter yeast cells and hyphal cell branches, similar to the paradigm in the model yeast Saccharomyces cerevisiae. However, in contrast to S. cerevisiae, CaRsr1p and CaBud2p were important for morphogenesis: C. albicans strains lacking Rsr1p or Bud2p had abnormal yeast and hyphal cell shapes and frequent bends and promiscuous branching along the hypha and were unable to invade agar. These defects were associated with abnormal actin patch polarization, unstable polarisome localization at hyphal tips, and mislocalized septin rings, consistent with the idea that GTP cycling of Rsr1p stabilizes the axis of polarity primarily to a single focus, thus ensuring normal cell shape and a focused direction of polarized growth. We conclude that the Rsr1p GTPase functions as a polarity landmark for hyphal guidance and may be an important mediator of extracellular signals during processes such as host invasion.
doi:10.1128/EC.4.7.1273-1286.2005
PMCID: PMC1168968  PMID: 16002653
7.  Interaction of Candida albicans with Adherent Human Peripheral Blood Mononuclear Cells Increases C. albicans Biofilm Formation and Results in Differential Expression of Pro- and Anti-Inflammatory Cytokines▿ †  
Infection and Immunity  2007;75(5):2612-2620.
Monocytes and macrophages are the cell types most commonly associated with the innate immune response against Candida albicans infection. Interactions between the host immune system and Candida organisms have been investigated for planktonic Candida cells, but no studies have addressed these interactions in a biofilm environment. In this study, for the first time, we evaluated the ability of C. albicans to form biofilms in the presence or absence of adherent peripheral blood mononuclear cells (PBMCs; enriched for monocytes and macrophages by adherence). Our analyses using scanning electron and confocal scanning laser microscopy showed that the presence of PBMCs enhanced the ability of C. albicans to form biofilms and that the majority of PBMCs were localized to the basal and middle layers of the biofilm. In contrast to the interactions of PBMCs with planktonic C. albicans, where PBMCs phagocytose fungal cells, PBMCs did not appear to phagocytose fungal cells in biofilms. Furthermore, time-lapse laser microscopy revealed dynamic interactions between C. albicans and PBMCs in a biofilm. Additionally, we found that (i) only viable PBMCs influence Candida biofilm formation, (ii) cell surface components of PBMCs did not contribute to the enhancement of C. albicans biofilm, (iii) the biofilm-enhancing effect of PBMCs is mediated by a soluble factor released into the coculture medium of PBMCs with C. albicans, and (iv) supernatant collected from this coculture contained differential levels of pro- and anti-inflammatory cytokines. Our studies provide new insight into the interaction between Candida biofilm and host immune cells and demonstrate that immunocytes may influence the ability of C. albicans to form biofilms.
doi:10.1128/IAI.01841-06
PMCID: PMC1865760  PMID: 17339351
8.  Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells 
PLoS Biology  2007;5(3):e64.
Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3Δ/als3Δ mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin–cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.
Author Summary
The fungus Candida albicans is usually a harmless colonizer of human mucosal surfaces. In the mouth, it can cause oropharyngeal candidiasis, also called thrush. In hospitalized and immunocompromised patients, C. albicans can enter the blood stream and be carried throughout the body to cause a disseminated infection, which is associated with a mortality rate of up to 40%. The organism invades the epithelial cell lining of the mouth during oropharyngeal candidiasis and invades the endothelial cell lining of the blood vessels during disseminated candidiasis. We discovered that Als3, a protein expressed on the surface of C. albicans, is required for this invasion process. Cadherins on the surface of human cells normally bind other cadherins for adhesion and signaling; however, we found that Als3 also binds to cadherins on endothelial cells and oral epithelial cells, and this binding induces these host cells to take up the fungus. The structure of Als3 is predicted to be quite similar to that of the two cadherins studied, and the parameters of the binding of Als3 to either cadherin are similar to those of cadherin–cadherin binding. These results suggest that Als3 is a functional and structural mimic of human cadherins, and provide new insights into how C. albicans invades host cells.
Als3 aids the invasion of the fungal pathogenCandida albicans into human host cells by mimicking human cadherins to induce endocytosis.
doi:10.1371/journal.pbio.0050064
PMCID: PMC1802757  PMID: 17311474
9.  Interactions of Candida albicans with host epithelial surfaces 
Journal of Oral Microbiology  2013;5:10.3402/jom.v5i0.22434.
Candida albicans is an opportunistic, fungal pathogen of humans that frequently causes superficial infections of oral and vaginal mucosal surfaces of debilitated and susceptible individuals. The organism is however, commonly encountered as a commensal in healthy individuals where it is a component of the normal microflora. The key determinant in the type of relationship that Candida has with its host is how it interacts with the epithelial surface it colonises. A delicate balance clearly exists between the potentially damaging effects of Candida virulence factors and the nature of the immune response elicited by the host. Frequently, it is changes in host factors that lead to Candida seemingly changing from a commensal to pathogenic existence. However, given the often reported heterogeneity in morphological and biochemical factors that exist between Candida species and indeed strains of C. albicans, it may also be the fact that colonising strains differ in the way they exploit resources to allow persistence at mucosal surfaces and as a consequence this too may affect the way Candida interacts with epithelial cells. The aim of this review is to provide an overview of some of the possible interactions that may occur between C. albicans and host epithelial surfaces that may in turn dictate whether Candida removal, its commensal persistence or infection follows.
doi:10.3402/jom.v5i0.22434
PMCID: PMC3805843  PMID: 24155995
oral microbiology; biofilm; virulence factors; pathogenesis
10.  Transcriptional Response of Candida albicans upon Internalization by Macrophages 
Eukaryotic Cell  2004;3(5):1076-1087.
The opportunistic fungal pathogen Candida albicans is both a benign gut commensal and a frequently fatal systemic pathogen. The interaction of C. albicans with the host's innate immune system is the primary factor in this balance; defects in innate immunity predispose the patient to disseminated candidiasis. Because of the central importance of phagocytic cells in defense against fungal infections, we have investigated the response of C. albicans to phagocytosis by mammalian macrophages using genomic transcript profiling. This analysis reveals a dramatic reprogramming of transcription in C. albicans that occurs in two successive steps. In the early phase cells shift to a starvation mode, including gluconeogenic growth, activation of fatty acid degradation, and downregulation of translation. In a later phase, as hyphal growth enables C. albicans to escape from the macrophage, cells quickly resume glycolytic growth. In addition, there is a substantial nonmetabolic response imbedded in the early phase, including machinery for DNA damage repair, oxidative stress responses, peptide uptake systems, and arginine biosynthesis. Further, a surprising percentage of the genes that respond specifically to macrophage contact have no known homologs, suggesting that the organism has undergone substantial evolutionary adaptations to the commensal or pathogen lifestyle. This transcriptional reprogramming is almost wholly absent in the related, but nonpathogenic, yeast Saccharomyces cerevisiae, suggesting that these large-scale and coordinated changes contribute significantly to the ability of this organism to survive and cause disease in vivo.
doi:10.1128/EC.3.5.1076-1087.2004
PMCID: PMC522606  PMID: 15470236
11.  Live Imaging of Disseminated Candidiasis in Zebrafish Reveals Role of Phagocyte Oxidase in Limiting Filamentous Growth ▿ † ‡ 
Eukaryotic Cell  2011;10(7):932-944.
Candida albicans is a human commensal and a clinically important fungal pathogen that grows in both yeast and hyphal forms during human infection. Although Candida can cause cutaneous and mucosal disease, systemic infections cause the greatest mortality in hospitals. Candidemia occurs primarily in immunocompromised patients, for whom the innate immune system plays a paramount role in immunity. We have developed a novel transparent vertebrate model of candidemia to probe the molecular nature of Candida-innate immune system interactions in an intact host. Our zebrafish infection model results in a lethal disseminated disease that shares important traits with disseminated candidiasis in mammals, including dimorphic fungal growth, dependence on hyphal growth for virulence, and dependence on the phagocyte NADPH oxidase for immunity. Dual imaging of fluorescently marked immune cells and fungi revealed that phagocytosed yeast cells can remain viable and even divide within macrophages without germinating. Similarly, although we observed apparently killed yeast cells within neutrophils, most yeast cells within these innate immune cells were viable. Exploiting this model, we combined intravital imaging with gene knockdown to show for the first time that NADPH oxidase is required for regulation of C. albicans filamentation in vivo. The transparent and easily manipulated larval zebrafish model promises to provide a unique tool for dissecting the molecular basis of phagocyte NADPH oxidase-mediated limitation of filamentous growth in vivo.
doi:10.1128/EC.05005-11
PMCID: PMC3147414  PMID: 21551247
12.  Candida albicans interactions with epithelial cells and mucosal immunity 
Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response.
doi:10.1016/j.micinf.2011.06.009
PMCID: PMC3185145  PMID: 21801848
Candida albicans; yeast; hyphae; epithelial cells; oral; vaginal; mucosal; innate immunity; induced endocytosis; active penetration; cytokines; chemokines; commensal; pathogen
13.  Human Antimicrobial Peptide LL-37 Inhibits Adhesion of Candida albicans by Interacting with Yeast Cell-Wall Carbohydrates 
PLoS ONE  2011;6(3):e17755.
Candida albicans is the major fungal pathogen of humans. Fungal adhesion to host cells is the first step of mucosal infiltration. Antimicrobial peptides play important roles in the initial mucosal defense against C. albicans infection. LL-37 is the only member of the human cathelicidin family of antimicrobial peptides and is commonly expressed in various tissues and cells, including epithelial cells of both the oral cavity and urogenital tract. We found that, at sufficiently low concentrations that do not kill the fungus, LL-37 was still able to reduce C. albicans infectivity by inhibiting C. albicans adhesion to plastic surfaces, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. Moreover, LL-37-treated C. albicans floating cells that did not adhere to the underlying substratum aggregated as a consequence of LL-37 bound to the cell surfaces. According to the results of a competition assay, the inhibitory effects of LL-37 on cell adhesion and aggregation were mediated by its preferential binding to mannan, the main component of the C. albicans cell wall, and partially by its ability to bind chitin or glucan, which underlie the mannan layer. Therefore, targeting of cell-wall carbohydrates by LL-37 provides a new strategy to prevent C. albicans infection, and LL-37 is a useful, new tool to screen for other C. albicans components involved in adhesion.
doi:10.1371/journal.pone.0017755
PMCID: PMC3056723  PMID: 21448240
14.  Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis 
PLoS Pathogens  2008;4(11):e1000218.
Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-α and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.
Author Summary
Infection by Candida albicans has increased as a result of immunosuppression associated with AIDS and organ transplantation. We assessed the role of three pattern recognition receptors, namely Dectin-1 (a beta glucan receptor), the type 3 complement receptor (CR3), and the mannose receptor, in mediating uptake of this fungus. These receptors are known to recognize structures on the C. albicans cell wall, but their exact contribution to binding and uptake is still unclear. We show that only Dectin-1 plays a major role in binding and uptake of C. albicans. Furthermore, we are the first to find that these receptors sample the internalized particle in a sequential manner; intracellular mannose receptor is recruited later and is involved in secretion of immune modulators. These findings provide a better understanding of the innate immune mechanisms involved in protection against this medically important fungal pathogen.
doi:10.1371/journal.ppat.1000218
PMCID: PMC2583056  PMID: 19043561
15.  Serologic Response to Cell Wall Mannoproteins and Proteins of Candida albicans 
Clinical Microbiology Reviews  1998;11(1):121-141.
The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis and (ii) novel prophylactic (vaccination) and therapeutic strategies for the management of this type of infection.
PMCID: PMC121378  PMID: 9457431
16.  HIV aspartyl protease inhibitors as promising compounds against Candida albicans André Luis Souza dos Santos 
Cells of Candida albicans (C. albicans) can invade humans and may lead to mucosal and skin infections or to deep-seated mycoses of almost all inner organs, especially in immunocompromised patients. In this context, both the host immune status and the ability of C. albicans to modulate the expression of its virulence factors are relevant aspects that drive the candidal susceptibility or resistance; in this last case, culminating in the establishment of successful infection known as candidiasis. C. albicans possesses a potent armamentarium consisting of several virulence molecules that help the fungal cells to escape of the host immune responses. There is no doubt that the secretion of aspartyl-type proteases, designated as Saps, are one of the major virulence attributes produced by C. albicans cells, since these hydrolytic enzymes participate in a wide range of fungal physiological processes as well as in different facets of the fungal-host interactions. For these reasons, Saps clearly hold promise as new potential drug targets. Corroborating this hypothesis, the introduction of new anti-human immunodeficiency virus drugs of the aspartyl protease inhibitor-type (HIV PIs) have emerged as new agents for the inhibition of Saps. The introduction of HIV PIs has revolutionized the treatment of HIV disease, reducing opportunistic infections, especially candidiasis. The attenuation of candidal infections in HIV-infected individuals might not solely have resulted from improved immunological status, but also as a result of direct inhibition of C. albicans Saps. In this article, we review updates on the beneficial effects of HIV PIs against the human fungal pathogen C. albicans, focusing on the effects of these compounds on Sap activity, growth behavior, morphological architecture, cellular differentiation, fungal adhesion to animal cells and abiotic materials, modulation of virulence factors, experimental candidiasis infection, and their synergistic actions with classical antifungal agents.
doi:10.4331/wjbc.v1.i2.21
PMCID: PMC3083943  PMID: 21537366
Candida albicans; Aspartyl protease; Proteolytic inhibitors; Human immunodeficiency virus; Chemotherapy
17.  Comparison of cell wall proteins in putative Candida albicans & Candida dubliniensis by using modified staining method & SDS-PAGE 
Background
Candida species are among the most common causes of opportunistic fungal diseases. Among Candida species, Candida albicans is responsible for most infections. Having many strains, C. albicans is very polymorph. C. dubliniensis is very similar to albicans species both morphologically and physiologically. For an infection to occur, cell wall proteins play an important role as they enable yeast to adhere to host cells and begin pathogenesis. Therefore, we decided to extract these proteins and examine them through common molecular methods of protein analysis including SDS-PAGE.
Methods
Initially cell wall proteins of two C. albicans strains (CBS 562 and PTCC6027) and one C. dubliniensis strain (CBS7987) were extracted by using a solution of beta-mercaptoethanol and ammonium carbonate. After dialysis against Tris-HCL buffer, SDS gel electrophoresis was performed on the proteins extract. Bands were then visualized by using three different staining methods among which one method provided improved detection.
Results
By using Coomassie Brilliant Blue staining method, proteins with molecular weight of 42, 66.2 and 200 kDa were detected. By using Silver staining method, proteins with molecular weight of 21.5, 28.5 and 37 kDa were detected. However, using combined Coomassie Brilliant Blue & Sliver staining method visualized more bands resulting in improved detection.
Conclusion
To answer many existing questions about fungal diseases, fungi cell wall proteins are necessary to be examined. To commence such examinations, a simple step may be an SDS-PAGE performance on as many strains as possible. A combined staining method can enhance bands detection.
PMCID: PMC3587903  PMID: 23482280
Candida albicans; C. dubliniensis; Protein extraction; SDS-PAGE
18.  Horizontal Transmission of Candida albicans and Evidence of a Vaccine Response in Mice Colonized with the Fungus 
PLoS ONE  2011;6(7):e22030.
Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis.
doi:10.1371/journal.pone.0022030
PMCID: PMC3139608  PMID: 21818288
19.  Regulation of Innate Immune Response to Candida albicans Infections by αMβ2-Pra1p Interaction▿  
Infection and Immunity  2011;79(4):1546-1558.
Candida albicans is a common opportunistic fungal pathogen and is the leading cause of invasive fungal diseases in immunocompromised individuals. The induction of cell-mediated immunity to C. albicans is one of the main tasks of cells of the innate immune system, and in vitro evidence suggests that integrin αMβ2 (CR3, Mac-1, and CD11b/CD18) is the principal leukocyte receptor involved in recognition of the fungus. Using αMβ2-KO mice and mutated strains of C. albicans in two models of murine candidiasis, we demonstrate that neutrophils derived from mice deficient in αMβ2 have a reduced ability to kill C. albicans and that the deficient mice themselves exhibit increased susceptibility to fungal infection. Disruption of the PRA1 gene of C. albicans, the primary ligand for αMβ2, protects the fungus against leukocyte killing in vitro and in vivo, impedes the innate immune response to the infection, and increases fungal virulence and organ invasion in vivo. Thus, recognition of pH-regulated antigen 1 protein (Pra1p) by αMβ2 plays a pivotal role in determining fungal virulence and host response and protection against C. albicans infection.
doi:10.1128/IAI.00650-10
PMCID: PMC3067562  PMID: 21245270
20.  Interleukin-18 and Gamma Interferon Production by Oral Epithelial Cells in Response to Exposure to Candida albicans or Lipopolysaccharide Stimulation  
Infection and Immunity  2002;70(12):7073-7080.
Oral candidiasis is a collective name for a group of disorders caused by the dimorphic fungus Candida albicans. Host defenses against C. albicans essentially fall into two categories: specific immune mechanisms and local oral mucosal epithelial cell defenses. Since oral epithelial cells secrete a variety of cytokines and chemokines in response to oral microorganisms and since C. albicans is closely associated with oral epithelial cells as a commensal organism, we wanted to determine whether interleukin-18 (IL-18) and gamma interferon (IFN-γ) were produced by oral epithelial cells in response to C. albicans infection and lipopolysaccharide (LPS) stimulation. Our results showed that IL-18 mRNA and protein were constitutively expressed by oral epithelial cells and were down-regulated by Candida infections but increased following LPS stimulation. Both C. albicans and LPS significantly decreased pro-IL-18 (24 kDa) levels and increased active IL-18 (18 kDa) levels. This effect was IL-1β-converting-enzyme dependent. The increase in active IL-18 protein levels promoted the production of IFN-γ by infected cells. No effect was obtained with LPS. Although produced only at an early stage, secreted IFN-γ seemed to be a preferential response by oral epithelial cells to C. albicans growth. These results provide additional evidence for the contribution of oral epithelial cells to local (direct contact) and systemic (IL-18 and IFN-γ production) defense against exogenous stimulation such as C. albicans infection or LPS stimulation.
doi:10.1128/IAI.70.12.7073-7080.2002
PMCID: PMC133048  PMID: 12438388
21.  The Role of the IL-12 Cytokine Family in Directing T-Cell Responses in Oral Candidosis 
Candida albicans is an opportunistic fungal pathogen that normally exists as a harmless commensal in humans. In instances where host debilitation occurs, Candida can cause a range of clinical infections, and whilst these are primarily superficial, effecting mucosal membranes, systemic infections can develop in severely immunocompromised individuals. The mechanism of host immunity during commensal carriage of C. albicans has been intensively studied. In this paper, we present the most recent information concerning host recognition of C. albicans leading to cytokine production and the subsequent T-cell responses generated in response to C. albicans. Particular focus is given to the role of the IL-12 cytokine family including IL-12, IL-23, IL-27, and IL-35, in host immunity to Candida. CD4+ T-cells are considered crucial in the regulation of immunity and inflammation. In this regard, the role of Th1/2, helper cells, together with the recently identified Th17 and Treg cells in candidosis will be discussed. Understanding the detailed mechanisms that underlie host immunity to Candida not only will be of benefit in terms of the infections caused by this organism but could also be exploited in the development of therapeutic interventions for other diseases.
doi:10.1155/2011/697340
PMCID: PMC2963117  PMID: 20981280
22.  Enhanced antibody responses induced by Candida albicans in mice. 
Infection and Immunity  1982;38(3):1102-1108.
Candida albicans may immunopotentiate antibody responses in mice to antigens unrelated to the fungus. This effect occurred best with cell-associated, rather than soluble, antigens. When dead yeasts, cell walls, or a water-soluble candidal polysaccharide were used, immunopotentiation was most dramatic when the antigen and fungal materials were given concomitantly via an intraperitoneal injection. However, mice infected with viable yeasts several days before antigen administration also developed heightened responses to the antigen. The mechanism of the C. albicans-induced adjuvanticity was not defined, but the effect seemed to correlate with induction of inflammation. The presence of C. albicans or other inflammatory agents in the peritoneal cavity caused a more rapid uptake of particulate antigen by the liver. The relationship between this event and immunopotentiation is not known. These studies demonstrate that C. albicans may have profound effects on host immune responses. Because immunological aberrations are commonly found in patients with candidiasis it may be important to determine whether some of these aberrations result from, rather than precede candidiasis.
PMCID: PMC347863  PMID: 6185421
23.  Drosophila melanogaster Thor and Response to Candida albicans Infection▿ †  
Eukaryotic Cell  2007;6(4):658-663.
We used Drosophila melanogaster macrophage-like Schneider 2 (S2) cells as a model to study cell-mediated innate immunity against infection by the opportunistic fungal pathogen Candida albicans. Transcriptional profiling of S2 cells coincubated with C. albicans cells revealed up-regulation of several genes. One of the most highly up-regulated genes during this interaction is the D. melanogaster translational regulator 4E-BP encoded by the Thor gene. Analysis of Drosophila 4E-BPnull mutant survival upon infection with C. albicans showed that 4E-BP plays an important role in host defense, suggesting a role for translational control in the D. melanogaster response to C. albicans infection.
doi:10.1128/EC.00346-06
PMCID: PMC1865646  PMID: 17277170
24.  Mucosal Tissue Invasion by Candida albicans Is Associated with E-Cadherin Degradation, Mediated by Transcription Factor Rim101p and Protease Sap5p▿  
Infection and Immunity  2007;75(5):2126-2135.
The ability of Candida albicans to invade mucosal tissues is a major virulence determinant of this organism; however, the mechanism of invasion is not understood in detail. Proteolytic breakdown of E-cadherin, the major protein in epithelial cell junctions, has been proposed as a mechanism of invasion of certain bacteria in the oral mucosa. The objectives of this study were (i) to assess whether C. albicans degrades E-cadherin expressed by oral epithelial cells in vitro; (ii) to compare the abilities of strains with different invasive potentials to degrade this protein; and (iii) to investigate fungal virulence factors responsible for E-cadherin degradation. We found that while E-cadherin gene expression was not altered, E-cadherin was proteolytically degraded during the interaction of oral epithelial cells with C. albicans. Moreover, C. albicans-mediated degradation of E-cadherin was completely inhibited in the presence of protease inhibitors. Using a three-dimensional model of the human oral mucosa, we found that E-cadherin was degraded in localized areas of tissue invasion by C. albicans. An invasion-deficient rim101−/rim101− strain was deficient in degradation of E-cadherin, and this finding suggested that proteases may depend on Rim101p for expression. Indeed, reverse transcription-PCR data indicated that expression of the SAP4, SAP5, and SAP6 genes is severely reduced in the rim101−/rim101− mutant. These SAP genes are functional Rim101p targets, because engineered expression of SAP5 in the rim101−/rim101− strain restored E-cadherin degradation and invasion in the mucosal model. Our data support the hypothesis that there is a mechanism by which C. albicans invades mucosal tissues by promoting the proteolytic degradation of E-cadherin in epithelial adherens junctions.
doi:10.1128/IAI.00054-07
PMCID: PMC1865768  PMID: 17339363
25.  Candida species differ in their interactions with immature human gastrointestinal epithelial cells 
Pediatric research  2011;69(5 Pt 1):384-389.
Life-threatening gastrointestinal (GI) diseases of prematurity are highly associated with systemic candidiasis. This implicates the premature GI tract as an important site for invasion by Candida. Invasive interactions of Candida spp. with immature enterocytes have heretofore not been analyzed. Using a primary immature human enterocyte line, we compared the ability of multiple isolates of different Candida spp. to penetrate, injure, and induce a cytokine response from host cells. Of all the Candida spp. analyzed, C. albicans had the greatest ability to penetrate and injure immature enterocytes and to elicit interleukin-8 (IL-8) release (p < 0.01). In addition, C. albicans was the only Candida spp. to form filamentous hyphae when in contact with immature enterocytes. Similarly, a C. albicans mutant with defective hyphal morphogenesis and invasiveness had attenuated cytotoxicity for immature enterocytes (p < 0.003). Thus, hyphal morphogenesis correlates with immature enterocyte penetration, injury and inflammatory responses. Furthermore, variability in enterocyte injury was observed among hyphal-producing C. albicans strains suggesting that individual organism genotypes also influence host-pathogen interactions. Overall, the finding that Candida spp. differed in their interactions with immature enterocytes implicates that individual spp. may employ different pathogenesis mechanisms.
doi:10.1203/PDR.0b013e31821269d5
PMCID: PMC3078174  PMID: 21283049

Results 1-25 (1106746)