Search tips
Search criteria

Results 1-25 (1518863)

Clipboard (0)

Related Articles

When comparing a new treatment with a control in a randomized clinical study, the treatment effect is generally assessed by evaluating a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. In this paper, we show a systematic, effective way to identify a promising population, for which the new treatment is expected to have a desired benefit, utilizing the data from a current study involving similar comparator treatments. Specifically, using the existing data, we first create a parametric scoring system as a function of multiple multiple baseline covariates to estimate subject-specific treatment differences. Based on this scoring system, we specify a desired level of treatment difference and obtain a subgroup of patients, defined as those whose estimated scores exceed this threshold. An empirically calibrated threshold-specific treatment difference curve across a range of score values is constructed. The subpopulation of patients satisfying any given level of treatment benefit can then be identified accordingly. To avoid bias due to overoptimism, we utilize a cross-training-evaluation method for implementing the above two-step procedure. We then show how to select the best scoring system among all competing models. Furthermore, for cases in which only a single pre-specified working model is involved, inference procedures are proposed for the average treatment difference over a range of score values using the entire data set, and are justified theoretically and numerically. Lastly, the proposals are illustrated with the data from two clinical trials in treating HIV and cardiovascular diseases. Note that if we are not interested in designing a new study for comparing similar treatments, the new procedure can also be quite useful for the management of future patients, so that treatment may be targeted towards those who would receive nontrivial benefits to compensate for the risk or cost of the new treatment.
PMCID: PMC3775385  PMID: 24058223
Cross-training-evaluation; Lasso procedure; Personalized medicine; Prediction; Ridge regression; Stratified medicine; Subgroup analysis; Variable selection
2.  Evaluating the Effect of Early Versus Late ARV Regimen Change if Failure on an Initial Regimen: Results From the AIDS Clinical Trials Group Study A5095 
The current goal of initial antiretroviral (ARV) therapy is suppression of plasma human immunodeficiency virus (HIV)-1 RNA levels to below 200 copies per milliliter. A proportion of HIV-infected patients who initiate antiretroviral therapy in clinical practice or antiretroviral clinical trials either fail to suppress HIV-1 RNA or have HIV-1 RNA levels rebound on therapy. Frequently, these patients have sustained CD4 cell counts responses and limited or no clinical symptoms and, therefore, have potentially limited indications for altering therapy which they may be tolerating well despite increased viral replication. On the other hand, increased viral replication on therapy leads to selection of resistance mutations to the antiretroviral agents comprising their therapy and potentially cross-resistance to other agents in the same class decreasing the likelihood of response to subsequent antiretroviral therapy. The optimal time to switch antiretroviral therapy to ensure sustained virologic suppression and prevent clinical events in patients who have rebound in their HIV-1 RNA, yet are stable, is not known. Randomized clinical trials to compare early versus delayed switching have been difficult to design and more difficult to enroll. In some clinical trials, such as the AIDS Clinical Trials Group (ACTG) Study A5095, patients randomized to initial antiretroviral treatment combinations, who fail to suppress HIV-1 RNA or have a rebound of HIV-1 RNA on therapy are allowed to switch from the initial ARV regimen to a new regimen, based on clinician and patient decisions. We delineate a statistical framework to estimate the effect of early versus late regimen change using data from ACTG A5095 in the context of two-stage designs.
In causal inference, a large class of doubly robust estimators are derived through semiparametric theory with applications to missing data problems. This class of estimators is motivated through geometric arguments and relies on large samples for good performance. By now, several authors have noted that a doubly robust estimator may be suboptimal when the outcome model is misspecified even if it is semiparametric efficient when the outcome regression model is correctly specified. Through auxiliary variables, two-stage designs, and within the contextual backdrop of our scientific problem and clinical study, we propose improved doubly robust, locally efficient estimators of a population mean and average causal effect for early versus delayed switching to second-line ARV treatment regimens. Our analysis of the ACTG A5095 data further demonstrates how methods that use auxiliary variables can improve over methods that ignore them. Using the methods developed here, we conclude that patients who switch within 8 weeks of virologic failure have better clinical outcomes, on average, than patients who delay switching to a new second-line ARV regimen after failing on the initial regimen. Ordinary statistical methods fail to find such differences. This article has online supplementary material.
PMCID: PMC3545451  PMID: 23329858
Causal inference; Double robustness; Longitudinal data analysis; Missing data; Rubin causal model; Semiparametric efficient estimation
3.  Methods of Blinding in Reports of Randomized Controlled Trials Assessing Pharmacologic Treatments: A Systematic Review 
PLoS Medicine  2006;3(10):e425.
Blinding is a cornerstone of therapeutic evaluation because lack of blinding can bias treatment effect estimates. An inventory of the blinding methods would help trialists conduct high-quality clinical trials and readers appraise the quality of results of published trials. We aimed to systematically classify and describe methods to establish and maintain blinding of patients and health care providers and methods to obtain blinding of outcome assessors in randomized controlled trials of pharmacologic treatments.
Methods and Findings
We undertook a systematic review of all reports of randomized controlled trials assessing pharmacologic treatments with blinding published in 2004 in high impact-factor journals from Medline and the Cochrane Methodology Register. We used a standardized data collection form to extract data. The blinding methods were classified according to whether they primarily (1) established blinding of patients or health care providers, (2) maintained the blinding of patients or health care providers, and (3) obtained blinding of assessors of the main outcomes. We identified 819 articles, with 472 (58%) describing the method of blinding. Methods to establish blinding of patients and/or health care providers concerned mainly treatments provided in identical form, specific methods to mask some characteristics of the treatments (e.g., added flavor or opaque coverage), or use of double dummy procedures or simulation of an injection. Methods to avoid unblinding of patients and/or health care providers involved use of active placebo, centralized assessment of side effects, patients informed only in part about the potential side effects of each treatment, centralized adapted dosage, or provision of sham results of complementary investigations. The methods reported for blinding outcome assessors mainly relied on a centralized assessment of complementary investigations, clinical examination (i.e., use of video, audiotape, or photography), or adjudication of clinical events.
This review classifies blinding methods and provides a detailed description of methods that could help trialists overcome some barriers to blinding in clinical trials and readers interpret the quality of pharmalogic trials.
Following a systematic review of all reports of randomized controlled trials assessing pharmacologic treatments involving blinding, a classification of blinding methods is proposed.
Editors' Summary
In evidence-based medicine, good-quality randomized controlled trials are generally considered to be the most reliable source of information about the effects of different treatments, such as drugs. In a randomized trial, patients are assigned to receive one treatment or another by the play of chance. This technique helps makes sure that the two groups of patients receiving the different treatments are equivalent at the start of the trial. Proper randomization also prevents doctors from controlling or affecting which treatment patients get, which could distort the results. An additional tool that is also used to make trials more precise is “blinding.” Blinding involves taking steps to prevent patients, doctors, or other people involved in the trial (e.g., those people recording measurements) from finding out which patients got what treatment. Properly done, blinding should make sure the results of a trial are more accurate. This is because in an unblinded study, participants may respond better if they know they have received a promising new treatment (or worse if they only got placebo or an old drug); doctors may “want” a particular treatment to do better in the trial, and unthinking bias could creep into their measurements or actions; the same applies for practitioners and researchers who record patients' outcomes in the trial. However, blinding is not a simple, single step; the people carrying out the trial often have to set up a variety of different procedures that depend on the type of trial that is being done.
Why Was This Study Done?
The researchers here wanted to thoroughly examine different methods that have been used to achieve blinding in randomized trials of drug treatments, and to describe and classify them. They hoped that a better understanding of the different blinding methods would help people doing trials to design better trials in the future, and also help readers to interpret the quality of trials that had been done.
What Did the Researchers Do and Find?
This group of researchers conducted what is called a “systematic review.” They systematically searched the published medical literature to find all randomized, blinded drug trials published in 2004 in a number of different “high-impact” journals (journals whose articles are often mentioned in other articles). Then, the researchers classified information from the published trial reports. The researchers ended up with 819 trial reports, and nearly 60% of them described how blinding was done. Their classification of blinding was divided up into three main areas. First, they detailed methods used to hide which drugs are given to particular patients, such as preparing identically appearing treatments; using strong flavors to mask taste; matching the colors of pills; using saline injections and so on. Second, they described a number of methods that could be used to reduce the risk of unblinding (of doctors or patients), such as using an “active placebo” (a sugar pill that mimics some of the expected side effects of the drug treatment). Finally, they defined methods for blinded measurement of outcomes (such as using a central committee to collect data).
What Do These Findings Mean?
The researchers' classification will help people to work out how different techniques can be used to achieve, and keep, blinding in a trial. This will assist others to understand whether any particular trial was likely to have been blinded properly, and therefore work out whether the results are reliable. The researchers also suggest that, generally, blinding methods are not described in enough detail in published scientific papers, and recommend that guidelines for describing results of randomized trials be improved.
Additional Information.
Please access these Web sites via the online version of this summary at
James Lind Library has been created to help patients and researchers understand fair tests of treatments in health care by illustrating how fair tests have developed over the centuries, a trial registry created by the US National Institutes of Health, has an introduction to understanding clinical trials
National Electronic Library for Health introduction to controlled clinical trials
PMCID: PMC1626553  PMID: 17076559
Biometrics  2010;67(2):427-435.
In a longitudinal study, suppose that the primary endpoint is the time to a specific event. This response variable, however, may be censored by an independent censoring variable or by the occurrence of one of several dependent competing events. For each study subject, a set of baseline covariates is collected. The question is how to construct a reliable prediction rule for the future subject’s profile of all competing risks of interest at a specific time point for risk-benefit decision makings. In this paper, we propose a two-stage procedure to make inferences about such subject-specific profiles. For the first step, we use a parametric model to obtain a univariate risk index score system. We then estimate consistently the average competing risks for subjects which have the same parametric index score via a nonparametric function estimation procedure. We illustrate this new proposal with the data from a randomized clinical trial for evaluating the efficacy of a treatment for prostate cancer. The primary endpoint for this study was the time to prostate cancer death, but had two types of dependent competing events, one from cardiovascular death and the other from death of other causes.
PMCID: PMC2970653  PMID: 20618311
Local likelihood function; Nonparametric function estimation; Perturbation-resampling method; Risk index score
5.  Evidence for the Selective Reporting of Analyses and Discrepancies in Clinical Trials: A Systematic Review of Cohort Studies of Clinical Trials 
PLoS Medicine  2014;11(6):e1001666.
In a systematic review of cohort studies, Kerry Dwan and colleagues examine the evidence for selective reporting and discrepancies in analyses between journal publications and other documents for clinical trials.
Please see later in the article for the Editors' Summary
Most publications about selective reporting in clinical trials have focussed on outcomes. However, selective reporting of analyses for a given outcome may also affect the validity of findings. If analyses are selected on the basis of the results, reporting bias may occur. The aims of this study were to review and summarise the evidence from empirical cohort studies that assessed discrepant or selective reporting of analyses in randomised controlled trials (RCTs).
Methods and Findings
A systematic review was conducted and included cohort studies that assessed any aspect of the reporting of analyses of RCTs by comparing different trial documents, e.g., protocol compared to trial report, or different sections within a trial publication. The Cochrane Methodology Register, Medline (Ovid), PsycInfo (Ovid), and PubMed were searched on 5 February 2014. Two authors independently selected studies, performed data extraction, and assessed the methodological quality of the eligible studies. Twenty-two studies (containing 3,140 RCTs) published between 2000 and 2013 were included. Twenty-two studies reported on discrepancies between information given in different sources. Discrepancies were found in statistical analyses (eight studies), composite outcomes (one study), the handling of missing data (three studies), unadjusted versus adjusted analyses (three studies), handling of continuous data (three studies), and subgroup analyses (12 studies). Discrepancy rates varied, ranging from 7% (3/42) to 88% (7/8) in statistical analyses, 46% (36/79) to 82% (23/28) in adjusted versus unadjusted analyses, and 61% (11/18) to 100% (25/25) in subgroup analyses. This review is limited in that none of the included studies investigated the evidence for bias resulting from selective reporting of analyses. It was not possible to combine studies to provide overall summary estimates, and so the results of studies are discussed narratively.
Discrepancies in analyses between publications and other study documentation were common, but reasons for these discrepancies were not discussed in the trial reports. To ensure transparency, protocols and statistical analysis plans need to be published, and investigators should adhere to these or explain discrepancies.
Please see later in the article for the Editors' Summary
Editors' Summary
In the past, clinicians relied on their own experience when choosing the best treatment for their patients. Nowadays, they turn to evidence-based medicine—the systematic review and appraisal of trials, studies that investigate the benefits and harms of medical treatments in patients. However, evidence-based medicine can guide clinicians only if all the results from clinical trials are published in an unbiased and timely manner. Unfortunately, the results of trials in which a new drug performs better than existing drugs are more likely to be published than those in which the new drug performs badly or has unwanted side effects (publication bias). Moreover, trial outcomes that support the use of a new treatment are more likely to be published than those that do not support its use (outcome reporting bias). Recent initiatives—such as making registration of clinical trials in a trial registry (for example, a prerequisite for publication in medical journals—aim to prevent these biases, which pose a threat to informed medical decision-making.
Why Was This Study Done?
Selective reporting of analyses of outcomes may also affect the validity of clinical trial findings. Sometimes, for example, a trial publication will include a per protocol analysis (which considers only the outcomes of patients who received their assigned treatment) rather than a pre-planned intention-to-treat analysis (which considers the outcomes of all the patients regardless of whether they received their assigned treatment). If the decision to publish the per protocol analysis is based on the results of this analysis being more favorable than those of the intention-to-treat analysis (which more closely resembles “real” life), then “analysis reporting bias” has occurred. In this systematic review, the researchers investigate the selective reporting of analyses and discrepancies in randomized controlled trials (RCTs) by reviewing published studies that assessed selective reporting of analyses in groups (cohorts) of RCTs and discrepancies in analyses of RCTs between different sources (for example, between the protocol in a trial registry and the journal publication) or different sections of a source. A systematic review uses predefined criteria to identify all the research on a given topic.
What Did the Researchers Do and Find?
The researchers identified 22 cohort studies (containing 3,140 RCTs) that were eligible for inclusion in their systematic review. All of these studies reported on discrepancies between the information provided by the RCTs in different places, but none investigated the evidence for analysis reporting bias. Several of the cohort studies reported, for example, that there were discrepancies in the statistical analyses included in the different documents associated with the RCTs included in their analysis. Other types of discrepancies reported by the cohort studies included discrepancies in the reporting of composite outcomes (an outcome in which multiple end points are combined) and in the reporting of subgroup analyses (investigations of outcomes in subgroups of patients that should be predefined in the trial protocol to avoid bias). Discrepancy rates varied among the RCTs according to the types of analyses and cohort studies considered. Thus, whereas in one cohort study discrepancies were present in the statistical test used for the analysis of the primary outcome in only 7% of the included studies, they were present in the subgroup analyses of all the included studies.
What Do These Findings Mean?
These findings indicate that discrepancies in analyses between publications and other study documents such as protocols in trial registries are common. The reasons for these discrepancies in analyses were not discussed in trial reports but may be the result of reporting bias, errors, or legitimate departures from a pre-specified protocol. For example, a statistical analysis that is not specified in the trial protocol may sometimes appear in a publication because the journal requested its inclusion as a condition of publication. The researchers suggest that it may be impossible for systematic reviewers to distinguish between these possibilities simply by looking at the source documentation. Instead, they suggest, it may be necessary for reviewers to contact the trial authors. However, to make selective reporting of analyses more easily detectable, they suggest that protocols and analysis plans should be published and that investigators should be required to stick to these plans or explain any discrepancies when they publish their trial results. Together with other initiatives, this approach should help improve the quality of evidence-based medicine and, as a result, the treatment of patients.
Additional Information
Please access these websites via the online version of this summary at
Wikipedia has pages on evidence-based medicine, on systematic reviews, and on publication bias (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages) provides information about the US National Institutes of Health clinical trial registry, including background information about clinical trials
The Cochrane Collaboration is a global independent network of health practitioners, researchers, patient advocates, and others that aims to promote evidence-informed health decision-making by producing high-quality, relevant, accessible systematic reviews and other synthesized research evidence; the Cochrane Handbook for Systematic Reviews of Interventions describes the preparation of systematic reviews in detail
PLOS Medicine recently launched a Reporting Guidelines Collection, an open-access collection of reporting guidelines, commentary, and related research on guidelines from across PLOS journals that aims to help advance the efficiency, effectiveness, and equitability of the dissemination of biomedical information
PMCID: PMC4068996  PMID: 24959719
Annals of statistics  2011;39(1):305-332.
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the parametric regression coefficients. To achieve nice efficiency properties, we further develop a semiparametric composite quantile regression procedure. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the estimators achieve the best convergence rate. Moreover, we show that the proposed method is much more efficient than the least-squares-based method for many non-normal errors and that it only loses a small amount of efficiency for normal errors. In addition, it is shown that the loss in efficiency is at most 11.1% for estimating varying coefficient functions and is no greater than 13.6% for estimating parametric components. To achieve sparsity with high-dimensional covariates, we propose adaptive penalization methods for variable selection in the semiparametric varying-coefficient partially linear model and prove that the methods possess the oracle property. Extensive Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedures. Finally, we apply the new methods to analyze the plasma beta-carotene level data.
PMCID: PMC3109949  PMID: 21666869
Asymptotic relative efficiency; composite quantile regression; semiparametric varying-coefficient partially linear model; oracle properties; variable selection
7.  Profile local linear estimation of generalized semiparametric regression model for longitudinal data 
Lifetime data analysis  2013;19(3):317-349.
This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A K -fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.
PMCID: PMC3710313  PMID: 23471814
Asymptotics; Kernel smoothing; Link function; Sampling adjusted estimation; Testing time-varying effects; Weighted least squares
8.  Collaborative Double Robust Targeted Maximum Likelihood Estimation* 
Collaborative double robust targeted maximum likelihood estimators represent a fundamental further advance over standard targeted maximum likelihood estimators of a pathwise differentiable parameter of a data generating distribution in a semiparametric model, introduced in van der Laan, Rubin (2006). The targeted maximum likelihood approach involves fluctuating an initial estimate of a relevant factor (Q) of the density of the observed data, in order to make a bias/variance tradeoff targeted towards the parameter of interest. The fluctuation involves estimation of a nuisance parameter portion of the likelihood, g. TMLE has been shown to be consistent and asymptotically normally distributed (CAN) under regularity conditions, when either one of these two factors of the likelihood of the data is correctly specified, and it is semiparametric efficient if both are correctly specified.
In this article we provide a template for applying collaborative targeted maximum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable parameters in semi-parametric models. The procedure creates a sequence of candidate targeted maximum likelihood estimators based on an initial estimate for Q coupled with a succession of increasingly non-parametric estimates for g. In a departure from current state of the art nuisance parameter estimation, C-TMLE estimates of g are constructed based on a loss function for the targeted maximum likelihood estimator of the relevant factor Q that uses the nuisance parameter to carry out the fluctuation, instead of a loss function for the nuisance parameter itself. Likelihood-based cross-validation is used to select the best estimator among all candidate TMLE estimators of Q0 in this sequence. A penalized-likelihood loss function for Q is suggested when the parameter of interest is borderline-identifiable.
We present theoretical results for “collaborative double robustness,” demonstrating that the collaborative targeted maximum likelihood estimator is CAN even when Q and g are both mis-specified, providing that g solves a specified score equation implied by the difference between the Q and the true Q0. This marks an improvement over the current definition of double robustness in the estimating equation literature.
We also establish an asymptotic linearity theorem for the C-DR-TMLE of the target parameter, showing that the C-DR-TMLE is more adaptive to the truth, and, as a consequence, can even be super efficient if the first stage density estimator does an excellent job itself with respect to the target parameter.
This research provides a template for targeted efficient and robust loss-based learning of a particular target feature of the probability distribution of the data within large (infinite dimensional) semi-parametric models, while still providing statistical inference in terms of confidence intervals and p-values. This research also breaks with a taboo (e.g., in the propensity score literature in the field of causal inference) on using the relevant part of likelihood to fine-tune the fitting of the nuisance parameter/censoring mechanism/treatment mechanism.
PMCID: PMC2898626  PMID: 20628637
asymptotic linearity; coarsening at random; causal effect; censored data; crossvalidation; collaborative double robust; double robust; efficient influence curve; estimating function; estimator selection; influence curve; G-computation; locally efficient; loss-function; marginal structural model; maximum likelihood estimation; model selection; pathwise derivative; semiparametric model; sieve; super efficiency; super-learning; targeted maximum likelihood estimation; targeted nuisance parameter estimator selection; variable importance
9.  Meta-analyses of Adverse Effects Data Derived from Randomised Controlled Trials as Compared to Observational Studies: Methodological Overview 
PLoS Medicine  2011;8(5):e1001026.
Su Golder and colleagues carry out an overview of meta-analyses to assess whether estimates of the risk of harm outcomes differ between randomized trials and observational studies. They find that, on average, there is no difference in the estimates of risk between overviews of observational studies and overviews of randomized trials.
There is considerable debate as to the relative merits of using randomised controlled trial (RCT) data as opposed to observational data in systematic reviews of adverse effects. This meta-analysis of meta-analyses aimed to assess the level of agreement or disagreement in the estimates of harm derived from meta-analysis of RCTs as compared to meta-analysis of observational studies.
Methods and Findings
Searches were carried out in ten databases in addition to reference checking, contacting experts, citation searches, and hand-searching key journals, conference proceedings, and Web sites. Studies were included where a pooled relative measure of an adverse effect (odds ratio or risk ratio) from RCTs could be directly compared, using the ratio of odds ratios, with the pooled estimate for the same adverse effect arising from observational studies. Nineteen studies, yielding 58 meta-analyses, were identified for inclusion. The pooled ratio of odds ratios of RCTs compared to observational studies was estimated to be 1.03 (95% confidence interval 0.93–1.15). There was less discrepancy with larger studies. The symmetric funnel plot suggests that there is no consistent difference between risk estimates from meta-analysis of RCT data and those from meta-analysis of observational studies. In almost all instances, the estimates of harm from meta-analyses of the different study designs had 95% confidence intervals that overlapped (54/58, 93%). In terms of statistical significance, in nearly two-thirds (37/58, 64%), the results agreed (both studies showing a significant increase or significant decrease or both showing no significant difference). In only one meta-analysis about one adverse effect was there opposing statistical significance.
Empirical evidence from this overview indicates that there is no difference on average in the risk estimate of adverse effects of an intervention derived from meta-analyses of RCTs and meta-analyses of observational studies. This suggests that systematic reviews of adverse effects should not be restricted to specific study types.
Please see later in the article for the Editors' Summary
Editors' Summary
Whenever patients consult a doctor, they expect the treatments they receive to be effective and to have minimal adverse effects (side effects). To ensure that this is the case, all treatments now undergo exhaustive clinical research—carefully designed investigations that test new treatments and therapies in people. Clinical investigations fall into two main groups—randomized controlled trials (RCTs) and observational, or non-randomized, studies. In RCTs, groups of patients with a specific disease or condition are randomly assigned to receive the new treatment or a control treatment, and the outcomes (for example, improvements in health and the occurrence of specific adverse effects) of the two groups of patients are compared. Because the patients are randomly chosen, differences in outcomes between the two groups are likely to be treatment-related. In observational studies, patients who are receiving a specific treatment are enrolled and outcomes in this group are compared to those in a similar group of untreated patients. Because the patient groups are not randomly chosen, differences in outcomes between cases and controls may be the result of a hidden shared characteristic among the cases rather than treatment-related (so-called confounding variables).
Why Was This Study Done?
Although data from individual trials and studies are valuable, much more information about a potential new treatment can be obtained by systematically reviewing all the evidence and then doing a meta-analysis (so-called evidence-based medicine). A systematic review uses predefined criteria to identify all the research on a treatment; meta-analysis is a statistical method for combining the results of several studies to yield “pooled estimates” of the treatment effect (the efficacy of a treatment) and the risk of harm. Treatment effect estimates can differ between RCTs and observational studies, but what about adverse effect estimates? Can different study designs provide a consistent picture of the risk of harm, or are the results from different study designs so disparate that it would be meaningless to combine them in a single review? In this methodological overview, which comprises a systematic review and meta-analyses, the researchers assess the level of agreement in the estimates of harm derived from meta-analysis of RCTs with estimates derived from meta-analysis of observational studies.
What Did the Researchers Do and Find?
The researchers searched literature databases and reference lists, consulted experts, and hand-searched various other sources for studies in which the pooled estimate of an adverse effect from RCTs could be directly compared to the pooled estimate for the same adverse effect from observational studies. They identified 19 studies that together covered 58 separate adverse effects. In almost all instances, the estimates of harm obtained from meta-analyses of RCTs and observational studies had overlapping 95% confidence intervals. That is, in statistical terms, the estimates of harm were similar. Moreover, in nearly two-thirds of cases, there was agreement between RCTs and observational studies about whether a treatment caused a significant increase in adverse effects, a significant decrease, or no significant change (a significant change is one unlikely to have occurred by chance). Finally, the researchers used meta-analysis to calculate that the pooled ratio of the odds ratios (a statistical measurement of risk) of RCTs compared to observational studies was 1.03. This figure suggests that there was no consistent difference between risk estimates obtained from meta-analysis of RCT data and those obtained from meta-analysis of observational study data.
What Do These Findings Mean?
The findings of this methodological overview suggest that there is no difference on average in the risk estimate of an intervention's adverse effects obtained from meta-analyses of RCTs and from meta-analyses of observational studies. Although limited by some aspects of its design, this overview has several important implications for the conduct of systematic reviews of adverse effects. In particular, it suggests that, rather than limiting systematic reviews to certain study designs, it might be better to evaluate a broad range of studies. In this way, it might be possible to build a more complete, more generalizable picture of potential harms associated with an intervention, without any loss of validity, than by evaluating a single type of study. Such a picture, in combination with estimates of treatment effects also obtained from systematic reviews and meta-analyses, would help clinicians decide the best treatment for their patients.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Institutes of Health provide information on clinical research; the UK National Health Service Choices Web site also has a page on clinical trials and medical research
The Cochrane Collaboration produces and disseminates systematic reviews of health-care interventions
Medline Plus provides links to further information about clinical trials (in English and Spanish)
PMCID: PMC3086872  PMID: 21559325
10.  Limbal Stem Cell Transplantation 
Executive Summary
The objective of this analysis is to systematically review limbal stem cell transplantation (LSCT) for the treatment of patients with limbal stem cell deficiency (LSCD). This evidence-based analysis reviews LSCT as a primary treatment for nonpterygium LSCD conditions, and LSCT as an adjuvant therapy to excision for the treatment of pterygium.
Clinical Need: Condition and Target Population
The outer surface of the eye is covered by 2 distinct cell layers: the corneal epithelial layer that overlies the cornea, and the conjunctival epithelial layer that overlies the sclera. These cell types are separated by a transitional zone known as the limbus. The corneal epithelial cells are renewed every 3 to 10 days by a population of stem cells located in the limbus.
Nonpterygium Limbal Stem Cell Deficiency
When the limbal stem cells are depleted or destroyed, LSCD develops. In LSCD, the conjunctival epithelium migrates onto the cornea (a process called conjunctivalization), resulting in a thickened, irregular, unstable corneal surface that is prone to defects, ulceration, corneal scarring, vascularization, and opacity. Patients experience symptoms including severe irritation, discomfort, photophobia, tearing, blepharospasm, chronic inflammation and redness, and severely decreased vision.
Depending on the degree of limbal stem cell loss, LSCD may be total (diffuse) or partial (local). In total LSCD, the limbal stem cell population is completed destroyed and conjunctival epithelium covers the entire cornea. In partial LSCD, some areas of the limbus are unharmed, and the corresponding areas on the cornea maintain phenotypically normal corneal epithelium.
Confirmation of the presence of conjunctivalization is necessary for LSCD diagnosis as the other characteristics and symptoms are nonspecific and indicate a variety of diseases. The definitive test for LSCD is impression cytology, which detects the presence of conjunctival epithelium and its goblet cells on the cornea. However, in the opinion of a corneal expert, diagnosis is often based on clinical assessment, and in the expert’s opinion, it is unclear whether impression cytology is more accurate and reliable than clinical assessment, especially for patients with severe LSCD.
The incidence of LSCD is not well understood. A variety of underlying disorders are associated with LSCD including chemical or thermal injuries, ultraviolet and ionizing radiation, Stevens-Johnson syndrome, multiple surgeries or cryotherapies, contact lens wear, extensive microbial infection, advanced ocular cicatricial pemphigoid, and aniridia. In addition, some LSCD cases are idiopathic. These conditions are uncommon (e.g., the prevalence of aniridia ranges from 1 in 40,000 to 1 in 100,000 people).
Pterygium is a wing-shaped fibrovascular tissue growth from the conjunctiva onto the cornea. Pterygium is the result of partial LSCD caused by localized ultraviolet damage to limbal stem cells. As the pterygium invades the cornea, it may cause irregular astigmatism, loss of visual acuity, chronic irritation, recurrent inflammation, double vision, and impaired ocular motility.
Pterygium occurs worldwide. Incidence and prevalence rates are highest in the “pterygium belt,” which ranges from 30 degrees north to 30 degrees south of the equator, and lower prevalence rates are found at latitudes greater than 40 degrees. The prevalence of pterygium for Caucasians residing in urban, temperate climates is estimated at 1.2%.
Existing Treatments Other Than Technology Being Reviewed
Nonpterygium Limbal Stem Cell Deficiency
In total LSCD, a patient’s limbal stem cells are completely depleted, so any successful treatment must include new stem cells. Autologous oral mucosal epithelium transplantation has been proposed as an alternative to LSCT. However, this procedure is investigational, and there is very limited level 4c evidence1 to support this technique (fewer than 20 eyes examined in 4 case series and 1 case report).
For patients with partial LSCD, treatment may not be necessary if their visual axis is not affected. However, if the visual axis is conjunctivalized, several disease management options exist including repeated mechanical debridement of the abnormal epithelium; intensive, nonpreserved lubrication; bandage contact lenses; autologous serum eye drops; other investigational medical treatments; and transplantation of an amniotic membrane inlay. However, these are all disease management treatments; LSCT is the only curative option.
The primary treatment for pterygium is surgical excision. However, recurrence is a common problem after excision using the bare sclera technique: reported recurrence rates range from 24% to 89%. Thus, a variety of adjuvant therapies have been used to reduce the risk of pterygium recurrence including LSCT, amniotic membrane transplantation (AMT), conjunctival autologous (CAU) transplantation, and mitomycin C (MMC, an antimetabolite drug).
New Technology Being Reviewed
To successfully treat LSCD, the limbal stem cell population must be repopulated. To achieve this, 4 LSCT procedures have been developed: conjunctival-limbal autologous (CLAU) transplantation; living-related conjunctival-limbal allogeneic (lr-CLAL) transplantation; keratolimbal allogeneic (KLAL) transplantation; and ex vivo expansion of limbal stem cells transplantation. Since the ex vivo expansion of limbal stem cells transplantation procedure is considered experimental, it has been excluded from the systematic review. These procedures vary by the source of donor cells and the amount of limbal tissue used. For CLAU transplants, limbal stem cells are obtained from the patient’s healthy eye. For lr-CLAL and KLAL transplants, stem cells are obtained from living-related and cadaveric donor eyes, respectively.
In CLAU and lr-CLAL transplants, 2 to 4 limbal grafts are removed from the superior and inferior limbus of the donor eye. In KLAL transplants, the entire limbus from the donor eye is used.
The recipient eye is prepared by removing the abnormal conjunctival and scar tissue. An incision is made into the conjunctival tissue into which the graft is placed, and the graft is then secured to the neighbouring limbal and scleral tissue with sutures. Some LSCT protocols include concurrent transplantation of an amniotic membrane onto the cornea.
Regulatory Status
Health Canada does not require premarket licensure for stem cells. However, they are subject to Health Canada’s clinical trial regulations until the procedure is considered accepted transplantation practice, at which time it will be covered by the Safety of Human Cells, Tissues and Organs for Transplantation Regulations (CTO Regulations).
Review Strategy
The Medical Advisory Secretariat systematically reviewed the literature to assess the effectiveness and safety of LSCT for the treatment of patients with nonpterygium LSCD and pterygium. A comprehensive search method was used to retrieve English-language journal articles from selected databases.
The GRADE approach was used to systematically and explicitly evaluate the quality of evidence and strength of recommendations.
Summary of Findings
Nonpterygium Limbal Stem Cell Deficiency
The search identified 873 citations published between January 1, 2000, and March 31, 2008. Nine studies met the inclusion criteria, and 1 additional citation was identified through a bibliography review. The review included 10 case series (3 prospective and 7 retrospective).
Patients who received autologous transplants (i.e., CLAU) achieved significantly better long-term corneal surface results compared with patients who received allogeneic transplants (lr-CLAL, P< .001; KLAL, P< .001). There was no significant difference in corneal surface outcomes between the allogeneic transplant options, lr-CLAL and KLAL (P = .328). However, human leukocyte antigen matching and systemic immunosuppression may improve the outcome of lr-CLAL compared with KLAL. Regardless of graft type, patients with Stevens-Johnson syndrome had poorer long-term corneal surface outcomes.
Concurrent AMT was associated with poorer long-term corneal surface improvements. When the effect of the AMT was removed, the difference between autologous and allogeneic transplants was much smaller.
Patients who received CLAU transplants had a significantly higher rate of visual acuity improvements compared with those who received lr-CLAL transplants (P = .002). However, to achieve adequate improvements in vision, patients with deep corneal scarring will require a corneal transplant several months after the LSCT.
No donor eye complications were observed.
Epithelial rejection and microbial keratitis were the most common long-term complications associated with LSCT (complications occurred in 6%–15% of transplantations). These complications can result in graft failure, so patients should be monitored regularly following LSCT.
The search yielded 152 citations published between January 1, 2000 and May 16, 2008. Six randomized controlled trials (RCTs) that evaluated LSCT as an adjuvant therapy for the treatment of pterygium met the inclusion criteria and were included in the review.
Limbal stem cell transplantation was compared with CAU, AMT, and MMC. The results showed that CLAU significantly reduced the risk of pterygium recurrence compared with CAU (relative risk [RR], 0.09; 95% confidence interval [CI], 0.01–0.69; P = .02). CLAU reduced the risk of pterygium recurrence for primary pterygium compared with MMC, but this comparison did not reach statistical significance (RR, 0.48; 95% CI, 0.21–1.10; P = .08). Both AMT and CLAU had similar low rates of recurrence (2 recurrences in 43 patients and 4 in 46, respectively), and the RR was not significant (RR, 1.88; 95% CI, 0.37–9.5; P = .45). Since sample sizes in the included studies were small, failure to detect a significant difference between LSCT and AMT or MMC could be the result of type II error. Limbal stem cell transplantation as an adjuvant to excision is a relatively safe procedure as long-term complications were rare (< 2%).
GRADE Quality of Evidence
Nonpterygium Limbal Stem Cell Deficiency
The evidence for the analyses related to nonpterygium LSCD was based on 3 prospective and 7 retrospective case series. Thus, the GRADE quality of evidence is very low, and any estimate of effect is very uncertain.
The analyses examining LSCT as an adjuvant treatment option for pterygium were based on 6 RCTs. The quality of evidence for the overall body of evidence for each treatment option comparison was assessed using the GRADE approach. In each of the comparisons, the quality of evidence was downgraded due to serious or very serious limitations in study quality (individual study quality was assessed using the Jadad scale, and an assessment of allocation concealment and the degree of loss to follow-up), which resulted in low- to moderate-quality GRADE evidence ratings (low-quality evidence for the CLAU and AMT and CLAU and MMC comparisons, and moderate-quality evidence for the CLAU and CAU comparison).
Ontario Health System Impact Analysis
Nonpterygium Limbal Stem Cell Deficiency
Since 1999, Ontario’s out-of-country (OOC) program has approved and reimbursed 8 patients for LSCTs and 1 patient for LSCT consultations. Similarly, most Canadian provinces have covered OOC or out-of-province LSCTs. Several corneal experts in Ontario have the expertise to perform LSCTs.
As there are no standard guidelines for LSCT, patients who receive transplants OOC may not receive care aligned with the best evidence. To date, many of the patients from Ontario who received OOC LSCTs received concurrent AMTs, and the evidence from this analysis questions the use of this procedure. In addition, 1 patient received a cultured LSCT, a procedure that is considered investigational. Many patients with LSCD have bilateral disease and therefore require allogeneic transplants. These patients will require systemic and topical immunosuppression for several years after the transplant, perhaps indefinitely. Thus, systemic side effects associated with immunosuppression are a potential concern, and patients must be monitored regularly.
Amniotic membrane transplantation is a common addition to many ocular surface reconstruction procedures, including LSCT. Amniotic membranes are recovered from human placentas from planned, uneventful caesarean sections. Before use, serological screening of the donor’s blood should be conducted. However, there is still a theoretical risk of disease transmission associated with this procedure.
Financial Impact
For the patients who were reimbursed for OOC LSCTs, the average cost of LSCT per eye was $18,735.20 Cdn (range, $8,219.54–$33,933.32). However, the actual cost per patient is much higher as these costs do not include consultations and follow-up visits, multiple LSCTs, and any additional procedures (e.g., corneal transplants) received during the course of treatment OOC. When these additional costs were considered, the average cost per patient was $57,583 Cdn (range, $8,219.54–$130,628.20).
The estimated average total cost per patient for performing LSCT in Ontario is $2,291.48 Cdn (range, $951.48–$4,538.48) including hospital and physician fees. This cost is based on the assumption that LSCT is technically similar to a corneal transplant, an assumption which needs to be verified. The cost does not include corneal transplantations, which some proportion of patients receiving a LSCT will require within several months of the limbal transplant.
Pterygium recurrence rates after surgical excision are high, ranging from 24% to 89%. However, according to clinical experts, the rate of recurrence is low in Ontario. While there is evidence that the prevalence of pterygium is higher in the “pterygium belt,” there was no evidence to suggest different recurrence rates or disease severity by location or climate.
Nonpterygium Limbal Stem Cell Deficiency
Successful LSCTs result in corneal re-epithelialization and improved vision in patients with LSCD. However, patients who received concurrent AMT had poorer long-term corneal surface improvements. Conjunctival-limbal autologous transplantation is the treatment option of choice, but if it is not possible, living-related or cadaveric allogeneic transplants can be used. The benefits of LSCT outweigh the risks and burdens, as shown in Executive Summary Table 1. According to GRADE, these recommendations are strong with low- to very low-quality evidence.
Benefits, Risks, and Burdens – Nonpterygium Limbal Stem Cell Deficiency
Short- and long-term improvement in corneal surface (stable, normal corneal epithelium and decreased vascularization and opacity)
Improvement in vision (visual acuity and functional vision)
Long-term complications are experienced by 8% to 16% of patients
Risks associated with long-term immunosuppression for recipients of allogeneic grafts
Potential risk of induced LSCD in donor eyes
High cost of treatment (average cost per patient via OOC program is $57,583; estimated cost of procedure in Ontario is $2,291.48)
Costs are expressed in Canadian dollars.
GRADE of recommendation: Strong recommendation, low-quality or very low-quality evidence
benefits clearly outweigh risks and burdens
case series studies
strong, but may change if higher-quality evidence becomes available
Conjunctival-limbal autologous transplantations significantly reduced the risk of pterygium recurrence compared with CAU. No other comparison yielded statistically significant results, but CLAU reduced the risk of recurrence compared with MMC. However, the benefit of LSCT in Ontario is uncertain as the severity and recurrence of pterygium in Ontario is unknown. The complication rates suggest that CLAU is a safe treatment option to prevent the recurrence of pterygium. According to GRADE, given the balance of the benefits, risks, and burdens, the recommendations are very weak with moderate quality evidence, as shown in Executive Summary Table 2.
Benefits, Risks, and Burdens – Pterygium
Reduced recurrence; however, if recurrence is low in Ontario, this benefit might be minimal
Long-term complications rare
Increased cost
GRADE of recommendation: Very weak recommendations, moderate quality evidence.
uncertainty in the estimates of benefits, risks, and burden; benefits, risks, and burden may be closely balanced
very weak, other alternatives may be equally reasonable
PMCID: PMC3377549  PMID: 23074512
11.  Subgroup identification from randomized clinical trial data 
Statistics in medicine  2011;30(24):10.1002/sim.4322.
We consider the problem of identifying a subgroup of patients who may have an enhanced treatment effect in a randomized clinical trial, and it is desirable that the subgroup be defined by a limited number of covariates. For this problem, the development of a standard, pre-determined strategy may help to avoid the well-known dangers of subgroup analysis. We present a method developed to find subgroups of enhanced treatment effect. This method, referred to as “Virtual Twins”, involves predicting response probabilities for treatment and control “twins” for each subject. The difference in these probabilities is then used as the outcome in a classification or regression tree, which can potentially include any set of the covariates. We define a measure Q(Â) to be the difference between the treatment effect in estimated subgroup  and the marginal treatment effect. We present several methods developed to obtain an estimate of Q(Â), including estimation of Q(Â) using estimated probabilities in the original data, using estimated probabilities in newly simulated data, two cross-validation-based approaches and a bootstrap-based bias corrected approach. Results of a simulation study indicate that the Virtual Twins method noticeably outperforms logistic regression with forward selection when a true subgroup of enhanced treatment effect exists. Generally, large sample sizes or strong enhanced treatment effects are needed for subgroup estimation. As an illustration, we apply the proposed methods to data from a randomized clinical trial.
PMCID: PMC3880775  PMID: 21815180
randomized clinical trials; subgroups; random forests; regression trees; tailored therapeutics
12.  Intra-Articular Viscosupplementation With Hylan G-F 20 To Treat Osteoarthritis of the Knee 
Executive Summary
To assess the effectiveness and cost-effectiveness of hylan G-F 20 as a substitute for existing treatments for pain due to osteoarthritis (OA) of the knee, other viscosupplementation devices, and/or as an adjunct to conventional therapy.
Hylan G-F 20 (brand name Synvisc, which is manufactured by Genzyme) is a high molecular weight derivative of hyaluronan, a component of joint synovial fluid. It acts as a lubricant and shock absorber. It is administered by injection into the joint space to treat pain associated with OA of the knee. Although the injection procedure is an insured service in Ontario, the device, hylan G-F 20, is not.
Clinical Need
Osteoarthritis is prevalent in 10% to 12% of Ontario adults, and exceeds 40% in Ontario residents aged 65 years and older. About one-half of these people have mild, moderate, or severe OA of the knee. Conventional treatment involves a combination of nonpharmacological management (e.g., weight loss, exercise, social support, and patient education), drugs, (e.g., acetaminophen, COX-2 inhibitors, nonsteroidal anti-inflammatory drugs with/without misoprostol, intra-articular glucocorticoids, opioids, and topical analgesics) and surgical interventions, such as debridement and total knee replacement, when pharmacological management fails.
The growing burden of OA of the knee in the aging Ontario population combined with recent safety concerns about COX-2 inhibitors and long wait times for total joint replacement is placing pressure on the demand for new, effective technologies to manage the pain of OA.
The Technology
Hylan G-F 20 is derived from rooster comb hyaluronan (HA). At the time of writing, eight viscosupplement hyaluronic products are licensed in Canada. Hylan G-F 20 is distinguished from the other products by its chemical structure (i.e., cross-linked hyaluronan, hence hylan) and relatively higher molecular weight, which may bestow greater therapeutic viscoelastic properties. A complete treatment cycle of hylan G-F 20 involves an intra-articular injection of 2 ml of hylan G-F 20 once a week for 3 weeks. It is licensed for use for patients in all stages of joint pathology, but should not be used in infected or severely inflamed joints, in joints with large effusion, in patients that have skin diseases or infections in the area of the injection site, or in patients with venous stasis. It is also contraindicated in patients with hypersensitivities to avian proteins.
Review Strategy
The Medical Advisory Secretariat used its standard search protocol to review the literature for evidence on the effectiveness of intra-articular hylan G-F 20 compared with placebo, as a substitute for alternate active treatments, or as an adjunct to conventional care for treatment of the pain of OA of the knee. All English-language journal articles and reviews with clearly described designs and methods (i.e., those sufficient to assign a Jadad score to) published or released between 1966 and February 2005 were included. Two more recently published meta-analyses were also included. The databases searched were Ovid MEDLINE, EMBASE, the Cochrane database and leading international organizations for health technology assessments, including the International Network of Agencies for Health Technology Assessments. The search terms were as follows: hyaluronan, hyaluronate adj sodium, hylan, hylan G-F 20 (Synvisc), Synvisc, Hyalgan, Orthovisc, Supartz, Artz, Artzal, BioHY, NASHA, NRD101, viscosupplementation, osteoarthritis, knee, knee joint. The primary outcome of interest was a clinically significant difference, defined as greater than 10 mm on 100 mm visual analogue scale, or a change from baseline of more than 20% in the mean magnitude of pain relief experienced among patients treated with hylan G-F 20 compared with those treated with the control intervention.
One clinical epidemiologist reviewed the full-text reports and extracted data using an extraction form. Key variables included, but were not limited to, the characteristics of the patients, method of randomization, type of control intervention, outcome measures for effectiveness and safety, and length of follow-up. The quality of the studies and level of the evidence was initially scored by one clinical epidemiologist using the Jadad scale and GRADE approach. Level of quality depends on the amount of certainty about the magnitude of effect and is based on study designs, extent of methodological limitations, consistency of results and applicability (i.e. directness) to the Ontario clinical context. The GRADE approach also permits comment on the strength of recommendations resulting from the evidence, based on estimates of the magnitude of effect relative to the magnitude of risk and burden and the level of certainty around these estimates. The quality assessments were subsequently peer-reviewed.
Summary of Findings
The literature search revealed 2 previous health technology assessments, 3 meta-analyses of placebo-controlled trials, 1 Cochrane review and meta-analysis encompassing 18 randomized controlled trials (RCTs) that compared hylan G-F 20 to either placebo or active treatments, 11 RCTs of hylan G-F 20 (all included in the Cochrane review), and 10 observational studies. Given the preponderance of evidence, the Medical Advisory Secretariat’s analysis focused on studies with Level 1 evidence of effectiveness (i.e., the meta-analyses of RCTs and the RCTs). Only safety data from the observational studies were included.
The authors of the 2 health technology assessments concluded that the data were sparse and poor quality. There was some evidence that hylan G-F 20 delivered a small, clinical benefit at 3 to 6 months after treatment on a magnitude comparable to NSAIDs and intra-articular steroids. Hylan G-F 20 appeared to carry a risk of a local adverse reaction of in the range of 3% to 18% per 100 injections, but there was no apparent risk of a severe adverse event, although the data were limited.
Each of the 3 meta-analyses of placebo-controlled trials of intra-articular hyaluronans had only 3 trials involving hylan G-F 20. There results were inconsistent, with one study concluding that intra-articular hyaluronans were efficacious, whereas the 2 other analyses concluded the effect size was small (0.32) and probably not clinically significant. The risk of a minor adverse event ranged from 8% to 19% per 100 injections. Major adverse events were rare.
The authors of the Cochrane review concluded that a pooled analysis supported the efficacy of hyaluronans, including hylan G-F 20. The 5- to 13-week post-injection period showed an improvement from baseline of 11% to 54% for pain and 9% to 15% for function. Comparable efficacy was noted against NSAIDs, and longer-term benefits were noted in against steroids. Few adverse events were noted.
When the Medical Advisory Secretariat applied the criterion of clinical significance to the magnitude of pain relief reported in the RCTs on hylan G-F 20, the following was noted:
There was inconsistent evidence that hylan G-F 20 was clinically superior to placebo at 5 to 26 weeks after treatment.
There was consistent evidence that, in terms of delivering pain relief, hylan G-F 20 was no better or worse than NSAIDs or intra-articular steroids at 5 to 26 weeks after treatment.
There was consistent evidence that hylan G-F 20 was not clinically superior to other hyaluronic products.
There was consistent evidence that hylan G-F 20 delivered a small magnitude of clinical benefit at 12 to 52 weeks post-injection when administered as an adjunct to conventional care.
There were limitations to the methods in many of the RCTs involving hylan G-F 20. When only the results from the higher-quality studies were considered, there was level 2 evidence that hylan G-F 20 was not clinically superior to placebo (or another hyaluronan) at 1 to 26 weeks after treatment in older patients with advanced disease for whom total knee replacement was indicated. There was level 2 evidence that hylan G-F 2- was comparable to NSAIDs at 4 to 13 weeks after treatment, and level 2 evidence that hylan G-F 20 was superior to placebo as an adjunct to conventional care 4 to 26 weeks after treatment.
With respect to safety, overall, hylan G-F 20 carries a risk of a minor, local adverse event rate of about 8% to 19% per 100 injections. Incidents of moderate-severe post-injection inflammatory joint reactions have been reported, but the likelihood appears to be low (0.15% of patients).
Economic Analysis
Case-costing estimates suggest that the annual cost of 2 treatment cycles of hylan G-F 20 (plus analgesics for breakthrough pain) is almost equivalent to the annual cost of taking a NSAID (with a gastroprotective agent) and is more expensive that taking intra-articular corticosteroids (plus analgesics for breakthrough pain). The estimated cost of funding hylan G-F 20 as an adjunct to conventional therapy (i.e., any of analgesics, NSAIDs, intra-articular steroids, physiotherapy, and surgery) is $700 per patient per year. Given the huge burden of mild to moderate OA among adults who seek medical care for it in Ontario (about 300,000), funding hylan G-F 20 as an adjunct to existing treatment could be expensive, depending on its diffusion and uptake. If only 10% to 30% of patients choose this option, then the estimated budget impact would be $21 million to $63 million (Cdn) per year.
When the benefits relative to the risks and costs are considered, NSAIDs and hylan G-F 20 appear comparable, as the table shows. Consequently, there’s little evidence on which to recommend hylan G-F 20 over NSAIDs, except perhaps for patients who cannot tolerate NSAIDs, although this evidence is indirect, since no studies looked specifically at this population.
CC indicates conventional care; IA, intra-articular; NSAID, nonsteroidal anti-inflammatory drug.
Intra-articular steroids appear to deliver the same risks and clinical benefits as hylan G-F 20 at a lower cost; therefore, there’s evidence that intra-articular steroids are the preferred option. Hylan G-F 20 as an adjunct to conventional care appears to deliver some clinical benefit, although funding hylan G-F 20 as an adjunct would have considerable budget impact, so the benefits of this option do not clearly outweigh the costs. There’s some uncertainty about the effect of hylan G-F 20 relative to other hyaluronans, mostly because some of the trials of this comparison were not published.
Many of the studies of hylan G-F 20 have considerable methodological limitations that result in uncertainty about the magnitude of effect. An upcoming review of the evidence by the Osteoarthritis Advisory Panel of clinical experts will likely help to reduce some of this uncertainty.
There is moderate evidence that hylan G-F 20 is no more clinically effective than NSAIDs. The evidence that hylan G-F 20 might be an appropriate option for a person with OA of the knee who cannot tolerate NSAIDs is indirect. The possible benefit of fewer cases of NSAID-induced gastropathy in this population must be weighed against the uncertainty of a severe inflammatory adverse reaction to hylan G-F 20.
Similarly, there is moderate evidence that hylan G-F 20 is no more clinically effective than intra-articular corticosteroids. The lower cost of intra-articular corticosteroids makes them the preferred option.
There is moderate evidence that hylan G-F 20 is effective as an adjunct to conventional care, delivering a small magnitude of temporary relief at 4 to 26 weeks after treatment. The estimated additional cost to the system of providing hylan G-F 20 as an adjunct to conventional care is about $700 (Cdn) per patient annually. The magnitude and duration of clinical benefit of hylan G-F 20 must be weighed against the uncertainty and potential magnitude of the budget impact (about $35 million to $105 million (Cdn) per year) of funding this device given the high burden of OA in Ontario adults.
There is level 2 evidence that hylan G-F 20 is not effective in people with advanced OA for whom total knee replacement is indicated.
PMCID: PMC3382385  PMID: 23074461
13.  Multidrug Resistant Pulmonary Tuberculosis Treatment Regimens and Patient Outcomes: An Individual Patient Data Meta-analysis of 9,153 Patients 
Ahuja, Shama D. | Ashkin, David | Avendano, Monika | Banerjee, Rita | Bauer, Melissa | Bayona, Jamie N. | Becerra, Mercedes C. | Benedetti, Andrea | Burgos, Marcos | Centis, Rosella | Chan, Eward D. | Chiang, Chen-Yuan | Cox, Helen | D'Ambrosio, Lia | DeRiemer, Kathy | Dung, Nguyen Huy | Enarson, Donald | Falzon, Dennis | Flanagan, Katherine | Flood, Jennifer | Garcia-Garcia, Maria L. | Gandhi, Neel | Granich, Reuben M. | Hollm-Delgado, Maria G. | Holtz, Timothy H. | Iseman, Michael D. | Jarlsberg, Leah G. | Keshavjee, Salmaan | Kim, Hye-Ryoun | Koh, Won-Jung | Lancaster, Joey | Lange, Christophe | de Lange, Wiel C. M. | Leimane, Vaira | Leung, Chi Chiu | Li, Jiehui | Menzies, Dick | Migliori, Giovanni B. | Mishustin, Sergey P. | Mitnick, Carole D. | Narita, Masa | O'Riordan, Philly | Pai, Madhukar | Palmero, Domingo | Park, Seung-kyu | Pasvol, Geoffrey | Peña, Jose | Pérez-Guzmán, Carlos | Quelapio, Maria I. D. | Ponce-de-Leon, Alfredo | Riekstina, Vija | Robert, Jerome | Royce, Sarah | Schaaf, H. Simon | Seung, Kwonjune J. | Shah, Lena | Shim, Tae Sun | Shin, Sonya S. | Shiraishi, Yuji | Sifuentes-Osornio, José | Sotgiu, Giovanni | Strand, Matthew J. | Tabarsi, Payam | Tupasi, Thelma E. | van Altena, Robert | Van der Walt, Martie | Van der Werf, Tjip S. | Vargas, Mario H. | Viiklepp, Pirett | Westenhouse, Janice | Yew, Wing Wai | Yim, Jae-Joon
PLoS Medicine  2012;9(8):e1001300.
Dick Menzies and colleagues report findings from a collaborative, individual patient-level meta-analysis of treatment outcomes among patients with multidrug-resistant tuberculosis.
Treatment of multidrug resistant tuberculosis (MDR-TB) is lengthy, toxic, expensive, and has generally poor outcomes. We undertook an individual patient data meta-analysis to assess the impact on outcomes of the type, number, and duration of drugs used to treat MDR-TB.
Methods and Findings
Three recent systematic reviews were used to identify studies reporting treatment outcomes of microbiologically confirmed MDR-TB. Study authors were contacted to solicit individual patient data including clinical characteristics, treatment given, and outcomes. Random effects multivariable logistic meta-regression was used to estimate adjusted odds of treatment success. Adequate treatment and outcome data were provided for 9,153 patients with MDR-TB from 32 observational studies. Treatment success, compared to failure/relapse, was associated with use of: later generation quinolones, (adjusted odds ratio [aOR]: 2.5 [95% CI 1.1–6.0]), ofloxacin (aOR: 2.5 [1.6–3.9]), ethionamide or prothionamide (aOR: 1.7 [1.3–2.3]), use of four or more likely effective drugs in the initial intensive phase (aOR: 2.3 [1.3–3.9]), and three or more likely effective drugs in the continuation phase (aOR: 2.7 [1.7–4.1]). Similar results were seen for the association of treatment success compared to failure/relapse or death: later generation quinolones, (aOR: 2.7 [1.7–4.3]), ofloxacin (aOR: 2.3 [1.3–3.8]), ethionamide or prothionamide (aOR: 1.7 [1.4–2.1]), use of four or more likely effective drugs in the initial intensive phase (aOR: 2.7 [1.9–3.9]), and three or more likely effective drugs in the continuation phase (aOR: 4.5 [3.4–6.0]).
In this individual patient data meta-analysis of observational data, improved MDR-TB treatment success and survival were associated with use of certain fluoroquinolones, ethionamide, or prothionamide, and greater total number of effective drugs. However, randomized trials are urgently needed to optimize MDR-TB treatment.
Please see later in the article for the Editors' Summary.
Editors' Summary
In 2010, 8.8 million people developed tuberculosis—a contagious bacterial infection—and 1.4 million people died from the disease. Mycobacterium tuberculosis, the bacterium that causes tuberculosis, is spread in airborne droplets when people with the disease cough or sneeze and usually infects the lungs (pulmonary tuberculosis). The characteristic symptoms of tuberculosis are a persistent cough, weight loss, and night sweats. Tuberculosis can be cured by taking several powerful antibiotics regularly for at least 6 months. The standard treatment for tuberculosis comprises an initial intensive phase lasting 2 months during which four antibiotics are taken daily followed by a 4-month continuation phase during which two antibiotics are taken. However, global efforts to control tuberculosis are now being thwarted by the emergence of M. tuberculosis strains that are resistant to several antibiotics, including isoniazid and rifampicin, the two most powerful, first-line (standard) anti-tuberculosis drugs.
Why Was This Study Done?
Although multi-drug resistant tuberculosis (MDR-TB) can be cured using second-line anti-tuberculosis drugs, these are more expensive and more toxic than first-line drugs and optimal treatment regimens for MDR-TB have not been determined. Notably, there have been no randomized controlled trials of treatments for MDR-TB. Such trials, which compare outcomes (cure, treatment failure, relapse, and death) among patients who have been randomly assigned to receive different treatments, are the best way to compare different anti-tuberculosis drug regimens. It is possible, however, to get useful information about the association of various treatments for MDR-TB with outcomes from observational studies using a statistical approach called “individual patient data meta-analysis.” In observational studies, because patients are not randomly assigned to different treatments, differences in outcomes between treatment groups may not be caused by the different drugs they receive but may be due to other differences between the groups. An individual patient data meta-analysis uses statistical methods to combine original patient data from several different studies. Here, the researchers use this approach to investigate the association of specific drugs, numbers of drugs and treatment duration with the clinical outcomes of patients with pulmonary MDR-TB.
What Did the Researchers Do and Find?
The researchers used three recent systematic reviews (studies that use predefined criteria to identify all the research on a given topic) to identify studies reporting treatment outcomes of microbiologically confirmed MDR-TB. They obtained individual patient data from the authors of these studies and estimated adjusted odds (chances) of treatment success from the treatment and outcome data of 9,153 patients with MDR-TB provided by 32 centers. The use of later generation quinolones, ofloxacin, and ethionamide/prothionamide as part of multi-drug regimens were all associated with treatment success compared to failure, relapse or death, as were the use of four or more likely effective drugs (based on drug susceptibility testing of mycobacteria isolated from study participants) during the initial intensive treatment phase and the use of three or more likely effective drugs during the continuation phase. The researchers also report that among patients who did not die or stop treatment, the chances of treatment success increased with the duration of the initial treatment phase up to 7.1–8.5 months and with the total duration of treatment up to 18.6–21.5 months.
What Do These Findings Mean?
These findings suggest that the use of specific drugs, the use of a greater number of effective drugs, and longer treatments may be associated with treatment success and the survival of patients with MDR-TR. However, these findings need to be interpreted with caution because of limitations in this study that may have affected the accuracy of its findings. For example, the researchers did not include all the studies they found through the systematic reviews in their meta-analysis (some authors did not respond to requests for individual patient data, for example), which may have introduced bias. Moreover, because the patients included in the meta-analysis were treated at 32 centers, there were many differences in their management, some of which may have affected the accuracy of the findings. Because of these and other limitations, the researchers note that, although their findings highlight several important questions about the treatment of MDR-TB, randomized controlled trials are urgently needed to determine the optimal treatment for MDR-TB.
Additional Information
Please access these Web sites via the online version of this summary at
The World Health Organization provides information on all aspects of tuberculosis, including MDR-TB; its guidelines for the programmatic management of drug-resistant tuberculosis are available
The US Centers for Disease Control and Prevention has information about tuberculosis, including information on the treatment of tuberculosis and on MDR-TB
The US National Institute of Allergy and Infectious Diseases also has information on all aspects of tuberculosis, including a drug-resistant tuberculosis visual tour
MedlinePlus has links to further information about tuberculosis (in English and Spanish)
TB & ME, a collaborative blogging project run by patients being treated for multidrug-resistant tuberculosis and Medecins sans Frontieres, provides information about MDR-TB and patient stories about treatment for MDR-TB
The Tuberculosis Survival Project, which aims to raise awareness of tuberculosis and provide support for people with tuberculosis, also provides personal stories about treatment for tuberculosis
PMCID: PMC3429397  PMID: 22952439
14.  On the covariate-adjusted estimation for an overall treatment difference with data from a randomized comparative clinical trial 
Biostatistics (Oxford, England)  2012;13(2):256-273.
To estimate an overall treatment difference with data from a randomized comparative clinical study, baseline covariates are often utilized to increase the estimation precision. Using the standard analysis of covariance technique for making inferences about such an average treatment difference may not be appropriate, especially when the fitted model is nonlinear. On the other hand, the novel augmentation procedure recently studied, for example, by Zhang and others (2008. Improving efficiency of inferences in randomized clinical trials using auxiliary covariates. Biometrics 64, 707–715) is quite flexible. However, in general, it is not clear how to select covariates for augmentation effectively. An overly adjusted estimator may inflate the variance and in some cases be biased. Furthermore, the results from the standard inference procedure by ignoring the sampling variation from the variable selection process may not be valid. In this paper, we first propose an estimation procedure, which augments the simple treatment contrast estimator directly with covariates. The new proposal is asymptotically equivalent to the aforementioned augmentation method. To select covariates, we utilize the standard lasso procedure. Furthermore, to make valid inference from the resulting lasso-type estimator, a cross validation method is used. The validity of the new proposal is justified theoretically and empirically. We illustrate the procedure extensively with a well-known primary biliary cirrhosis clinical trial data set.
PMCID: PMC3297822  PMID: 22294672
ANCOVA; Cross validation; Efficiency augmentation; Mayo PBC data; Semi-parametric efficiency
15.  Short-Term Efficacy of Rofecoxib and Diclofenac in Acute Shoulder Pain: A Placebo-Controlled Randomized Trial 
PLoS Clinical Trials  2007;2(3):e9.
To evaluate the short-term symptomatic efficacy of rofecoxib and diclofenac versus placebo in acute episodes of shoulder pain.
Randomized controlled trial of 7 days.
Rheumatologists and/or general practitioners totaling 47.
Acute shoulder pain.
Rofecoxib 50 mg once daily, diclofenac 50 mg three times daily, and placebo.
Outcome measures:
Pain, functional impairment, patient's global assessment of his/her disease activity, and local steroid injection requirement for persistent pain. The primary variable was the Kaplan-Meier estimates of the percentage of patients at day 7 fulfilling the definition of success (improvement in pain intensity and a low pain level sustained to the end of the 7 days of the study; log-rank test).
There was no difference in the baseline characteristics between the three groups (rofecoxib n = 88, placebo n = 94, and diclofenac n = 89). At day 7, the Kaplan-Meier estimates of successful patients was higher in the treatment groups than in the placebo (54%, 56%, and 38% in the diclofenac, rofecoxib, and placebo groups respectively, p = 0.0070 and p = 0.0239 for placebo versus rofecoxib and diclofenac, respectively). During the 7 days of the study, there was a statistically significant difference between placebo and both active arms (rofecoxib and diclofenac) in all the evaluated outcome measures A local steroid injection had to be performed in 33 (35%) and 19 (22%) patients in the placebo and rofecoxib group respectively. Number needed to treat to avoid such rescue therapy was 7 patients (95% confidence interval 5–15).
This study highlights the methodological aspects of clinical trials, e.g., eligibility criteria and outcome measures, in acute painful conditions. The data also establish that diclofenac and rofecoxib are effective therapies for the management of acute painful shoulder and that they reduce the requirement for local steroid injection.
Editorial Commentary
Background: Shoulder pain is a very common complaint that presents in primary care, and there are many different possible causes. Acute pain would normally be managed with nonsteroidal anti-inflammatory drugs (NSAIDs), supplemented with steroid injections (which are often reserved for the treatment of severe or persistent pain). One NSAID, diclofenac, is used frequently for this condition, but other NSAIDs might also be effective. A subgroup of NSAIDs called the Cox-2 selective inhibitors specifically inhibit one particular enzyme (cyclo-oxygenase, shortened to Cox-2) which is involved in inflammation and pain. These drugs are thought to be less likely to cause stomach irritation than other NSAIDs. Therefore the researchers in this study carried out a short-term, three-way clinical trial comparing diclofenac with one particular Cox-2 inhibitor, rofecoxib, and placebo in patients with acute shoulder pain. However, rofecoxib was withdrawn from the market in September 2004 because of evidence that use of the drug was associated with an increased risk of heart attacks and strokes, and controversy remains regarding the risk of such events among users of other Cox-2 inhibitors.
What this trial shows: The main aim of this trial was to compare the level of pain relief over seven days of treatment with either diclofenac or rofecoxib, as compared to placebo. The primary outcome measure used in the trial was the proportion of patients achieving a 50% or greater decrease in pain levels over the course of the study, measured using a numerical rating scale. A total of 273 participants were recruited into the trial and at day 7 the proportion achieving a 30% decrease in pain was 38% in the placebo arm, 54% in the diclofenac arm, and 56% in the rofecoxib arm. The differences in this outcome measure between diclofenac and placebo and between rofecoxib and placebo were statistically significant; however, the researchers did not carry out a direct comparison between diclofenac and rofecoxib. The rates of adverse events were roughly comparable between all three arms of the trial, although the study was not originally planned to be large enough to detect differences in the rates of such events, so it is not possible to conclude whether there was any true difference.
Strengths and limitations: The randomization procedures used in the study minimize the possibility of bias in assigning patients to treatment arms. Bias in assessment of outcomes was also minimized by ensuring that steps were taken to prevent investigators and patients from knowing which drugs a particular patient received until the end of the trial. A key limitation of the study is the short follow-up, only seven days, and it is therefore unclear whether efficacy and safety of these drugs would continue for the much longer periods of time (weeks or even months) for which these patients might need pain relief. Finally, patients randomized to the placebo arm received no treatment for the seven days of the study other than acetaminophen or steroid injections (which would result in withdrawal from the trial). This design does not limit interpretation of the data but could be criticized because of concern over whether the patients receiving placebo received adequate pain relief.
Contribution to the evidence: This study provides some data on the efficacy of diclofenac and rofecoxib, as compared to placebo in treatment of this condition. Given that rofecoxib is now withdrawn, the efficacy of this drug is no longer relevant. However, the information from this trial should help in designing future studies of NSAIDs in shoulder pain, for example to define appropriate trial outcomes, sample size, and other aspects of study design.
PMCID: PMC1817652  PMID: 17347681
16.  Efficient design and inference for multistage randomized trials of individualized treatment policies 
Biostatistics (Oxford, England)  2011;13(1):142-152.
Clinical demand for individualized “adaptive” treatment policies in diverse fields has spawned development of clinical trial methodology for their experimental evaluation via multistage designs, building upon methods intended for the analysis of naturalistically observed strategies. Because often there is no need to parametrically smooth multistage trial data (in contrast to observational data for adaptive strategies), it is possible to establish direct connections among different methodological approaches. We show by algebraic proof that the maximum likelihood (ML) and optimal semiparametric (SP) estimators of the population mean of the outcome of a treatment policy and its standard error are equal under certain experimental conditions. This result is used to develop a unified and efficient approach to design and inference for multistage trials of policies that adapt treatment according to discrete responses. We derive a sample size formula expressed in terms of a parametric version of the optimal SP population variance. Nonparametric (sample-based) ML estimation performed well in simulation studies, in terms of achieved power, for scenarios most likely to occur in real studies, even though sample sizes were based on the parametric formula. ML outperformed the SP estimator; differences in achieved power predominately reflected differences in their estimates of the population mean (rather than estimated standard errors). Neither methodology could mitigate the potential for overestimated sample sizes when strong nonlinearity was purposely simulated for certain discrete outcomes; however, such departures from linearity may not be an issue for many clinical contexts that make evaluation of competitive treatment policies meaningful.
PMCID: PMC3276275  PMID: 21765180
Adaptive treatment strategy; Efficient SP estimation; Maximum likelihood; Multi-stage design; Sample size formula
17.  Landmark Estimation of Survival and Treatment Effect in a Randomized Clinical Trial 
In many studies with a survival outcome, it is often not feasible to fully observe the primary event of interest. This often leads to heavy censoring and thus, difficulty in efficiently estimating survival or comparing survival rates between two groups. In certain diseases, baseline covariates and the event time of non-fatal intermediate events may be associated with overall survival. In these settings, incorporating such additional information may lead to gains in efficiency in estimation of survival and testing for a difference in survival between two treatment groups. If gains in efficiency can be achieved, it may then be possible to decrease the sample size of patients required for a study to achieve a particular power level or decrease the duration of the study. Most existing methods for incorporating intermediate events and covariates to predict survival focus on estimation of relative risk parameters and/or the joint distribution of events under semiparametric models. However, in practice, these model assumptions may not hold and hence may lead to biased estimates of the marginal survival. In this paper, we propose a semi-nonparametric two-stage procedure to estimate and compare t-year survival rates by incorporating intermediate event information observed before some landmark time, which serves as a useful approach to overcome semi-competing risks issues. In a randomized clinical trial setting, we further improve efficiency through an additional calibration step. Simulation studies demonstrate substantial potential gains in efficiency in terms of estimation and power. We illustrate our proposed procedures using an AIDS Clinical Trial Protocol 175 dataset by estimating survival and examining the difference in survival between two treatment groups: zidovudine and zidovudine plus zalcitabine.
PMCID: PMC3960087  PMID: 24659838
Efficiency Augmentation; Kaplan Meier; Landmark Prediction; Semi-competing Risks; Survival Analysis
18.  KRAS Testing for Anti-EGFR Therapy in Advanced Colorectal Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenomics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: or at
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based and Economic Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based and Economic Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based and Economic Analysis.
The objective of this systematic review is to determine the predictive value of KRAS testing in the treatment of metastatic colorectal cancer (mCRC) with two anti-EGFR agents, cetuximab and panitumumab. Economic analyses are also being conducted to evaluate the cost-effectiveness of KRAS testing.
Clinical Need: Condition and Target Population
Metastatic colorectal cancer (mCRC) is usually defined as stage IV disease according to the American Joint Committee on Cancer tumour node metastasis (TNM) system or stage D in the Duke’s classification system. Patients with advanced colorectal cancer (mCRC) either present with metastatic disease or develop it through disease progression.
KRAS (Kristen-RAS, a member of the rat sarcoma virus (ras) gene family of oncogenes) is frequently mutated in epithelial cancers such as colorectal cancer, with mutations occurring in mutational hotspots (codons 12 and 13) of the KRAS protein. Involved in EGFR-mediated signalling of cellular processes such as cell proliferation, resistance to apoptosis, enhanced cell motility and neoangiogenesis, a mutation in the KRAS gene is believed to be involved in cancer pathogenesis. Such a mutation is also hypothesized to be involved in resistance to targeted anti-EGFR (epidermal growth factor receptor with tyrosine kinase activity) treatments such as cetuximab and panitumumab, hence, the important in evaluating the evidence on the predictive value of KRAS testing in this context.
KRAS Mutation Testing in Advanced Colorectal Cancer
Both cetuximab and panitumumab are indicated by Health Canada in the treatment of patients with metastatic colorectal cancer whose tumours are WT for the KRAS gene. Cetuximab may be offered as monotherapy in patients intolerant to irinotecan-based chemotherapy or in patients who have failed both irinotecan and oxaliplatin-based regimens and who received a fluoropyrimidine. It can also be administered in combination with irinotecan in patients refractory to other irinotecan-based chemotherapy regimens. Panitumumab is only indicated as a single agent after failure of fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens.
In Ontario, patients with advanced colorectal cancer who are refractory to chemotherapy may be offered the targeted anti-EGFR treatments cetuximab or panitumumab. Eligibility for these treatments is based on the KRAS status of their tumour, derived from tissue collected from surgical or biopsy specimens. It is believed that KRAS status is not affected by treatments, therefore, for patients for whom surgical tissue is available for KRAS testing, additional biopsies prior to treatment with these targeted agents is not necessary. For patients that have not undergone surgery or for whom surgical tissue is not available, a biopsy of either the primary or metastatic site is required to determine their KRAS status. This is possible as status at the metastatic and primary tumour sites is considered to be similar.
Research Question
To determine if there is predictive value of KRAS testing in guiding treatment decisions with anti-EGFR targeted therapies in advanced colorectal cancer patients refractory to chemotherapy.
Research Methods
Literature Search
The Medical Advisory Secretariat followed its standard procedures and on May 18, 2010, searched the following electronic databases: Ovid MEDLINE, EMBASE, Ovid MEDLINE In-Process & Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews and The International Network of Agencies for Health Technology Assessment database.
The subject headings and keywords searched included colorectal cancer, cetuximab, panitumumab, and KRAS testing. The search was further restricted to English-language articles published between January 1, 2009 and May 18, 2010 resulting in 1335 articles for review. Excluded were case reports, comments, editorials, nonsystematic reviews, and letters. Studies published from January 1, 2005 to December 31, 2008 were identified in a health technology assessment conducted by the Agency for Healthcare Research and Quality (AHRQ), published in 2010. In total, 14 observational studies were identified for inclusion in this EBA: 4 for cetuximab monotherapy, 7 for the cetuximab-irinotecan combination therapy, and 3 to be included in the review for panitumumab monotherapy
Inclusion Criteria
English-language articles, and English or French-language HTAs published from January 2005 to May 2010, inclusive.
Randomized controlled trials (RCTs) or observational studies, including single arm treatment studies that include KRAS testing.
Studies with data on main outcomes of interest, overall and progression-free survival.
Studies of third line treatment with cetuximab or panitumumab in patients with advanced colorectal cancer refractory to chemotherapy.
For the cetuximab-irinotecan evaluation, studies in which at least 70% of patients in the study received this combination therapy.
Exclusion Criteria
Studies whose entire sample was included in subsequent publications which have been included in this EBA.
Studies in pediatric populations.
Case reports, comments, editorials, or letters.
Outcomes of Interest
Overall survival (OS), median
Progression-free-survival (PFS), median.
Response rates.
Adverse event rates.
Quality of life (QOL).
Summary of Findings of Systematic Review
Cetuximab or Panitumumab Monotherapy
Based on moderate GRADE observational evidence, there is improvement in PFS and OS favouring patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation.
Cetuximab-Irinotecan Combination Therapy
There is low GRADE evidence that testing for KRAS may optimize survival benefits in patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation.
However, cetuximab-irinotecan combination treatments based on KRAS status discount any effect of cetuximab in possibly reversing resistance to irinotecan in patients with the mutation, as observed effects were lower than for patients without the mutation. Clinical experts have raised concerns about the biological plausibility of this observation and this conclusion would, therefore, be regarded as hypothesis generating.
Economic Analysis
Cost-effectiveness and budget impact analyses were conducted incorporating estimates of effectiveness from this systematic review. Evaluation of relative cost-effectiveness, based on a decision-analytic cost-utility analysis, assessed testing for KRAS genetic mutations versus no testing in the context of treatment with cetuximab monotherapy, panitumumab monotherapy, cetuximab in combination with irinotecan, and best supportive care.
Of importance to note is that the cost-effectiveness analysis focused on the impact of testing for KRAS mutations compared to no testing in the context of different treatment options, and does not assess the cost-effectiveness of the drug treatments alone.
KRAS status is predictive of outcomes in cetuximab and panitumumab monotherapy, and in cetuximab-irinotecan combination therapy.
While KRAS testing is cost-effective for all strategies considered, it is not equally cost-effective for all treatment options.
PMCID: PMC3377508  PMID: 23074403
19.  Repetitive Transcranial Magnetic Stimulation for the Treatment of Major Depressive Disorder 
Executive Summary
This review was conducted to assess the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depressive disorder (MDD).
The Technology
rTMS is a noninvasive way to stimulate nerve cells in areas of the brain. During rTMS, an electrical current passes through a wire coil placed over the scalp. The current induces a magnetic field that produces an electrical field in the brain that then causes nerve cells to depolarize, resulting in the stimulation or disruption of brain activity.
Researchers have investigated rTMS as an option to treat MDD, as an add-on to drug therapy, and, in particular, as an alternative to electroconvulsive therapy (ECT) for patients with treatment-resistant depression.
The advantages of rTMS over ECT for patients with severe refractory depression are that general anesthesia is not needed, it is an outpatient procedure, it requires less energy, the simulation is specific and targeted, and convulsion is not required. The advantages of rTMS as an add-on treatment to drug therapy may include hastening of the clinical response when used with antidepressant drugs.
Review Strategy
The Medical Advisory Secretariat used its standard search strategy to locate international health technology assessments and English-language journal articles published from January 1996 to March 2004.
Summary of Findings
Some early meta-analyses suggested rTMS might be effective for the treatment of MDD (for treatment-resistant MDD and as an add-on treatment to drug therapy for patients not specifically defined as treatment resistant). There were, however, several crucial methodological limitations in the included studies that were not critically assessed. These are discussed below.
Recent meta-analyses (including 2 international health technology assessments) have done evidence-based critical analyses of studies that have assessed rTMS for MDD. The 2 most recent health technology assessments (from the Oxford Cochrane Collaboration and the Norwegian Centre for Health Technology Assessment) concluded that there is no evidence that rTMS is effective for the treatment of MDD, either as compared with a placebo for patients with treatment-resistant or nontreatment-resistant MDD, or as an alternative to ECT for patients with treatment-resistant MDD. This mainly due to the poor quality of the studies.
The major methodological limitations were identified in older meta-analyses, recent health technology assessments, and the most recently published trials (Level 2–4 evidence) on the effectiveness of rTMS for MDD are discussed below.
Small sample size was a limitation acknowledged by many of the authors. There was also a lack of a priori sample size calculation or justification.
Biased randomization may have been a problem. Generally, the published reports lacked detailed information on the method of allocation concealment used. This is important because it is impossible to determine if there was a possible influence (direct or indirect) in the allocation of the patients to different treatment groups.
The trials were single blind, evaluated by external blinded assessors, rather than double blind. Double blinding is more robust, because neither the participants nor the investigators know which participants are receiving the active treatment and which are getting a placebo. Those administering rTMS, however, cannot be blinded to whether they are administering the active treatment or a placebo.
There was patient variability among the studies. In some studies, the authors said that patients were “medication resistant,” but the definitions of resistant, if provided, were inconsistent or unclear. For example, some described “medication resistant” as failing at least one trial of drugs during the current depressive episode. Furthermore, it was unclear if the term “medication resistant” referred to antidepressants only or to combinations of antidepressants and other drug augmentation strategies (such as neuroleptics, benzodiazepine, carbamazepine, and lithium). Also variable was the type of depression (i.e., unipolar and/or bipolar), if patients were inpatients or outpatients, if they had psychotic symptoms or no psychotic symptoms, and the chronicity of depression.
Dropouts or withdrawals were a concern. Some studies reported that patients dropped out, but provided no further details. Intent-to-treat analysis was not done in any of the trials. This is important, because ignoring patients who drop out of a trial can bias the results, usually in favour of the treatment. This is because patients who withdraw from trials are less likely to have had the treatment, more likely to have missed their interim checkups, and more likely to have experienced adverse effects when taking the treatment, compared with patients who do not withdraw. (1)
Measurement of treatment outcomes using scales or inventories makes interpreting results and drawing conclusions difficult. The most common scale, the Hamilton Depression Rating Scale (HDRS) is based on a semistructured interview. Some authors (2) reported that rating scales based on semistructured interviews are more susceptible to observation bias than are self-administered questionnaires such as the Beck Depression Inventory (BDI). Martin et al. (3) argued that the lack of consistency in effect as determined by the 2 scales (a positive result after 2 weeks of treatment as measured by the HDRS and a negative result for the BDI) makes definitive conclusions about the nature of the change in mood of patients impossible. It was suggested that because of difficulties interpreting results from psychometric scales, (4) and the subjective or unstable character of MDD, other, more objective, outcome measures such as readmission to hospital, time to hospital discharge, time to adjunctive treatment, and time off work should be used to assess rTMS for the treatment of depression.
A placebo effect could have influenced the results. Many studies reported response rates for patients who received placebo treatment. For example, Klein et al. (5) reported a control group response rate as high as 25%. Patients receiving placebo rTMS may receive a small dose of magnetic energy that may alter their depression.
Short-term studies were the most common. Patients received rTMS treatment for 1 to 2 weeks. Most studies followed-up patients for 2 to 4 weeks post-treatment. Dannon et al. (6) followed-up patients who responded to a course of ECT or rTMS for up to 6 months; however, the assessment procedure was not blinded, the medication regimen during follow-up was not controlled, and initial baseline data for the patient groups were not reported. The long-term effectiveness of rTMS for the treatment of depression is unknown, as is the long-term use, if any, of maintenance therapy. The cost-effectiveness of rTMS for the treatment of depression is also unknown. A lack of long-term studies makes cost-effectiveness analysis difficult.
The complexity of possible combinations for administering rTMS makes comparing like with like difficult. Wasserman and Lisanby (7) have said that the method for precisely targeting the stimulation in this area is unreliable. It is unknown if the left dorsolateral prefrontal cortex is the optimal location for treatment. Further, differences in rTMS administration include number of trains per session, duration of each train, and motor threshold.
Clinical versus statistical significance. Several meta-analyses and studies have found that the degree of therapeutic change associated with rTMS across studies is relatively modest; that is, results may be statistically, but not necessarily clinically, significant. (8-11). Conventionally, a 50% reduction in the HDRS scores is commonly accepted as a clinically important reduction in depression. Although some studies have observed a statistically significant reduction in the depression rating, many have not shows the clinically significant reduction of 50% on the HDRS. (11-13) Therefore, few patients in these studies would meet the standard criteria for response. (9)
Clinical/methodological diversity and statistical heterogeneity. In the Norwegian health technology assessment, Aarre et al. (14) said that a formal meta-analysis was not feasible because the designs of the studies varied too much, particularly in how rTMS was administered and in the characteristics of the patients. They noted that the quality of the study designs was poor. The 12 studies that comprised the assessment had small samples, and highly variable inclusion criteria and study designs. The patients’ previous histories, diagnoses, treatment histories, and treatment settings were often insufficiently characterized. Furthermore, many studies reported that patients had treatment-resistant MDD, yet did not listclear criteria for the designation. Without this information, Aarre and colleagues suggested that the interpretation of the results is difficult and the generalizability of results is questionable. They concluded that rTMS cannot be recommended as a standard treatment for depression: “More, larger and more carefully designed studies are needed to demonstrate convincingly a clinically relevant effect of rTMS.”
In the Cochrane Collaboration systematic review, Martin et al. (3;15) said that the complexity of possible combinations for administering rTMS makes comparison of like versus like difficult. A statistical test for heterogeneity (chi-square test) examines if the observed treatment effects are more different from each other than one would expect due to random error (or chance) alone. (16) However, this statistical test must be interpreted with caution because it has low power in the (common) situation of a meta-analysis when the trials have small sample sizes or are few. This means that while a statistically significant result may indicate a problem with heterogeneity, a nonsignificant result must not be taken as evidence of no heterogeneity.
Despite not finding statistically significant heterogeneity, Martin et al. reported that the overall mean baseline depression values for the severity of depression were higher in the treatment group than in the placebo group. (3;15) Although these differences were not significant at the level of each study, they may have introduced potential bias into the meta-analysis of pooled data by accentuating the tendency for regression to the mean of the more extreme values. Individual patient data from all the studies were not available; therefore, an appropriate adjustment according to baseline severity was not possible. Martin et al. concluded that the findings from the systematic review and meta-analysis provided insufficient evidence to suggest that rTMS is effective in the treatment of depression. Moreover, there were several confounding factors (e.g., definition of treatment resistance) in the studies, thus the authors concluded, “The rTMS technique needs more high quality trials to show its effectiveness for therapeutic use.”
Due to several serious methodological limitations in the studies that have examined the effectiveness of rTMS in patients with MDD, it is not possible to conclude that rTMS either is or is not effective as a treatment for MDD (in treatment-resistant depression or in nontreatment-resistant depression).
PMCID: PMC3387754  PMID: 23074457
The annals of applied statistics  2010;4(1):520-532.
To investigate whether treating cancer patients with erythropoiesis-stimulating agents (ESAs) would increase the mortality risk, Bennett et al. [Journal of the American Medical Association 299 (2008) 914–924] conducted a meta-analysis with the data from 52 phase III trials comparing ESAs with placebo or standard of care. With a standard parametric random effects modeling approach, the study concluded that ESA administration was significantly associated with increased average mortality risk. In this article we present a simple nonparametric inference procedure for the distribution of the random effects. We re-analyzed the ESA mortality data with the new method. Our results about the center of the random effects distribution were markedly different from those reported by Bennett et al. Moreover, our procedure, which estimates the distribution of the random effects, as opposed to just a simple population average, suggests that the ESA may be beneficial to mortality for approximately a quarter of the study populations. This new meta-analysis technique can be implemented with study-level summary statistics. In contrast to existing methods for parametric random effects models, the validity of our proposal does not require the number of studies involved to be large. From the results of an extensive numerical study, we find that the new procedure performs well even with moderate individual study sample sizes.
PMCID: PMC4321956
Bivariate beta; conditional permutation test; erythropoiesis-stimulating agents; logit-normal; two-level hierachical model
21.  On Sparse Estimation for Semiparametric Linear Transformation Models 
Journal of multivariate analysis  2010;101(7):1594-1606.
Semiparametric linear transformation models have received much attention due to its high flexibility in modeling survival data. A useful estimating equation procedure was recently proposed by Chen et al. (2002) for linear transformation models to jointly estimate parametric and nonparametric terms. They showed that this procedure can yield a consistent and robust estimator. However, the problem of variable selection for linear transformation models is less studied, partially because a convenient loss function is not readily available under this context. In this paper, we propose a simple yet powerful approach to achieve both sparse and consistent estimation for linear transformation models. The main idea is to derive a profiled score from the estimating equation of Chen et al. (2002), construct a loss function based on the profile scored and its variance, and then minimize the loss subject to some shrinkage penalty. Under regularity conditions, we have shown that the resulting estimator is consistent for both model estimation and variable selection. Furthermore, the estimated parametric terms are asymptotically normal and can achieve higher efficiency than that yielded from the estimation equations. For computation, we suggest a one-step approximation algorithm which can take advantage of the LARS and build the entire solution path efficiently. Performance of the new procedure is illustrated through numerous simulations and real examples including one microarray data.
PMCID: PMC2869045  PMID: 20473356
Censored survival data; Linear transformation models; LARS; Shrinkage; Variable selection
22.  Variable selection for covariate-adjusted semiparametric inference in randomized clinical trials 
Statistics in medicine  2012;31(29):10.1002/sim.5433.
Extensive baseline covariate information is routinely collected on participants in randomized clinical trials, and it is well-recognized that a proper covariate-adjusted analysis can improve the efficiency of inference on the treatment effect. However, such covariate adjustment has engendered considerable controversy, as post hoc selection of covariates may involve subjectivity and lead to biased inference, while prior specification of the adjustment may exclude important variables from consideration. Accordingly, how to select covariates objectively to gain maximal efficiency is of broad interest. We propose and study the use of modern variable selection methods for this purpose in the context of a semiparametric framework, under which variable selection in modeling the relationship between outcome and covariates is separated from estimation of the treatment effect, circumventing the potential for selection bias associated with standard analysis of covariance methods. We demonstrate that such objective variable selection techniques combined with this framework can identify key variables and lead to unbiased and efficient inference on the treatment effect. A critical issue in finite samples is validity of estimators of uncertainty, such as standard errors and confidence intervals for the treatment effect. We propose an approach to estimation of sampling variation of estimated treatment effect and show its superior performance relative to that of existing methods.
PMCID: PMC3855673  PMID: 22733628
covariate adjustment; false selection rate control; oracle property; semiparametric treatment effect estimation; shrinkage methods; variable selection
23.  Switching HIV Treatment in Adults Based on CD4 Count Versus Viral Load Monitoring: A Randomized, Non-Inferiority Trial in Thailand 
PLoS Medicine  2013;10(8):e1001494.
Using a randomized controlled trial, Marc Lallemant and colleagues ask if a CD4-based monitoring and treatment switching strategy provides a similar clinical outcome compared to the standard viral load-based strategy for adults with HIV in Thailand.
Please see later in the article for the Editors' Summary
Viral load (VL) is recommended for monitoring the response to highly active antiretroviral therapy (HAART) but is not routinely available in most low- and middle-income countries. The purpose of the study was to determine whether a CD4-based monitoring and switching strategy would provide a similar clinical outcome compared to the standard VL-based strategy in Thailand.
Methods and Findings
The Programs for HIV Prevention and Treatment (PHPT-3) non-inferiority randomized clinical trial compared a treatment switching strategy based on CD4-only (CD4) monitoring versus viral-load (VL). Consenting participants were antiretroviral-naïve HIV-infected adults (CD4 count 50–250/mm3) initiating non-nucleotide reverse transcriptase inhibitor (NNRTI)-based therapy. Randomization, stratified by site (21 public hospitals), was performed centrally after enrollment. Clinicians were unaware of the VL values of patients randomized to the CD4 arm. Participants switched to second-line combination with confirmed CD4 decline >30% from peak (within 200 cells from baseline) in the CD4 arm, or confirmed VL >400 copies/ml in the VL arm. Primary endpoint was clinical failure at 3 years, defined as death, new AIDS-defining event, or CD4 <50 cells/mm3. The 3-year Kaplan-Meier cumulative risks of clinical failure were compared for non-inferiority with a margin of 7.4%. In the intent to treat analysis, data were censored at the date of death or at last visit. The secondary endpoints were difference in future-drug-option (FDO) score, a measure of resistance profiles, virologic and immunologic responses, and the safety and tolerance of HAART. 716 participants were randomized, 356 to VL monitoring and 360 to CD4 monitoring. At 3 years, 319 participants (90%) in VL and 326 (91%) in CD4 were alive and on follow-up. The cumulative risk of clinical failure was 8.0% (95% CI 5.6–11.4) in VL versus 7.4% (5.1–10.7) in CD4, and the upper-limit of the one-sided 95% CI of the difference was 3.4%, meeting the pre-determined non-inferiority criterion. Probability of switch for study criteria was 5.2% (3.2–8.4) in VL versus 7.5% (5.0–11.1) in CD4 (p = 0.097). Median time from treatment initiation to switch was 11.7 months (7.7–19.4) in VL and 24.7 months (15.9–35.0) in CD4 (p = 0.001). The median duration of viremia >400 copies/ml at switch was 7.2 months (5.8–8.0) in VL versus 15.8 months (8.5–20.4) in CD4 (p = 0.002). FDO scores were not significantly different at time of switch. No adverse events related to the monitoring strategy were reported.
The 3-year rates of clinical failure and loss of treatment options did not differ between strategies although the longer-term consequences of CD4 monitoring would need to be investigated. These results provide reassurance to treatment programs currently based on CD4 monitoring as VL measurement becomes more affordable and feasible in resource-limited settings.
Trial registration NCT00162682
Please see later in the article for the Editors' Summary
Editors' Summary
About 34 million people (most of them living in low-and middle-income countries) are currently infected with HIV, the virus that causes AIDS. HIV infection leads to the destruction of immune system cells (including CD4 cells, a type of white blood cell), leaving infected individuals susceptible to other infections. Early in the AIDS epidemic, most HIV-infected individuals died within 10 years of infection. Then, in 1996, highly active antiretroviral therapy (HAART)—combined drugs regimens that suppress viral replication and allow restoration of the immune system—became available. For people living in affluent countries, HIV/AIDS became a chronic condition but, because HAART was expensive, HIV/AIDS remained a fatal illness for people living in resource-limited countries. In 2003, the international community declared HIV/AIDS a global health emergency and, in 2006, it set the target of achieving universal global access to HAART by 2010. By the end of 2011, 8 million of the estimated 14.8 million people in need of HAART in low- and middle-income countries were receiving treatment.
Why Was This Study Done?
At the time this trial was conceived, national and international recommendations were that HIV-positive individuals should start HAART when their CD4 count fell below 200 cells/mm3 and should have their CD4 count regularly monitored to optimize HAART. In 2013, the World Health Organization (WHO) recommendations were updated to promote expanded eligibility for HAART with a CD4 of 500 cells/mm3 or less for adults, adolescents, and older children although priority is given to individuals with CD4 count of 350 cells/mm3 or less. Because HIV often becomes resistant to first-line antiretroviral drugs, WHO also recommends that viral load—the amount of virus in the blood—should be monitored so that suspected treatment failures can be confirmed and patients switched to second-line drugs in a timely manner. This monitoring and switching strategy is widely used in resource-rich settings, but is still very difficult to implement for low- and middle-income countries where resources for monitoring are limited and access to costly second-line drugs is restricted. In this randomized non-inferiority trial, the researchers compare the performance of a CD4-based treatment monitoring and switching strategy with the standard viral load-based strategy among HIV-positive adults in Thailand. In a randomized trial, individuals are assigned different interventions by the play of chance and followed up to compare the effects of these interventions; a non-inferiority trial investigates whether one treatment is not worse than another.
What Did the Researchers Do and Find?
The researchers assigned about 700 HIV-positive adults who were beginning HAART for the first time to have their CD4 count (CD4 arm) or their CD4 count and viral load (VL arm) determined every 3 months. Participants were switched to a second-line therapy if their CD4 count declined by more than 30% from their peak CD4 count (CD4 arm) or if a viral load of more than 400 copies/ml was recorded (VL arm). The 3-year cumulative risk of clinical failure (defined as death, a new AIDS-defining event, or a CD4 count of less than 50 cells/mm3) was 8% in the VL arm and 7.4% in the CD4 arm. This difference in clinical failure risk met the researchers' predefined criterion for non-inferiority. The probability of a treatment switch was similar in the two arms, but the average time from treatment initiation to treatment switch and the average duration of a high viral load after treatment switch were both longer in the CD4 arm than in the VL arm. Finally, the future-drug-option score, a measure of viral drug resistance profiles, was similar in the two arms at the time of treatment switch.
What Do These Findings Mean?
These findings suggest that, in Thailand, a CD4 switching strategy is non-inferior in terms of clinical outcomes among HIV-positive adults 3 years after beginning HAART when compared to the recommended viral load-based switching strategy and that there is no difference between the strategies in terms of viral suppression and immune restoration after 3-years follow-up. Importantly, however, even though patients in the CD4 arm spent longer with a high viral load than patients in the VL arm, the emergence of HIV mutants resistant to antiretroviral drugs was similar in the two arms. Although these findings provide no information about the long-term outcomes of the two monitoring strategies and may not be generalizable to routine care settings, they nevertheless provide reassurance that using CD4 counts alone to monitor HAART in HIV treatment programs in resource-limited settings is an appropriate strategy to use as viral load measurement becomes more affordable and feasible in these settings.
Additional Information
Please access these websites via the online version of this summary at
The World Health Organization provides information on all aspects of HIV/AIDS (in several languages); its 2010 recommendations for antiretroviral therapy for HIV infection in adults and adolescents are available as well as the June 2013 Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach
The 2012 UNAIDS World AIDS Day Report provides up-to-date information about the AIDS epidemic and efforts to halt it
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
NAM/aidsmap provides basic information about HIV/AIDS and summaries of recent research findings on HIV care and treatment
Information is available from Avert, an international AIDS charity on many aspects of HIV/AIDS, including information on the global HIV/AIDS epidemic, on HIV and AIDS in Thailand, on universal access to AIDS treatment, and on starting, monitoring and switching HIV treatment (in English and Spanish)
The UK National Health Service Choices website provides information (including personal stories) about HIV and AIDS
More information about this trial (the PHPT-3 trial) is available
Patient stories about living with HIV/AIDS are available through Avert; the nonprofit website Healthtalkonline also provides personal stories about living with HIV, including stories about HIV treatment
PMCID: PMC3735458  PMID: 23940461
24.  Endovascular Radiofrequency Ablation for Varicose Veins 
Executive Summary
The objective of the MAS evidence review was to conduct a systematic review of the available evidence on the safety, effectiveness, durability and cost–effectiveness of endovascular radiofrequency ablation (RFA) for the treatment of primary symptomatic varicose veins.
The Ontario Health Technology Advisory Committee (OHTAC) met on August 26th, 2010 to review the safety, effectiveness, durability, and cost-effectiveness of RFA for the treatment of primary symptomatic varicose veins based on an evidence-based review by the Medical Advisory Secretariat (MAS).
Clinical Condition
Varicose veins (VV) are tortuous, twisted, or elongated veins. This can be due to existing (inherited) valve dysfunction or decreased vein elasticity (primary venous reflux) or valve damage from prior thrombotic events (secondary venous reflux). The end result is pooling of blood in the veins, increased venous pressure and subsequent vein enlargement. As a result of high venous pressure, branch vessels balloon out leading to varicosities (varicose veins).
Symptoms typically affect the lower extremities and include (but are not limited to): aching, swelling, throbbing, night cramps, restless legs, leg fatigue, itching and burning. Left untreated, venous reflux tends to be progressive, often leading to chronic venous insufficiency (CVI). A number of complications are associated with untreated venous reflux: including superficial thrombophlebitis as well as variceal rupture and haemorrhage. CVI often results in chronic skin changes referred to as stasis dermatitis. Stasis dermatitis is comprised of a spectrum of cutaneous abnormalities including edema, hyperpigmentation, eczema, lipodermatosclerosis and stasis ulceration. Ulceration represents the disease end point for severe CVI. CVI is associated with a reduced quality of life particularly in relation to pain, physical function and mobility. In severe cases, VV with ulcers, QOL has been rated to be as bad or worse as other chronic diseases such as back pain and arthritis.
Lower limb VV is a very common disease affecting adults – estimated to be the 7th most common reason for physician referral in the US. There is a very strong familial predisposition to VV. The risk in offspring is 90% if both parents affected, 20% when neither affected and 45% (25% boys, 62% girls) if one parent affected. The prevalence of VV worldwide ranges from 5% to 15% among men and 3% to 29% among women varying by the age, gender and ethnicity of the study population, survey methods and disease definition and measurement. The annual incidence of VV estimated from the Framingham Study was reported to be 2.6% among women and 1.9% among men and did not vary within the age range (40-89 years) studied.
Approximately 1% of the adult population has a stasis ulcer of venous origin at any one time with 4% at risk. The majority of leg ulcer patients are elderly with simple superficial vein reflux. Stasis ulcers are often lengthy medical problems and can last for several years and, despite effective compression therapy and multilayer bandaging are associated with high recurrence rates. Recent trials involving surgical treatment of superficial vein reflux have resulted in healing and significantly reduced recurrence rates.
Endovascular Radiofrequency Ablation for Varicose Veins
RFA is an image-guided minimally invasive treatment alternative to surgical stripping of superficial venous reflux. RFA does not require an operating room or general anaesthesia and has been performed in an outpatient setting by a variety of medical specialties including surgeons and interventional radiologists. Rather than surgically removing the vein, RFA works by destroying or ablating the refluxing vein segment using thermal energy delivered through a radiofrequency catheter.
Prior to performing RFA, color-flow Doppler ultrasonography is used to confirm and map all areas of venous reflux to devise a safe and effective treatment plan. The RFA procedure involves the introduction of a guide wire into the target vein under ultrasound guidance followed by the insertion of an introducer sheath through which the RFA catheter is advanced. Once satisfactory positioning has been confirmed with ultrasound, a tumescent anaesthetic solution is injected into the soft tissue surrounding the target vein along its entire length. This serves to anaesthetize the vein, insulate the heat from damaging adjacent structures, including nerves and skin and compresses the vein increasing optimal contact of the vessel wall with the electrodes or expanded prongs of the RF device. The RF generator is then activated and the catheter is slowly pulled along the length of the vein. At the end of the procedure, hemostasis is then achieved by applying pressure to the vein entry point.
Adequate and proper compression stockings and bandages are applied after the procedure to reduce the risk of venous thromboembolism and to reduce postoperative bruising and tenderness. Patients are encouraged to walk immediately after the procedure. Follow-up protocols vary, with most patients returning 1 to 3 weeks later for an initial follow-up visit. At this point, the initial clinical result is assessed and occlusion of the treated vessels is confirmed with ultrasound. Patients often have a second follow-up visit 1 to 3 months following RFA at which time clinical evaluation and ultrasound are repeated. If required, additional procedures such as phlebectomy or sclerotherapy may be performed during the RFA procedure or at any follow-up visits.
Regulatory Status
The Closure System® radiofrequency generator for endovascular thermal ablation of varicose veins was approved by Health Canada as a class 3 device in March 2005, registered under medical device license 67865. The RFA intravascular catheter was approved by Health Canada in November 2007 for the ClosureFast catheter, registered under medical device license 16574. The Closure System® also has regulatory approvals in Australia, Europe (CE Mark) and the United States (FDA clearance). In Ontario, RFA is not an insured service and is currently being introduced in private clinics.
Literature Search
The MAS evidence–based review was performed to support public financing decisions. The literature search was performed on March 9th, 2010 using standard bibliographic databases for studies published up until March, 2010.
Inclusion Criteria
English language full-reports and human studies Original reports with defined study methodologyReports including standardized measurements on outcome events such as technical success, safety, effectiveness, durability, quality of life or patient satisfaction Reports involving RFA for varicose veins (great or small saphenous veins)Randomized controlled trials (RCTs), systematic reviews and meta-analysesCohort and controlled clinical studies involving ≥ 1 month ultrasound imaging follow-up
Exclusion Criteria
Non systematic reviews, letters, comments and editorials Reports not involving outcome events such as safety, effectiveness, durability, or patient satisfaction following an intervention with RFAReports not involving interventions with RFA for varicose veinsPilot studies or studies with small samples (< 50 subjects)
Summary of Findings
The MAS evidence search on the safety and effectiveness of endovascular RFA ablation of VV identified the following evidence: three HTAs, nine systematic reviews, eight randomized controlled trials (five comparing RFA to surgery and three comparing RFA to ELT), five controlled clinical trials and fourteen cohort case series (four were multicenter registry studies).
The majority (12⁄14) of the cohort studies (3,664) evaluating RFA for VV involved treatment with first generation RFA catheters and the great saphenous vein (GSV) was the target vessel in all studies. Major adverse events were uncommonly reported and the overall pooled major adverse event rate extracted from the cohort studies was 2.9% (105⁄3,664). Imaging defined treatment effectiveness of vein closure rates were variable ranging from 68% to 96% at post-operative follow-up. Vein ablation rate at 6-month follow-up was reported in four studies with rates close to 90%. Only one study reported vein closure rates at 2 years but only for a minority of the eligible cases. The two studies reporting on RFA ablation with the more efficient second generation catheters involved better follow-up and reported higher ablation rates close to 100% at 6-month follow-up with no major adverse events. A large prospective registry trial that recruited over 1,000 patients at thirty-four largely European centers reported on treatment success in six overlapping reports on selected patient subgroups at various follow-up points up to 5 year. However, the follow-up for eligible recruited patients at all time points was low resulting in inadequate estimates of longer term treatment efficacy.
The overall level of evidence of randomized trials comparing RFA with surgical ligation and vein stripping (n = 5) was graded as low to moderate. In all trials RFA ablation was performed with first generation catheters in the setting of the operating theatre under general anaesthesia, usually without tumescent anaesthesia. Procedure times were significantly longer after RFA than surgery. Recovery after treatment was significantly quicker after RFA both with return to usual activity and return to work with on average a one week less of work loss. Major adverse events occurring after surgery were higher [(1.8% (n=4) vs. 0.4% (n = 1) than after RFA but not significantly. Treatment effectiveness measured by imaging defined vein absence or vein closure was comparable in the two treatment groups. Significant improvements in vein symptoms and quality of life over baseline were reported for both treatment groups. Improvements in these outcomes were significantly greater in the RFA group than the surgery group in the peri-operative period but not in later follow-up. Follow-up in these trials was inadequate to evaluate longer term recurrence for either treatment. Patient satisfaction was reported to be high for both treatments but was higher for RFA.
The studies comparing endovascular treatment approaches for VV (RFA and ELT) were more limited. Three RCT studies compared RFA (two with the second generation catheter) with ELT but mainly focused on peri-procedural outcomes such as pain, complications and recovery. Vein ablation rates were not evaluated in the trials, except for one small trial involving bilateral VV. Pain responses in patients undergoing ablation were extremely variable and up to 2 weeks, mean pain levels were significantly less with RFA than ELT ablation but differences were not significant at one month. Recovery, evaluated as return to usual activity or return to work, however, was similar in the treatment groups. Vein symptom and QOL improvements were improved in both groups but were significantly better in the RFA group than the ELT group at 2 weeks, but not at one month. Vein ablation rates were evaluated in several controlled clinical studies comparing the treatments between centers or within centers between individuals or over time. Comparisons in these studies were inconsistent with vein ablation rates for RFA reported to be similar to, higher than and lower than those with ELT.
Economic Analysis
RFA and surgical vein stripping, the main comparator reimbursed by the public system, are comparable in clinical benefits. Hence a cost-analysis was conducted to identify the differences in resources and costs between both procedures and a budgetary impact analysis (BIA) was conducted to project costs over a 5- year period in the province of Ontario. The target population of this economic analysis was patients with symptomatic varicose veins and the primary analytic perspective was that of the Ministry of Health and Long-Term Care.
The average case cost (based on Ontario hospital costs and medical resources) for surgical vein stripping was estimated to be $1,799. In order to calculate a procedural cost for RFA it was assumed that the hospital cost and physician labour fees, excluding anaesthesia and surgical assistance, were the same as vein stripping surgery. The manufacturer also provided details on the generator with a capital cost of $27,500 and a lifespan of 5 years and the disposables (catheter, sheath, guidewire) with a cost of $673 per case. The average case cost for RFA was therefore estimated to be $1,356. One-way sensitivity analysis was also conducted with hospital cost of RFA varied to 60% that of vein stripping surgery (average cost per case = $627.08) to calculate an impact to the province.
Historical volumes of vein stripping surgeries in Ontario were used to project surgeries in a linear fashion up to five years into the future. Volumes for RFA and ELT were calculated based on share capture from the surgery market based on discussion with clinical expert opinion and existing private data based on discussion with the manufacturer. RFA is expected to compete with ELT and capture some of the market. If ELT is reimbursed by the public sector then numbers will continue to increase from previous private data and share capture from the conventional surgical treatment market. Therefore, RFA cases will also increase since it will be capturing a share of the ELT market. A budget impact to the province was then calculated by multiplying volumes by the cost of the procedure.
RFA is comparable in clinical benefits to vein stripping surgery. It has the extra upfront cost of the generator and cost per case for disposables but does not require an operating theater, anaesthetist or surgical assistant fees. The impact to the province is expected to be 5 M by Year 5 with the introduction of new ELT and RFA image guided endovascular technologies and existing surgery for varicose veins.
The conclusions on the comparative outcomes between endovascular RFA and surgical ligation and saphenous vein stripping and between endovascular RFA and laser ablation for VV treatment are summarized in the table below (ES Table 1).
Outcome comparisons of RFA vs. surgery and RFA vs ELT for varicose veins
ELT refers to endovascular laser ablation; RFA, radiofrequency ablation
The outcomes of the evidence-based review on these treatments for VV based on different perspectives are summarized below:
RFA First versus Second Generation Catheters and Segmental Ablation
Ablation with second generation catheters and segmental ablation offered technical advantages with improved ease and significant decreases in procedure time. RFA ablation with second generation catheters is also no longer restricted to smaller (< 12 mm diameter) saphenous veins. The safety profile with the new device and method of energy delivery is as good as or improved over the first generation device. No major adverse events were reported in two multicenter prospective cohort studies in 6 month follow-up with over 500 patients. Post-operative complications such as bruising and pain were significantly less with RFA ablation with second generation catheters than ELT in two RCT trials.RFA treatment with second generation catheters has ablation rates that are higher than with first generation catheters and are more comparable with the consistently high rates of ELT.
Endovascular RFA versus Surgery
RFA has a quicker recovery attributable to decreased pain and lower minor complications.RFA, in the short term was comparable to surgery in treatment effectiveness as assessed by imaging defined anatomic outcomes such as vein closure, flow or reflux. Other treatment outcomes such as symptomatic relief and HRQOL were significantly improved in both groups and between group differences in the early peri-operative period were likely influenced by pain experiences. Longer term follow-up was inadequate to evaluate recurrence after either treatment.Patient satisfaction was high after both treatments but was higher for RFA than surgery.
Endovascular RFA versus ELT
RFA has significantly less post-operative pain than ELT but differences were not significant when pain was adjusted for analgesic use and pain differences between groups did not persist at 1 month follow-up.Treatment effectiveness, measured as symptom relief and QOL improvement were similar between the endovascular treatments in the short term (within 1 month) Treatment effectiveness measured as imaging defined vein ablation was not measured in any RCT trials (only for bilateral VV disease) and results were inconsistently reported in observational trials.Longer term follow-up was not available to assess recurrence after either treatment.
System Outcomes – RFA Replacing Surgery or Competing with ELT
RFA may offer system advantages in that the treatment can be offered by several medical specialties in outpatient settings and because it does not require an operating theatre or general anaesthesia. The treatment may result in decanting of patients from OR with decreased pre-surgical investigations, demand on anaesthetists’ time, hospital stay and wait time for VV treatment. It may also provide more reliable outpatient scheduling. Procedure costs may be less for endovascular approaches than surgery but the budget impact may be greater with insurance of RFA because of the transfer of cases from the private market to the public payer system.Competition between RFA and ELT endovascular approaches is likely to continue to stimulate innovation and technical changes to advance patient care and result in competitive pricing.
PMCID: PMC3377553  PMID: 23074413
25.  Mixtures of Varying Coefficient Models for Longitudinal Data with Discrete or Continuous Nonignorable Dropout 
Biometrics  2004;60(4):854-864.
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient random effects model conditional on dropout time, where the regression coefficients depend on dropout time through unspecified nonparametric functions that are estimated using step functions when dropout time is discrete (e.g., for panel data) and using smoothing splines when dropout time is continuous. Inference under the proposed semiparametric model is hence more robust than the parametric conditional linear model. The unconditional distribution of the repeated measures is a mixture over the dropout distribution. We show that estimation in the semiparametric varying coefficient mixture model can proceed by fitting a parametric mixed effects model and can be carried out on standard software platforms such as SAS. The model is used to analyze data from a recent AIDS clinical trial and its performance is evaluated using simulations.
PMCID: PMC2677904  PMID: 15606405
Clinical trials; Equivalence trial; Linear mixed model; Missing data; Nonignorable dropout; Pattern-mixture model; Pediatric AIDS; Selection bias; Smoothing splines

Results 1-25 (1518863)