PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (837061)

Clipboard (0)
None

Related Articles

1.  Polyelectrolyte Multilayer Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering 
Controlling the bulk and surface properties of materials is a real challenge for bioengineers working in the fields of biomaterials, tissue engineering and biophysics. The layer-by-layer (LbL) deposition method, introduced 20 years ago, consists in the alternate adsorption of polyelectrolytes that self-organize on the material’s surface, leading to the formation of polyelectrolyte multilayer (PEM) films.1 Because of its simplicity and versatility, the procedure has led to considerable developments of biological applications within the past 5 years. In this review, we focus our attention on the design of PEM films as surface coatings for applications in the field of physical properties that have emerged as being key points in relation to biological processes. The numerous possibilities for adjusting the chemical, physical, and mechanical properties of PEM films have fostered studies on the influence of these parameters on cellular behaviors. Importantly, PEM have emerged as a powerful tool for the immobilization of biomolecules with preserved bioactivity.
doi:10.1021/cm2032459
PMCID: PMC4112380  PMID: 25076811
layer-by-layer; polysaccharides; growth factors; cell adhesion cell differentiation; biomaterials; regenerative medicine
2.  Tunable Resistive m-dPEG Acid Patterns on Polyelectrolyte Multilayers at Physiological Conditions: Template for Directed Deposition of Biomacromolecules 
This paper describes a new class of salt-responsive poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) on top of polyelectrolyte multilayer (PEMs) films. PEM surfaces with poly(diallyldimethylammonium chloride) as the topmost layer are chemically patterned by microcontact printing (μCP) oligomeric PEG molecules with an activated carboxylic acid terminal group (m-dPEG acid). The resistive m-d-poly(ethylene glycol) (m-dPEG) acid molecules on the PEMs films were subsequently removed from the PEM surface with salt treatment, thus converting the nonadhesive surfaces into adhesive surfaces. The resistive PEG patterns facilitate the directed deposition of various macromolecules such as polymers, dyes, colloidal particles, proteins, liposomes, and nucleic acids. Further, these PEG patterns act as a universal resist for different types of cells (e.g., primary cells, cell lines), thus permitting more flexibility in attaching a wide variety of cells to material surfaces. The patterned films were characterized by optical microscopy and atomic force microscopy (AFM). The PEG patterns were removed from the PEM surface at certain salt conditions without affecting the PEM films underneath the SAMs. Removal of the PEG SAMs and the stability of the PEM films underneath it were characterized with ellipsometry and optical microscopy. Such salt- and pH-responsive surfaces could lead to significant advances in the fields of tissue engineering, targeted drug delivery, materials science, and biology.
doi:10.1021/la702925r
PMCID: PMC4040536  PMID: 18052083
3.  3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes 
PLoS ONE  2010;5(11):e15456.
Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro.
doi:10.1371/journal.pone.0015456
PMCID: PMC2980491  PMID: 21103392
4.  Osteoconductive Protamine-based Polyelectrolyte Multilayer Functionalized Surfaces 
Biomaterials  2011;32(30):7491-7502.
The integration of orthopedic implants with host bone presents a major challenge in joint arthroplasty, spinal fusion and tumor reconstruction. The cellular microenvironment can be programmed via implant surface functionalization allowing direct modulation of osteoblast adhesion, proliferation, and differentiation at the implant-bone interface. The development of layer-by-layer assembled polyelectrolyte multilayer (PEM) architectures has greatly expanded our ability to fabricate intricate nanometer to micron scale thin film coatings that conform to complex implant geometries. The in vivo therapeutic efficacy of thin PEM implant coatings for numerous biomedical applications has previously been reported. We have fabricated protamine-based PEM thin films that support the long-term proliferation and differentiation of pre-osteoblast cells on non-cross-linked film coated surfaces. These hydrophilic PEM functionalized surfaces with nanometer-scale roughness facilitated increased deposition of calcified matrix by osteoblasts in vitro, and thus offer the potential to enhance implant integration with host bone. The coatings can make an immediate impact in the osteogenic culture of stem cells and assessment of the osteogenic potential of new therapeutic factors.
doi:10.1016/j.biomaterials.2011.06.032
PMCID: PMC3218099  PMID: 21764442
5.  Multi-functional polyelectrolyte multilayer films: combining mechanical resistance, biodegradability and bioactivity 
Biomacromolecules  2007;8(1):139-145.
Cross-linked polyelectrolyte multilayer films (CL PEM) have an increased rigidity and are mechanically more resistant than native (e.g. uncrosslinked) films. However, they are still biodegradable, which make them interesting candidates for biomedical applications. In this study, CL PEM films have been explored for their multifunctional properties as i) mechanically resistant ii) biodegradable and iii) bioactive films. Toward this end, we investigated drug loading into CL chitosan/hyaluronan (CHI/HA) and poly(L-lysine)/hyaluronan (PLL/HA) films by simple diffusion of the drugs. Sodium diclofenac and paclitaxel were chosen as model drugs and were successfully loaded into the films. The effect of varying the number of layers in the (CHI/HA) films as well as the cross-linker concentration on diclofenac loading were studied. Diclofenac was released from the film in about ten hours. Paclitaxel was also found to diffuse within CL films. Its activity was maintained after loading in the CL films and cellular viability could be reduced by about 55% over three days. Such simple approach may be applied to other types of cross-linked films and to other drugs. These results prove that it is possible to design multifunctional multilayer films that combine mechanical resistance, biodegradability and bioactivity properties into a single PEM architecture.
doi:10.1021/bm060765k
PMCID: PMC2535908  PMID: 17206799
6.  Surface Functionalization of Hyaluronic Acid Hydrogels by Polyelectrolyte Multilayer Films 
Biomaterials  2011;32(24):5590-5599.
Hyaluronic acid (HA), an anionic polysaccharide, is one of the major components of the natural extracellular matrix (ECM). Although HA has been widely used for tissue engineering applications, it does not support cell attachment and spreading and needs chemical modification to support cellular adhesion. Here, we present a simple approach to functionalize photocrosslinked HA hydrogels by deposition of poly(L-lysine) (PLL) and HA multilayer films made by the layer-by-layer (LbL) technique. PLL/HA multilayer film formation was assessed by using fluorescence microscopy, contact angle measurements, cationic dye loading and confocal microscopy. The effect of polyelectrolyte multilayer film formation on the physicochemical and mechanical properties of hydrogels revealed polyelectrolyte diffusion inside the hydrogel pores, increased hydrophobicity of the surface, reduced equilibrium swelling, and reduced compressive moduli of the modified hydrogels. Furthermore, NIH-3T3 fibroblasts seeded on the surface showed improved cell attachment and spreading on the multilayer functionalized hydrogels. Thus, modification of HA hydrogel surfaces with multilayer films affected their physicochemical properties and improved cell adhesion and spreading on these surfaces. This new hydrogel/PEM composite system may offer possibilities for various biomedical and tissue engineering applications, including growth factor delivery and co-culture systems.
doi:10.1016/j.biomaterials.2011.04.030
PMCID: PMC3109133  PMID: 21571364
Hydrogels; Hyaluronic acid; Photocrosslinked; Surface functionalization; Layer-by-layer; Polyelectrolyte diffusion; Cell adhesion
7.  Gradients of physical and biochemical cues on polyelectrolyte multilayer films generated via microfluidics 
Lab on a chip  2013;13(8):1562-1570.
The cell microenvironment is a complex and anisotropic matrix composed of a number of physical and biochemical cues that control cellular processes. A current challenge in biomaterials is the engineering of biomimetic materials which present spatially controlled physical and biochemical cues. The layer-by-layer assembly of polyelectrolyte multilayers (PEM) has been demonstrated to be a promising candidate for a biomaterial mimicking the native extracellular matrix. In this work, gradients of biochemical and physical cues were generated on PEM films composed of hyaluronan (HA) and poly(l-lysine) (PLL) using a microfluidic device. As a proof of concept, four different types of surface concentration gradients adsorbed onto the films were generated. These included surface concentration gradients of fluorescent PLL, fluorescent microbeads, a cross-linker, and one consisting of a polyelectrolyte grafted with a cell adhesive peptide. In all cases, reproducible centimeter-long linear gradients were obtained. Fluorescence microscopy, Fourier transform infrared spectroscopy and atomic force microscopy were used to characterize these gradients. Cell responses to the stiffness gradient and to the peptide gradient were studied. Pre-osteoblastic cells were found to adhere and spread more along the stiffness gradient, which varied linearly from 200 kPa–600 kPa. Myoblast cell spreading also increased throughout the length of the increasing RGD-peptide gradient. This work demonstrates a simple method to modify PEM films with concentration gradients of non-covalently bound biomolecules and with gradients in stiffness. These results highlight the potential of this technique to efficiently and quickly determine the optimal biochemical and mechanical cues necessary for specific cellular processes.
doi:10.1039/c3lc41407h
PMCID: PMC4155072  PMID: 23440074
8.  Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings 
Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants.
doi:10.1098/rsif.2013.0070
PMCID: PMC3673146  PMID: 23635490
titanium coating; extracellular matrix; layer-by-layer; covalent immobilization; osteogenic activity
9.  Engineering Muscle Tissues on Microstructured Polyelectrolyte Multilayer Films 
Tissue Engineering. Part A  2012;18(15-16):1664-1676.
The use of surface coating on biomaterials can render the original substratum with new functionalities that can improve the chemical, physical, and mechanical properties as well as enhance cellular cues such as attachment, proliferation, and differentiation. In this work, we combined biocompatible polydimethylsiloxane (PDMS) with a biomimetic polyelectrolyte multilayer (PEM) film made of poly(L-lysine) and hyaluronic acid (PLL/HA) for skeletal muscle tissue engineering. By microstructuring PDMS in grooves of a different width (5, 10, 30, and 100 μm) and by modulating the stiffness of the (PLL/HA) films, we guided skeletal muscle cell differentiation into myotubes. We found optimal conditions for both the formation of parallel-oriented myotubes and their maturation. Significantly, the myoblasts were collectively prealigned to the grooves before their differentiation. Before fusion, the highest aspect ratio and orientation of nuclei were observed for the 5 and 10 μm wide micropatterns. The formation of myotubes was observed regardless of the size of the micropatterns, and we found that their typical width was 10–12 μm. Their maturation was characterized by the immunolabeling of type II isomyosin. The amount of myosin striation was not affected by the topography, except for the 5 μm wide micropatterns. We highlighted the spatial constraints that led to an important nuclei deformation and further impairment of maturation within the 5 μm grooves. Altogether, our results show that the PEM film combined with PDMS is a powerful tool that is used for skeletal muscle engineering. This work opens perspectives for the development of skeletal muscle tissue in contact with films containing bioactive peptides or growth factors as well as for the study of pathogenic myotubes.
doi:10.1089/ten.tea.2012.0079
PMCID: PMC3419855  PMID: 22607460
10.  The Design of In Vitro Liver Sinusoid Mimics Using Chitosan–Hyaluronic Acid Polyelectrolyte Multilayers 
Tissue Engineering. Part A  2010;16(9):2731-2741.
Interactions between hepatocytes and liver sinusoidal endothelial cells (LSECs) are essential for the development and maintenance of hepatic phenotypic functions. We report the assembly of three-dimensional liver sinusoidal mimics comprised of primary rat hepatocytes, LSECs, and an intermediate chitosan–hyaluronic acid polyelectrolyte multilayer (PEM). The height of the PEMs ranged from 30 to 55 nm and exhibited a shear modulus of ∼100 kPa. Hepatocyte–PEM cellular constructs exhibited stable urea and albumin production over a 7-day period, and these values were either higher or similar to cells cultured in a collagen sandwich. This is of significance because the thickness of a collagen gel is ∼1000-fold higher than the height of the chitosan–hyaluronic acid PEM. In the hepatocyte–PEM–LSEC liver-mimetic cellular constructs, LSEC phenotype was maintained, and these cultures exhibited stable urea and albumin production. CYP1A1/2 activity measured over a 7-day period was significantly higher in the hepatocyte–PEM–LSEC constructs than in collagen sandwich cultures. A 16-fold increase in CYP1A1/2 activity was observed for hepatocyte–PEM–10,000 LSEC samples, thereby suggesting that interactions between hepatocytes and LSECs are critical in enhancing the detoxification capability in hepatic cultures in vitro.
doi:10.1089/ten.tea.2009.0695
PMCID: PMC2928042  PMID: 20491586
11.  Secondary structure of rhBMP-2 in a protective biopolymeric carrier material 
Biomacromolecules  2012;13(11):3620-3626.
Efficient delivery of growth factors is one of the great challenges of tissue engineering. Polyelectrolyte multilayer films (PEM) made of biopolymers have recently emerged as an interesting carrier for delivering recombinant human bone morphogenetic protein 2 (rhBMP-2 noted here BMP-2) to cells in a matrix-bound manner. We recently showed that PEM made of poly(L-lysine) and hyaluronan (PLL/HA) can retain high and tunable quantities of BMP-2 and can deliver it to cells to induce their differentiation in osteoblasts. Here, we investigate quantitatively by Fourier Transform Infrared spectroscopy (FTIR) the secondary structure of BMP-2 in solution as well as trapped in a biopolymeric thin film. We reveal that the major structural elements of BMP-2 in solution are intramolecular β-sheets and unordered structures as well as α-helices. Furthermore, we studied the secondary structure of rhBMP-2 trapped in hydrated films and in dry films since drying is an important step for future applications of these bioactive films onto orthopedic biomaterials. We demonstrate that the structural elements were preserved when BMP-2 was trapped in the biopolymeric film in hydrated conditions and, to a lesser extent, in dry state. Importantly, its bioactivity was maintained after drying of the film. Our results appear highly promising for future applications of these films as coatings of biomedical materials, to deliver bioactive proteins while preserving their bioactivity upon storage in dry state.
doi:10.1021/bm3010808
PMCID: PMC4111513  PMID: 22967015
BMP; secondary structure; protein storage; bioactivity; polymeric film; hyaluronan
12.  Layer-by-Layer Assembly of DNA- and Protein-Containing Films on Microneedles for Drug Delivery to the Skin 
Biomacromolecules  2010;11(11):3136-3143.
Microneedle patches contain micron-scale needles coated with bioactive agents for minimally invasive drug delivery to the skin. In this study, we introduce layer-by-layer approaches to the fabrication of ultrathin DNA- and protein-containing polyelectrolyte films (or ‘polyelectrolyte multilayers’, PEMs) on the surfaces of stainless steel microneedles. DNA-containing PEMs were fabricated on microneedles by the alternating deposition of plasmid DNA and a hydrolytically degradable poly(β-amino ester). Protein-containing PEMs were fabricated using sodium poly(styrene sulfonate) (SPS) and bovine pancreatic ribonuclease A (RNase A) conjugated to a synthetic protein transduction domain. Layer-by-layer assembly resulted in ultrathin, uniform, and defect-free coatings on the surfaces of the microneedles, as characterized by fluorescence microscopy. These films eroded and thereby released DNA or protein when incubated in saline or when inserted into porcine cadaver skin, and deposited DNA or protein along the edges of microneedle tracks to depths of ~500 to 600μm. We conclude that PEM-coated microneedles offer a novel and useful approach to the transdermal delivery of DNA- and protein-based therapeutics and could also prove useful in other applications.
doi:10.1021/bm1009443
PMCID: PMC3033977  PMID: 20942396
DNA; layer-by-layer; microneedle patch; protein; skin; transdermal drug delivery
13.  DNA hydrogel-based supercapacitors operating in physiological fluids 
Scientific Reports  2013;3:1282.
DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids.
doi:10.1038/srep01282
PMCID: PMC3573338  PMID: 23412432
14.  Dual Functional Polyelectrolyte Multilayer Coatings for Implants: Permanent Microbicidal Base with Controlled Release of Therapeutic Agents 
Journal of the American Chemical Society  2010;132(50):17840-17848.
Here we present a new bifunctional layer-by-layer (LbL) construct made by combining a permanent microbicidal polyelectrolyte multilayered (PEM) base film with a hydrolytically degradable PEM top film that offers controlled and localized delivery of therapeutics. Two degradable film architectures are presented: 1) bolus release of an antibiotic (gentamicin) to eradicate initial infection at the implant site, or 2) sustained delivery of an anti-inflammatory drug (diclofenac) to cope with inflammation at the site of implantation due to tissue injury. Each degradable film was built on top of a permanent base film that imparts the implantable device surface with microbicidal functionality that prevents the formation of biofilms. Controlled-delivery of gentamicin was demonstrated over hours and diclofenac over days. Both drugs retained their efficacy upon release. The permanent microbicidal base film was biocompatible with A549 epithelial cancer cells and MC3T3-E1 osteoprogenitor cells, while also preventing bacteria attachment from turbid media for the entire duration of the two weeks studied. The microbicidal base film retains its functionality after the biodegradable films have completely degraded. The versatility of these PEM films and their ability to prevent biofilm formation make them attractive as coatings for implantable devices.
doi:10.1021/ja106288c
PMCID: PMC3218101  PMID: 21105659
Layer-by-Layer; Polyelectrolyte multilayer; Microbicidal; Biofilm; Controlled release; Anti-inflammatory; Antibiotic; Coating; Biodegradable
15.  Design and Synthesis of a Fluorescently End-Labeled Poly(β-amino ester): Application to the Characterization of Degradable Polyelectrolyte Multilayers 
We report the synthesis of a fluorescently end-labeled analog of a synthetic and degradable cationic poly(β-amino ester) (PBAE; polymer 1) used in past studies for the delivery of DNA and the layer-by-layer assembly of erodible polyelectrolyte multilayers (PEMs). The synthesis of an analog of polymer 1 having acrylate functionalized end groups provided a platform for the introduction of fluorescent labels by post-polymerization conjugate addition of amine-functionalized fluorophores. This approach enabled the synthesis of fluorescently end-labeled polymer (polymer 1FL) with molecular weights and polydispersities (Mn = 18,000; PDI ~1.8) similar to those used in past studies for the fabrication of PEMs using polymer 1. Layer-by-layer assembly of PEMs using polymer 1FL and poly(styrene sulfonate) enabled characterization of film erosion and, for the first time, direct observation of the release of cationic polymer from these assemblies using fluorescence microscopy and fluorometry. Our results shed new light on the behaviors of the cationic components of these PEMs and could prove useful for the design of thin films for a range of different controlled release applications. Our results also provide new fluorescent cationic polymer probes that could be useful for characterization of the behaviors of PBAEs in other fundamental or applied biotechnological contexts.
doi:10.1002/pola.24578
PMCID: PMC3110734  PMID: 21666772
Cationic polymer; Degradable polymers; Thin films; Polyelectrolytes; Layer-by-layer
16.  Reduction of Intimal Hyperplasia in Injured Rat Arteries Promoted by Catheter Balloons Coated with Polyelectrolyte Multilayers that Contain Plasmid DNA Encoding PKCδ 
Biomaterials  2012;34(1):226-236.
New therapeutic approaches that eliminate or reduce the occurrence of intimal hyperplasia following balloon angioplasty could improve the efficacy of vascular interventions and improve the quality of life of patients suffering from vascular diseases. Here, we report that treatment of arteries using catheter balloons coated with thin polyelectrolyte-based films (‘polyelectrolyte multilayers’, PEMs) can substantially reduce intimal hyperplasia in an in vivo rat model of vascular injury. We used a layer-by-layer (LbL) process to coat the surfaces of inflatable catheter balloons with PEMs composed of nanolayers of a cationic poly(β-amino ester) (polymer 1) and plasmid DNA (pPKCδ) encoding the δ isoform of protein kinase C (PKCδ), a regulator of apoptosis and other cell processes that has been demonstrated to reduce intimal hyperplasia in injured arterial tissue when administered via perfusion using viral vectors. Insertion of balloons coated with polymer 1/pPKCδ multilayers into injured arteries for 20 min resulted in local transfer of DNA and elevated levels of PKCδ expression in the media of treated tissue 3 days after delivery. IFC and IHC analysis revealed these levels of expression to promote downstream cellular processes associated with up-regulation of apoptosis. Analysis of arterial tissue 14 days after treatment revealed polymer 1/pPKCδ-coated balloons to reduce the occurrence of intimal hyperplasia by ~60% compared to balloons coated with films containing empty plasmid vectors. Our results demonstrate the potential therapeutic value of this nanotechnology-based approach to local gene delivery in the clinically important context of balloon-mediated vascular interventions. These PEM-based methods could also prove useful for other in vivo applications that require short-term, surface-mediated transfer of plasmid DNA.
doi:10.1016/j.biomaterials.2012.09.010
PMCID: PMC3483441  PMID: 23069712
Layer-by-Layer; Polyelectrolyte Multilayers; Thin Films; Gene Delivery; Intimal Hyperplasia
17.  Cell Adhesion on Polyelectrolyte Multilayer Coated Polydimethylsiloxane Surfaces with Varying Topographies 
Tissue engineering  2007;13(8):2105-2117.
This article demonstrates that the micro-topography of the surface with respect to the pattern size and pitch influences cell adhesion and proliferation. Extensive research has shown the dependence of cell proliferation on substrate chemistry, but the influence of substrate topography on cell attachment has only recently been appreciated. To evaluate the effect of substrate physical properties (i.e., periodic microstructures) on cell attachment and morphology, we compared the response of several cell types (fibroblasts, HeLa, and primary hepatocytes) cultured on various polydimethylsiloxane (PDMS) patterns. PDMS has been used as an artificial construct to mimic biological structures. Although PDMS is widely used in biomedical applications, membrane technology, and microlithography, it is difficult to maintain cells on PDMS for long periods, and the polymer has proved to be a relatively inefficient substrate for cell adhesion. To improve adhesion, we built polyelectrolyte multilayers (PEMs) on PDMS surfaces to increase surface wettability, thereby improving attachment and spreading of the cells. Micrographs demonstrate the cellular response to physical parameters, such as pattern size and pitch, and suggest that surface topography, in part, regulates cell adhesion and proliferation. Therefore, varying the surface topography may provide a method to influence cell attachment and proliferation for tissue-engineering applications.
doi:10.1089/ten.2006.0151
PMCID: PMC4059019  PMID: 17518734
18.  Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems 
There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications.
PMCID: PMC3781750  PMID: 24198464
nanofilm; polyelectrolyte multilayer; drug delivery; electrostatic layer-by-layer self-assembly; biomedical device; surface modification
19.  Release of DNA from Polyelectrolyte Multilayers Fabricated Using ‘Charge-Shifting’ Cationic Polymers: Tunable Temporal Control and Sequential, Multi-Agent Release 
We report an approach to the design of multilayered polyelectrolyte thin films (or ‘polyelectrolyte multilayers’, PEMs) that can be used to provide tunable control over the release of plasmid DNA (or multiple different DNA constructs) from film-coated surfaces. Our approach is based upon methods for the layer-by-layer assembly of DNA-containing thin films, and exploits the properties of a new class of cationic ‘charge-shifting’ polymers (or amine-functionalized polymers that undergo gradual changes in net charge upon side-chain ester hydrolysis) to provide control over the rates at which these films erode and release DNA. We synthesized two ‘charge-shifting’ polymers (polymers 1 and 2) containing different side chain structures by ring-opening reactions of poly(2-alkenyl azlactone)s with two different tertiary amine functionalized alcohols (2-dimethylaminoethanol and 3-dimethyl-1-propanol, respectively). Subsequent characterization revealed large changes in the rates of side chain ester hydrolysis for these two polymers; whereas the half-life for the hydrolysis of the esters in polymer 1 was ~200 days, the half-life for polymer 2 was ~6 days. We demonstrate that these large differences in side chain hydrolysis make possible the design of PEMs that erode and promote the surface-mediated release of DNA either rapidly (e.g., over ~3 days for films fabricated using polymer 2) or slowly (e.g., over ~1 month for films fabricated using polymer 1). We demonstrate further that it is possible to design films with release profiles that are intermediate to these two extremes by fabricating films using solutions containing different mixtures of these two polymers. This approach can thus expand the usefulness of these two polymers and achieve a broader range of DNA release profiles without the need to synthesize polymers with new structures or properties. Finally, we demonstrate that polymers 1 and 2 can be used to fabricate multilayered films with hierarchical structures that promote the sequential release of two different DNA constructs with separate and distinct release profiles (e.g., the release of a first construct over a period of ~3 days, followed by the sustained release of a second for a period of ~70 days). With further development, this approach could contribute to the design of functional thin films and surface coatings that provide sophisticated control over the timing and the order of the release of two or more DNA constructs (or other agents) of interest in a range of biomedical contexts.
doi:10.1016/j.jconrel.2010.07.112
PMCID: PMC3005143  PMID: 20678530
Layer-by-Layer; Polyelectrolyte; Thin Film; DNA Delivery; Surface-Mediated
20.  Rapid Release of Plasmid DNA from Surfaces Coated with Polyelectrolyte Multilayers Promoted by the Application of Electrochemical Potentials 
ACS applied materials & interfaces  2012;4(5):2726-2734.
We report an approach to the rapid release of DNA based on the application of electrochemical potentials to surfaces coated with polyelectrolyte-based thin films. We fabricated multilayered polyelectrolyte films (or ‘polyelectrolyte multilayers’, PEMs) using plasmid DNA and a model hydrolytically degradable cationic poly(β-amino ester) (polymer 1) on stainless steel substrates using a layer-by-layer approach. The application of continuous reduction potentials in the range of -1.1 to -0.7 V (vs. a Ag/AgCl electrode) to film-coated electrodes in PBS at 37 °C resulted in the complete release of DNA over a period of 1-2 minutes. Film-coated electrodes incubated under identical conditions in the absence of applied potentials required 1-2 days for complete release. Control over the magnitude of the applied potential provided control over the rate at which DNA was released. The results of these and additional physical characterization experiments are consistent with a mechanism of film disruption that is promoted by local increases in pH at the film/electrode interface (resulting from electrochemical reduction of water or dissolved oxygen) that disrupt ionic interactions in these materials. The results of cell-based experiments demonstrated that DNA was released in a form that remains intact and able to promote transgene expression in mammalian cells. Finally, we demonstrate that short-term (i.e., non-continuous) electrochemical treatments can also be used to promote faster film erosion (e.g., over 1-2 h) once the potential is removed. Past studies demonstrate that PEMs fabricated using polymer 1 can promote surface-mediated transfection of cells and tissues in vitro and in vivo. With further development, the electrochemical approaches reported here could thus provide new methods for the rapid, triggered, or spatially patterned transfer of DNA (or other agents) from surfaces of interest in a variety of fundamental and applied contexts.
doi:10.1021/am3003632
PMCID: PMC3359390  PMID: 22551230
Layer-by-Layer; Thin Films; DNA; Rapid Release; Electrochemical Methods
21.  Characterization of Nanoscale Transformations in Polyelectrolyte Multilayers Fabricated from Plasmid DNA Using Laser Scanning Confocal Microscopy in Combination with Atomic Force Microscopy 
Microscopy research and technique  2010;73(9):834-844.
Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) were used to characterize changes in nanoscale structure that occur when ultrathin polyelectrolyte multilayers (PEMs) are incubated in aqueous media. The PEMs investigated here were fabricated by the deposition of alternating layers of plasmid DNA and a hydrolytically degradable polyamine onto a precursor film composed of alternating layers of linear poly(ethylene imine) (LPEI) and sodium poly(styrene sulfonate) (SPS). Past studies of these materials in the context of gene delivery revealed transformations from a morphology that is smooth and uniform to one characterized by the formation of nanometer-scale particulate structures. We demonstrate that in-plane registration of LSCM and AFM images acquired from the same locations of films fabricated using fluorescently labeled polyelectrolytes allows the spatial distribution of individual polyelectrolyte species to be determined relative to the locations of topographic features that form during this transformation. Our results suggest that this physical transformation leads to a morphology consisting of a relatively less disturbed portion of film composed of polyamine and DNA juxtaposed over an array of particulate structures composed predominantly of LPEI and SPS. Characterization by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) microanalysis provides additional support for this interpretation. The combination of these different microscopy techniques provides insight into the structures and dynamics of these multicomponent thin films that cannot be achieved using any one method alone, and that could prove useful for the further development of these assemblies as platforms for the surface-mediated delivery of DNA.
doi:10.1002/jemt.20830
PMCID: PMC2889202  PMID: 20155860
Thin Films; Nanostructure; Polymers; Layer-by-Layer; DNA Delivery
22.  Modulation of hepatocyte phenotype in vitro via chemomechanical tuning of polyelectrolyte multilayers 
Biomaterials  2008;30(6):1113-1120.
It is increasingly appreciated that since cell and tissue functions are regulated by chemomechanical stimuli, precise control over such stimuli will improve the functionality of tissue models. However, due to the inherent difficulty in decoupling these cues as presented by extracellular materials, few studies have explored the independent modulation of biochemical and mechanical stimuli towards the manipulation of sustained cellular processes. Here, we demonstrate that both mechanical compliance and ligand presentation of synthetic, weak polyelectrolyte multilayers (PEMs) can be tuned independently to influence the adhesion and liver-specific functions of primary rat hepatocytes over extended in vitro culture (two weeks). These synthetic PEMs exhibited elastic moduli E ranging over 200 kPa -< E < 142 MPa, as much as one thousand-fold more compliant than tissue-culture polystyrene (E ∼ 2.5 GPa). The most compliant of these PEM substrata promoted hepatocyte adhesion and spheroidal morphology. Subsequent modification of PEMs with type I collagen and the proteoglycan decorin did not alter substrata compliance, but enhanced the retention of spheroids on surfaces and stabilized hepatic functions (albumin and urea secretion, CYP450 detoxification activity). Decorin exhibited unique compliance-mediated effects on hepatic functions, down-regulating the hepatocyte phenotype when presented on highly compliant substrata while up-regulating hepatocyte functions when presented on increasingly stiffer substrata. These results show that phenotypic functions of liver models can be modulated by leveraging synthetic polymers to study and optimize the interplay of biochemical and mechanical cues at the cell–material interface. More broadly, these results suggest an enabling approach for the systematic design of functional tissue models applied to drug screening, cell-based therapies and fundamental studies in development, physiology and disease.
doi:10.1016/j.biomaterials.2008.10.055
PMCID: PMC2699113  PMID: 19046762
Hepatocyte; Polyelectrolyte multilayers; Compliance; Surface modification; Chemomechanics
23.  Degradable Polyelectrolyte Multilayers that Promote the Release of siRNA 
We report an approach to the design of degradable polyelectrolyte-based films for the controlled release of siRNA from surfaces. Our approach is based on stepwise, layer-by-layer assembly of multilayered polyelectrolyte films (or ‘polyelectrolyte multilayers’, PEMs) using siRNA and a hydrolytically degradable poly(β-amino ester) (polymer 1). Fabrication of films using siRNA sequences for green fluorescent protein (GFP) or firefly luciferase resulted in linear growth of ultrathin films (~50 nm thick) that promoted the surface-mediated release of siRNA upon incubation in physiologically relevant media. Physicochemical characterization of these siRNA-containing films revealed large differences in film growth profiles, physical erosion profiles, and siRNA release profiles as compared to PEMs fabricated using polymer 1 and larger plasmid DNA constructs. For example, whereas films fabricated using plasmid DNA erode gradually and release DNA over a period of ~48 hours, films fabricated using siRNA released ~65% of incorporated siRNA within the first hour of incubation, prior to the onset of any observed film erosion. This initial burst of release was followed by a second, slower phase of release (accompanied by gradual film erosion) over the next 23 hours. These differences in release profiles and other behaviors likely result, at least in part, from large differences in the sizes of siRNA and plasmid DNA. Finally, we demonstrate that the siRNA in these films is released in a form that remains intact, functional, and able to silence targeted protein expression upon administration to mammalian cells in vitro. The results of this investigation provide a platform for the design of thin films and coatings that could be used to localize the release of siRNA from surfaces in a variety of fundamental and applied contexts (e.g., for development of new research tools or approaches to delivery from film-coated implants and other devices).
doi:10.1021/la200815t
PMCID: PMC3115451  PMID: 21574582
24.  The stability of BMP loaded polyelectrolyte multilayer coatings on titanium 
Biomaterials  2013;34(23):5737-5746.
Immobilization of bone morphogenetic proteins (BMP) onto material surfaces is a promising, but still challenging, strategy for achieving dependable and consistent osseointegration of long-term metal implants. In the present study, we have developed an osteoinductive coating of a porous titanium implant using biomimetic polyelectrolyte multilayer (PEM) films loaded with BMP-2. The amount of BMP-2 loaded in these films was tuned -over a large range - depending on the cross-linking extent of the film and of the BMP-2 initial concentration. The air-dried PEM films were stable for at least one year of storage at 4°C. In addition, they resisted exposure to γ-irradiation at clinically approved doses. The preservation of the growth factor bioactivity upon long-term storage and sterilization were evaluated both in vitro (using C2C12 cells) and in vivo (in a rat ectopic model) for the perspective of industrial and clinical development. BMP-2 loaded in dried PEM films exhibited shelf-life stability over one year. However, their bioactivity in vitro decreased from 50 to 80% after irradiation depending on the γ-irradiation dose. Remarkably, the in vivo studies showed that the osteoinductive potential of BMP-2 contained in PEM-coated Ti implants was fully preserved after air-drying of the implants and sterilization at 25 kGy. Film drying or irradiation did not affect the amount of new bone tissue formation. This “off-the-shelf” novel technology of functionalized implants opens promising applications in prosthetic and tissue engineering fields.
doi:10.1016/j.biomaterials.2013.03.067
PMCID: PMC4119881  PMID: 23642539
25.  Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials 
Biomedical Optics Express  2012;3(6):1326-1339.
We report on a novel fabrication approach to build multilayered optical tissue phantoms that serve as independently validated test targets for axial resolution and contrast in scattering measurements by depth-resolving optical coherent tomography (OCT) with general applicability to a variety of three-dimensional optical sectioning platforms. We implement a combinatorial bottom-up approach to prepare monolayers of light-scattering microspheres with interspersed layers of transparent polymer. A dense monolayer assembly of monodispersed microspheres is achieved via a combined methodology of polyelectrolyte multilayers (PEMs) for particle-substrate binding and convective particle flux for two-dimensional crystal array formation on a glass substrate. Modifications of key parameters in the layer-by-layer polyelectrolyte deposition approach are applied to optimize particle monolayer transfer from a glass substrate into an elastomer while preserving the relative axial positioning in the particle monolayer. Varying the dimensions of the scattering microspheres and the thickness of the intervening transparent polymer layers enables different spatial frequencies to be realized in the transverse dimension of the solid phantoms. Step-wise determination of the phantom dimensions is performed independently of the optical system under test to enable precise spatial calibration, independent validation, and quantitative dimensional measurements.
doi:10.1364/BOE.3.001326
PMCID: PMC3370973  PMID: 22741079
(120.4800) Optical standards and testing; (170.4500) Optical coherence tomography; (160.5470) Polymers; (170.1790) Confocal microscopy; (290.5820) Scattering measurements

Results 1-25 (837061)