PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (811257)

Clipboard (0)
None

Related Articles

1.  Shoot Development in Grapevine (Vitis vinifera) is Affected by the Modular Branching Pattern of the Stem and Intra‐ and Inter‐shoot Trophic Competition 
Annals of Botany  2004;93(3):263-274.
• Background and Aims Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre‐existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0–P1–P2).
• Methods Four experiments were carried out using the cultivar ‘Grenache N’: two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard. These experiments resulted in a broad diversity of environmental conditions, but none of the plants experienced soil water deficit.
• Key Results Development of the main axis was highly dependent on air temperature, being linearly related to thermal time for all stages of leaf development from budbreak to veraison. The stable progression of developmental stages along the main stem resulted in a thermal‐time based programme of leaf development. Leaf expansion rate varied with trophic competition (shoot and cluster loads) and environmental conditions (solar radiation, VPD), accounting for differences in final leaf area. Branching pattern was highly variable. Classification of the branches according to ternary modular structure increased the accuracy of the quantitative analysis of branch development. The rate and duration of leaf production were higher for branches derived from P0 phytomers than for branches derived from P1 or P2 phytomers. Rates of leaf production, expressed as a -function of thermal time, were not stable and depended on trophic competition and environmental conditions such as solar radiation or VPD.
• Conclusions The application to grapevine of a generic model developed in annual plants made it possible to identify constants in main stem development and to determine the hierarchical structure of branches with respect to the modular structure of the stem in response to intra‐ and inter‐shoot trophic competition.
doi:10.1093/aob/mch038
PMCID: PMC4242199  PMID: 14749253
Shoot architecture; shoot development; leaf expansion; branching; temperature; thermal time; model; trophic competition; Vitis vinifera L
2.  Are the common assimilate pool and trophic relationships appropriate for dealing with the observed plasticity of grapevine development? 
Annals of Botany  2009;105(2):233-247.
Background and Aims
Models based on the consideration of plant development as the result of source–sink relationships between organs suffer from an inherent lack of quantification of the effect of trophic competition on organ growth processes. The ‘common assimilate pool theory’ underlying many such models is highly debatable.
Methods
Six experiments were carried out in a greenhouse and outdoors with two grapevine cultivars and with 12 management systems, resulting in different types of plant architecture. Ten variables were used to quantify the impact of variations in assimilate supply and topological distances between sources and sinks on organogenesis, morphogenesis and biomass growth.
Key Results
A hierarchy of the responses of these processes to variations in assimilate supply was identified. Organ size seemed to be independent of assimilate supply, whereas both organogenesis and biomass growth were affected by variations in assimilate supply. Lower levels of organ biomass growth in response to the depletion of assimilate supplies seemed to be the principal mechanism underlying the plasticity of plant development in different environments. Defoliation or axis ablation resulted in changes in the relationship between growth processes and assimilate supply, highlighting the influence of non-trophic determinants. The findings cast doubt on the relevance of ‘the common assimilate pool theory’ for modelling the development of grapevine.
Conclusions
The results of this study suggest new formalisms for increasing the ability of models to take plant plasticity into account. The combination of an ecophysiological model for morphogenesis taking environmental signals into account and a biomass driven model for organogenesis and biomass allocation taking the topological distances between the sources and the sinks into account appears to be a promising approach. Moreover, in order to simulate the impact of agronomic practices, it will be necessary to take into account the non-trophic determinants of plant development such as hormonal signaletics.
doi:10.1093/aob/mcp278
PMCID: PMC2814752  PMID: 19946042
Biomass growth; branching system; common assimilate pool; morphogenesis; organogenesis; source–sink; grapevine; Vitis vinifera
3.  Branch Development Controls Leaf Area Dynamics in Grapevine (Vitis vinifera) Growing in Drying Soil 
Annals of Botany  2006;98(1):175-185.
• Background and Aims Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated.
• Methods Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars (‘Syrah’ and ‘Grenache N’).
• Key Results All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development.
• Conclusions The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength.
doi:10.1093/aob/mcl085
PMCID: PMC2803536  PMID: 16679414
Shoot; organogenesis; morphogenesis; branching; leaf area; stomatal conductance; photosynthesis; carbon availability; soil water deficit; Vitis vinifera L
4.  Independent Control of Organogenesis and Shoot Tip Abortion are Key Factors to Developmental Plasticity in Kiwifruit (Actinidia) 
Annals of Botany  2007;100(3):471-481.
Background and Aims
In kiwifruit (Actinidia), the number of nodes per shoot is highly variable and is influenced by genotype and environmental conditions. To understand this developmental plasticity, three key processes were studied: organogenesis by the shoot apical meristem during shoot growth; expansion of phytomers; and shoot tip abortion.
Methods
Studies were made of organogenesis and shoot tip abortion using light and scanning electron microscopy. The effect of temperature on shoot growth cessation was investigated using temperature indices over the budbreak period, and patterns of shoot tip abortion were quantified using stochastic modelling.
Key Results
All growing buds began organogenesis before budbreak. During shoot development, the number of phytomers initiated by the shoot apical meristem is correlated with the number of expanding phytomers and the mean internode length. Shoot tip abortion is preceded by growth cessation and is not brought about by the death of the shoot apical meristem, but occurs by tissue necrosis in the sub-apical zone. For most genotypes studied, the probability of shoot tip abortion is higher during expansion of the preformed part of the shoot. Lower temperatures during early growth result in a higher probability of shoot tip abortion.
Conclusions
Organogenesis and shoot tip abortion are controlled independently. All buds have the potential to become long shoots. Conditions that increase early growth rate postpone shoot tip abortion.
doi:10.1093/aob/mcm140
PMCID: PMC2533607  PMID: 17650513
Actinidia; kiwifruit; shoot fate; neoformation; organogenesis; shoot tip abortion; developmental plasticity; temperature
5.  A Dynamic, Architectural Plant Model Simulating Resource‐dependent Growth 
Annals of Botany  2004;93(5):591-602.
• Background and Aims Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications difficult. There is, however, an increasing demand for crop models that simulate the genetic and resource‐dependent variability of plant geometry and architecture, because man is increasingly able to transform plant production systems through combined genetic and environmental engineering.
• Model GREENLAB is presented, a mathematical plant model that simulates interactions between plant structure and function. Dual‐scale automaton is used to simulate plant organogenesis from germination to maturity on the basis of organogenetic growth cycles that have constant thermal time. Plant fresh biomass production is computed from transpiration, assuming transpiration efficiency to be constant and atmospheric demand to be the driving force, under non‐limiting water supply. The fresh biomass is then distributed among expanding organs according to their relative demand. Demand for organ growth is estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics of potential growth rate for each organ type. These are obtained through parameter optimization against empirical, morphological data sets by running the model in inverted mode. Potential growth rates are then used as estimates of relative sink strength in the model. These and other ‘hidden’ plant parameters are calibrated using the non‐linear, least‐square method.
• Key Results and Conclusions The model reproduced accurately the dynamics of plant growth, architecture and geometry of various annual and woody plants, enabling 3D visualization. It was also able to simulate the variability of leaf size on the plant and compensatory growth following pruning, as a result of internal competition for resources. The potential of the model’s underlying concepts to predict the plant’s phenotypic plasticity is discussed.
doi:10.1093/aob/mch078
PMCID: PMC4242319  PMID: 15056562
Plant architecture; phenotypic plasticity; demand functions; competition among sinks; source–sink relationships; structural‐functional models
6.  The auxin signalling network translates dynamic input into robust patterning at the shoot apex 
We provide a comprehensive expression map of the different genes (TIR1/AFBs, ARFs and Aux/IAAs) involved in the signalling pathway regulating gene transcription in response to auxin in the shoot apical meristem (SAM).We demonstrate a relatively simple structure of this pathway using a high-throughput yeast two-hybrid approach to obtain the Aux/IAA-ARF full interactome.The topology of the signalling network was used to construct a model for auxin signalling and to predict a role for the spatial regulation of auxin signalling in patterning of the SAM.We used a new sensor to monitor the input in the auxin signalling pathway and to confirm the model prediction, thus demonstrating that auxin signalling is essential to create robust patterns at the SAM.
The plant hormone auxin is a key morphogenetic signal involved in the control of cell identity throughout development. A striking example of auxin action is at the shoot apical meristem (SAM), a population of stem cells generating the aerial parts of the plant. Organ positioning and patterning depends on local accumulations of auxin in the SAM, generated by polar transport of auxin (Vernoux et al, 2010). However, it is still unclear how auxin is distributed at cell resolution in tissues and how the hormone is sensed in space and time during development. A complex ensemble of 29 Aux/IAAs and 23 ARFs is central to the regulation of gene transcription in response to auxin (for review, see Leyser, 2006; Guilfoyle and Hagen, 2007; Chapman and Estelle, 2009). Protein–protein interactions govern the properties of this transduction pathway (Del Bianco and Kepinski, 2011). Limited interaction studies suggest that, in the absence of auxin, the Aux/IAA repressors form heterodimers with the ARF transcription factors, preventing them from regulating target genes. In the presence of auxin, the Aux/IAA proteins are targeted to the proteasome by an SCF E3 ubiquitin ligase complex (Chapman and Estelle, 2009; Leyser, 2006). In this process, auxin promotes the interaction between Aux/IAA proteins and the TIR1 F-box of the SCF complex (or its AFB homologues) that acts as an auxin co-receptor (Dharmasiri et al, 2005a, 2005b; Kepinski and Leyser, 2005; Tan et al, 2007). The auxin-induced degradation of Aux/IAAs would then release ARFs to regulate transcription of their target genes. This includes activation of most of the Aux/IAA genes themselves, thus establishing a negative feedback loop (Guilfoyle and Hagen, 2007). Although this general scenario provides a framework for understanding gene regulation by auxin, the underlying protein–protein network remains to be fully characterized.
In this paper, we combined experimental and theoretical analyses to understand how this pathway contributes to sensing auxin in space and time (Figure 1). We first analysed the expression patterns of the ARFs, Aux/IAAs and TIR1/AFBs genes in the SAM. Our results demonstrate a general tendency for most of the 25 ARFs and Aux/IAAs detected in the SAM: a differential expression with low levels at the centre of the meristem (where the stem cells are located) and high levels at the periphery of the meristem (where organ initiation takes place). We also observed a similar differential expression for TIR1/AFB co-receptors. To understand the functional significance of the distribution of ARFs and Aux/IAAs in the SAM, we next investigated the global structure of the Aux/IAA-ARF network using a high-throughput yeast two-hybrid approach and uncover a rather simple topology that relies on three basic generic features: (i) Aux/IAA proteins interact with themselves, (ii) Aux/IAA proteins interact with ARF activators and (iii) ARF repressors have no or very limited interactions with other proteins in the network.
The results of our interaction analysis suggest a model for the Aux/IAA-ARF signalling pathway in the SAM, where transcriptional activation by ARF activators would be negatively regulated by two independent systems, one involving the ARF repressors, the other the Aux/IAAs. The presence of auxin would remove the inhibitory action of Aux/IAAs, but leave the ARF repressors to compete with ARF activators for promoter-binding sites. To explore the regulatory properties of this signalling network, we developed a mathematical model to describe the transcriptional output as a function of the signalling input that is the combinatorial effect of auxin concentration and of its perception. We then used the model and a simplified view of the meristem (where the same population of Aux/IAAs and ARFs exhibit a low expression at the centre and a high expression in the peripheral zone) for investigating the role of auxin signalling in SAM function. We show that in the model, for a given ARF activator-to-repressor ratio, the gene induction capacity increases with the absolute levels of ARF proteins. We thus predict that the differential expression of the ARFs generates differences in auxin sensitivities between the centre (low sensitivity) and the periphery (high sensitivity), and that the expression of TIR1/AFB participates to this regulation (prediction 1). We also use the model to analyse the transcriptional response to rapidly changing auxin concentrations. By simulating situations equivalent either to the centre or the periphery of our simplified representation of the SAM, we predict that the signalling pathway buffers its response to the auxin input via the balance between ARF activators and repressors, in turn generated by their differential spatial distributions (prediction 2).
To test the predictions from the model experimentally, we needed to assess both the input (auxin level and/or perception) and the output (target gene induction) of the signalling cascade. For measuring the transcriptional output, the widely used DR5 reporter is perfectly adapted (Figure 5) (Ulmasov et al, 1997; Sabatini et al, 1999; Benkova et al, 2003; Heisler et al, 2005). For assaying pathway input, we designed DII-VENUS, a novel auxin signalling sensor that comprises a constitutively expressed fusion of the auxin-binding domain (termed domain II or DII) (Dreher et al, 2006; Tan et al, 2007) of an IAA to a fast-maturating variant of YFP, VENUS (Figure 5). The degradation patterns from DII-VENUS indicate a high auxin signalling input both in flower primordia and at the centre of the SAM. This is in contrast to the organ-specific expression pattern of DR5::VENUS (Figure 5). These results indicate that the signalling pathway limits gene activation in response to auxin at the meristem centre and confirm the differential sensitivity to auxin between the centre and the periphery (prediction 1). We further confirmed the buffering capacities of the signalling pathway (prediction 2) by carrying out live imaging experiments to monitor DII-VENUS and DR5::VENUS expression in real time (Figure 5). This analysis reveals the presence of important temporal variations of DII-VENUS fluorescence, while DR5::VENUS does not show such global variations. Our approach thus provides evidence that the Aux/IAA-ARF pathway has a key role in patterning in the SAM, alongside the auxin transport system. Our results illustrate how the tight spatio-temporal regulation of both the distribution of a morphogenetic signal and the activity of the downstream signalling pathway provides robustness to a dynamic developmental process.
A comprehensive expression and interaction map of auxin signalling factors in the Arabidopsis shoot apical meristem is constructed and used to derive a mathematical model of auxin signalling, from which key predictions are experimentally confirmed.
The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large-scale analysis of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex.
doi:10.1038/msb.2011.39
PMCID: PMC3167386  PMID: 21734647
auxin; biosensor; live imaging; ODE; signalling
7.  Grapevine under deficit irrigation: hints from physiological and molecular data 
Annals of Botany  2010;105(5):661-676.
Background
A large proportion of vineyards are located in regions with seasonal drought (e.g. Mediterranean-type climates) where soil and atmospheric water deficits, together with high temperatures, exert large constraints on yield and quality. The increasing demand for vineyard irrigation requires an improvement in the efficiency of water use. Deficit irrigation has emerged as a potential strategy to allow crops to withstand mild water stress with little or no decreases of yield, and potentially a positive impact on fruit quality. Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize deficit irrigation management and identify the most suitable varieties to those conditions.
Scope
How the whole plant acclimatizes to water scarcity and how short- and long-distance chemical and hydraulic signals intervene are reviewed. Chemical compounds synthesized in drying roots are shown to act as long-distance signals inducing leaf stomatal closure and/or restricting leaf growth. This explains why some plants endure soil drying without significant changes in shoot water status. The control of plant water potential by stomatal aperture via feed-forward mechanisms is associated with ‘isohydric’ behaviour in contrast to ‘anysohydric’ behaviour in which lower plant water potentials are attained. This review discusses differences in this respect between grapevines varieties and experimental conditions. Mild water deficits also exert direct and/or indirect (via the light environment around grape clusters) effects on berry development and composition; a higher content of skin-based constituents (e.g. tannins and anthocyanins) has generally being reported. Regulation under water deficit of genes and proteins of the various metabolic pathways responsible for berry composition and therefore wine quality are reviewed.
doi:10.1093/aob/mcq030
PMCID: PMC2859908  PMID: 20299345
Vitis vinifera; varieties; stomatal conductance (gs); intrinsic water-use efficiency (WUEiAn/gs); isohydric; anisohydric; abscisic acid; berry composition
8.  Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability 
Annals of Botany  2009;104(6):1171-1182.
Background and Aims
Oil palm flowering and fruit production show seasonal maxima whose causes are unknown. Drought periods confound these rhythms, making it difficult to analyse or predict dynamics of production. The present work aims to analyse phenological and growth responses of adult oil palms to seasonal and inter-annual climatic variability.
Methods
Two oil palm genotypes planted in a replicated design at two sites in Indonesia underwent monthly observations during 22 months in 2006–2008. Measurements included growth of vegetative and reproductive organs, morphology and phenology. Drought was estimated from climatic water balance (rainfall – potential evapotranspiration) and simulated fraction of transpirable soil water. Production history of the same plants for 2001–2005 was used for inter-annual analyses.
Key Results
Drought was absent at the equatorial Kandista site (0°55′N) but the Batu Mulia site (3°12′S) had a dry season with variable severity. Vegetative growth and leaf appearance rate fluctuated with drought level. Yield of fruit, a function of the number of female inflorescences produced, was negatively correlated with photoperiod at Kandista. Dual annual maxima were observed supporting a recent theory of circadian control. The photoperiod-sensitive phases were estimated at 9 (or 9 + 12 × n) months before bunch maturity for a given phytomer. The main sensitive phase for drought effects was estimated at 29 months before bunch maturity, presumably associated with inflorescence sex determination.
Conclusion
It is assumed that seasonal peaks of flowering in oil palm are controlled even near the equator by photoperiod response within a phytomer. These patterns are confounded with drought effects that affect flowering (yield) with long time-lag. Resulting dynamics are complex, but if the present results are confirmed it will be possible to predict them with models.
doi:10.1093/aob/mcp214
PMCID: PMC2766204  PMID: 19748909
Photoperiodism; Elaeis guineensis; flowering; phyllochron; drought; radiation use efficiency; sink–source relationships; phenotypic plasticity
9.  Stomatal Control and Leaf Thermal and Hydraulic Capacitances under Rapid Environmental Fluctuations 
PLoS ONE  2013;8(1):e54231.
Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection for very short sunflecks (tens of seconds).
doi:10.1371/journal.pone.0054231
PMCID: PMC3554716  PMID: 23359800
10.  Constructing a framework for risk analyses of climate change effects on the water budget of differently sloped vineyards with a numeric simulation using the Monte Carlo method coupled to a water balance model 
Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively, green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over 2 years. The results showed good agreement of modeled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity (SWC) and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in SWC. The improved model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes.
doi:10.3389/fpls.2014.00645
PMCID: PMC4261715  PMID: 25540646
climate change; grapevine; model; radiation interception; sap flow; soil water budget; steep slope; vine transpiration
11.  Water and heat transport in hilly red soil of southern China: I. Experiment and analysis*  
Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields’ conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 °C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evaporation. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.
doi:10.1631/jzus.2005.B0331
PMCID: PMC1389746  PMID: 15822143
Red soil; Coupled transfer of water and heat; Evaporation; Initial soil moisture
12.  Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity 
BMC Plant Biology  2014;14:72.
Background
Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought.
Results
The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity.
Conclusions
The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.
doi:10.1186/1471-2229-14-72
PMCID: PMC3976162  PMID: 24655599
Betula pendula; Branch water potential; Climate change; Hydraulic conductance; Leaf water potential; Net photosynthesis; Silver birch; Stomatal conductance; Water-use efficiency
13.  Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines 
Annals of Botany  2013;111(3):433-444.
Background and Aims
Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown.
Methods
Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring.
Key Results
Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature.
Conclusions
In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.
doi:10.1093/aob/mcs298
PMCID: PMC3579449  PMID: 23293018
Water-use efficiency; leaf gas exchange; CO2 assimilation; grapevine; Vitis vinifera; stomatal conductance; root-zone temperature; ‘Shiraz’; grapevine; soil temperature
14.  Water and heat transport in hilly red soil of southern China: II. Modeling and simulation*  
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that K h, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, K S, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.
doi:10.1631/jzus.2005.B0338
PMCID: PMC1389747  PMID: 15822144
Red soil; Coupled transfer of soil water and heat; Simulation model; Validation; Sensitivity analysis
15.  Color Photographic Index of Fall Chinook Salmon Embryonic Development and Accumulated Thermal Units 
PLoS ONE  2010;5(7):e11877.
Background
Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days) and provide high-quality color photographs of each identified developmental stage.
Methodology/Principal Findings
Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0°C (range; 3.9–11.7°C) during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9–11.7°C (mean = 8°C) to those from several other studies rearing embryos in constant 8°C water temperature.
Conclusions/Significance
The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index should prove useful to other researchers who wish to approximate fertilization dates of Chinook salmon eggs from natural redds, assuming the thermal history of embryos is known.
doi:10.1371/journal.pone.0011877
PMCID: PMC2912384  PMID: 20686709
16.  Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling 
Here, we provide a novel mechanistic framework for cell polarization during auxin-driven plant development that combines intracellular auxin signaling for regulation of expression of PINFORMED (PIN) auxin efflux transporters and the theoretical assumption of extracellular auxin signaling for regulation of PIN subcellular dynamics.The competitive utilization of auxin signaling component in the apoplast might account for the elusive mechanism for cell-to-cell communication for tissue polarization.Computer model simulations faithfully and robustly recapitulate experimentally observed patterns of tissue polarity and asymmetric auxin distribution during formation and regeneration of vascular systems, and during the competitive regulation of shoot branching by apical dominance.Our model generated new predictions that could be experimentally validated, highlighting a mechanistically conceivable explanation for the PIN polarization and canalization of the auxin flow in plants.
A key question of developmental biology relates to a fundamental issue in cell and tissue polarities, namely, how an individual cell in a polarized tissue senses the polarities of its neighbors and its position within tissue. In plant development, this issue is of pronounced importance, because plants have a remarkable ability to redefine cell and tissue polarities in different developmental programs, such as embryogenesis, postembryonic organogenesis, vascular tissue formation, and tissue regeneration (Kleine-Vehn and Friml, 2008).
A polar, cell-to-cell transport of the small signaling molecule auxin in conjunction with local auxin biosynthesis determines auxin gradients during embryonic and postembryonic development, giving positional cues for primordia formation, organ patterning, and tropistic growth (Friml et al, 2002; Benková et al, 2003; Reinhardt et al, 2003; Heisler et al, 2005; Scarpella et al, 2006; Dubrovsky et al, 2008). Over the past decades, theoretical models proposed that auxin acts as a polarizing cue in the center of a positive feedback mechanisms for auxin transport that has a key role in synchronized polarity rearrangements. However, the mechanistic basis for such a feedback loop between auxin and its own transport remains to a large extent elusive.
The direction of auxin transport largely depends on the polar subcellular localization of PINFORMED (PIN) proteins at the plasma membrane (Petrášek et al, 2006; Wiśniewska et al, 2006). These proteins recycle between the plasma membrane and intracellular endosomal compartments (Geldner et al, 2001; Dhonukshe et al, 2007), and their recycling modulates PIN-dependent auxin efflux rates and enable rapid changes in PIN polarity (Dubrovsky et al, 2008; Kleine-Vehn et al, 2008a). Nevertheless, the molecular basis for PIN polarization in plants remains unknown.
To gain new mechanistic insights in the hypothetical feedback mechanisms governing PIN polarization, several theoretical studies (Mitchison, 1980; Sachs, 1981; Rolland-Lagan and Prusinkiewicz, 2005; Jönsson et al, 2006; Smith et al, 2006; Merks et al, 2007; Bayer et al, 2009; Kramer, 2009) have been carried out. These models suggest that auxin promotes its own transport by modulating the amount of PIN proteins at the plasma membrane by incorporating either not yet identified flux gradient-based component (Mitchison, 1980; Rolland-Lagan and Prusinkiewicz, 2005; Bayer et al, 2009; Kramer, 2009) or an unknown short-range intercellular signal-transmitting auxin concentrations of its direct neighbors (Jönsson et al, 2006; Smith et al, 2006; Merks et al, 2007; Bayer et al, 2009; Sahlin et al, 2009).
Here, we propose a feedback driven, biologically plausible model for PIN polarization and auxin transport that introduces the combination of intracellular and extracellular auxin signaling pathways as a unified approach for tissue polarization in plants. Our computer model is based on chemiosmotic hypothesis (Goldsmith et al, 1981; Figure 1A) and integrates up-to-date experimental data, such as auxin feedback on PIN expression (Peer et al, 2004; Heisler et al, 2005) via a nuclear auxin signaling pathway (Chapman and Estelle, 2009; Figure 1B), auxin carrier recycling auxin (Dubrovsky et al, 2008; Kleine-Vehn et al, 2008a; Figure 1C), and auxin feedback on PIN endocytosis (Paciorek et al, 2005) via novel hypothetical, yet plausible, assumption of extracellular auxin perception (Figure 1D).
The heart of our extracellular receptor-based polarization (ERP) mechanism is the competitive utilization of auxin receptors in the intercellular space that allows a direct and simple cell-to-cell communication scheme. In our model, auxin binds to its extracellular receptor in the concentration-dependent manner and induces signal to modulate PIN protein abundance at the plasma membrane (Figure 1D). The direct mode of the signal transfer involves temporal immobilization of recruited receptors to the plasma membrane, which is reflected by reduced diffusion of receptors involved in auxin signaling (Figure 1D). This competitive utilization mechanism enables cell-to-cell communication in our model, leading to receptor enrichment at the site of higher auxin concentration (Figure 1D). The PIN polarization and polar auxin transport in our model both depend on and contribute to the establishment of differential auxin signaling in the cell wall. This feedback loop leads ultimately to the alignment of PIN polarization within a tissue.
We demonstrated the plausibility of the ERP model for various processes, including de novo vascularization, venation patterning, and tissue regeneration in computer simulations performed with only minimal initial assumptions, a discrete auxin source, and a distal sink. The ERP model reproduces the very detailed PIN polarization events that occur during primary vein initiation (Scarpella et al, 2006), such as basal PIN1 polarity in provascular cells, transient adverse PIN1 polarization in neighboring cells during the alignment of tissue polarization, and inner-lateral polarity displayed by the tissues surrounding a conductive auxin channel (Figure 3). Additionally, the ERP model generates high auxin concentration and high auxin flux simultaneously in emerging veins, revising the classical canalization models (Mitchison, 1980; Rolland-Lagan and Prusinkiewicz, 2005). Importantly, all our model simulations support the claim that the ERP model represents the first single approach that faithfully reproduces PIN polarization, both with the auxin gradient (basal PIN1 polarity in provascular cells) and against the auxin gradient (transient adverse PIN1 polarization in neighboring cells surrounding the provascular bundle), as well as producing the corresponding auxin distribution patterns during auxin canalization.
The proposed model introduces the extracellular auxin signaling pathway, which is crucial to account for coordinated PIN polarization and auxin distribution during venation patterning in plants. The putative candidate for extracellular auxin receptor is auxin-binding protein 1 (ABP1), which resides in the lumen of the endoplasmic reticulum and is secreted to the cell wall (Napier et al, 2002; Tromas et al, 2009) where it is physiologically active (Leblanc et al, 1999; Steffens et al, 2001). Additionally, auxin inhibits clathrin-dependent PIN internalization via binding to ABP1 (Robert et al, 2010). Thus, we speculate that the extracellular fraction of ABP1 (or additionally yet to be identified ABPs) could correspond to the common pool of extracellular auxin receptors in the ERP model. A future challenge will be to test whether the ERP model unifies complex PIN polarization and auxin distribution patterns in embryogenesis, root system maintenance, and de novo organ formation.
Plant development is exceptionally flexible as manifested by its potential for organogenesis and regeneration, which are processes involving rearrangements of tissue polarities. Fundamental questions concern how individual cells can polarize in a coordinated manner to integrate into the multicellular context. In canalization models, the signaling molecule auxin acts as a polarizing cue, and feedback on the intercellular auxin flow is key for synchronized polarity rearrangements. We provide a novel mechanistic framework for canalization, based on up-to-date experimental data and minimal, biologically plausible assumptions. Our model combines the intracellular auxin signaling for expression of PINFORMED (PIN) auxin transporters and the theoretical postulation of extracellular auxin signaling for modulation of PIN subcellular dynamics. Computer simulations faithfully and robustly recapitulated the experimentally observed patterns of tissue polarity and asymmetric auxin distribution during formation and regeneration of vascular systems and during the competitive regulation of shoot branching by apical dominance. Additionally, our model generated new predictions that could be experimentally validated, highlighting a mechanistically conceivable explanation for the PIN polarization and canalization of the auxin flow in plants.
doi:10.1038/msb.2010.103
PMCID: PMC3018162  PMID: 21179019
auxin; canalization; cell polarity; PIN proteins
17.  Modeling Apple Surface Temperature Dynamics Based on Weather Data 
Sensors (Basel, Switzerland)  2014;14(11):20217-20234.
The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.
doi:10.3390/s141120217
PMCID: PMC4279478  PMID: 25350507
thermal imaging; energy balance; simulation model; fruit surface temperature; sunburn
18.  Onset of Sheath Extension and Duration of Lamina Extension are Major Determinants of the Response of Maize Lamina Length to Plant Density 
Annals of Botany  2006;98(5):1005-1016.
• Background and Aims Plants regulate their architecture strongly in response to density, and there is evidence that this involves changes in the duration of leaf extension. This questions the approximation, central in crop models, that development follows a fixed thermal time schedule. The aim of this research is to investigate, using maize as a model, how the kinetics of extension of grass leaves change with density, and to propose directions for inclusion of this regulation in plant models.
• Methods Periodic dissection of plants allowed the establishment of the kinetics of lamina and sheath extension for two contrasting sowing densities. The temperature of the growing zone was measured with thermocouples. Two-phase (exponential plus linear) models were fitted to the data, allowing analysis of the timing of the phase changes of extension, and the extension rate of sheaths and blades during both phases.
• Key Results The duration of lamina extension dictated the variation in lamina length between treatments. The lower phytomers were longer at high density, with delayed onset of sheath extension allowing more time for the lamina to extend. In the upper phytomers—which were shorter at high density—the laminae had a lower relative extension rate (RER) in the exponential phase and delayed onset of linear extension, and less time available for extension since early sheath extension was not delayed.
• Conclusions The relative timing of the onset of fast extension of the lamina with that of sheath development is the main determinant of the response of lamina length to density. Evidence is presented that the contrasting behaviour of lower and upper phytomers is related to differing regulation of sheath ontogeny before and after panicle initiation. A conceptual model is proposed to explain how the observed asynchrony between lamina and sheath development is regulated.
doi:10.1093/aob/mcl177
PMCID: PMC3292240  PMID: 16926228
Co-ordination; emergence; leaf extension; kinetics; lamina; leaf; ligule; ontogeny; plant architecture; primordium; sheath; Zea mays; RER; LER
19.  Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies 
Journal of Experimental Botany  2014;65(22):6457-6469.
Summary
Plants need to control transpiration and photosynthesis tightly in order to grow under drought and high temperature. Contrasting genetic-by-environment interactions are exploited by Arabidopsis thaliana to improve stress tolerance.
How genetic factors control plant performance under stressful environmental conditions is a central question in ecology and for crop breeding. A multivariate framework was developed to examine the genetic architecture of performance-related traits in response to interacting environmental stresses. Ecophysiological and life history traits were quantified in the Arabidopsis thaliana Ler×Cvi mapping population exposed to constant soil water deficit and high air temperature. The plasticity of the genetic variance–covariance matrix (G-matrix) was examined using mixed-effects models after regression into principal components. Quantitative trait locus (QTL) analysis was performed on the predictors of genotype effects and genotype by environment interactions (G×E). Three QTLs previously identified for flowering time had antagonistic G×E effects on carbon acquisition and the other traits (phenology, growth, leaf morphology, and transpiration). This resulted in a size-dependent response of water use efficiency (WUE) to high temperature but not soil water deficit, indicating that most of the plasticity of carbon acquisition and WUE to temperature is controlled by the loci that control variation of development, size, growth, and transpiration. A fourth QTL, MSAT2.22, controlled the response of carbon acquisition to specific combinations of watering and temperature irrespective of plant size and development, growth, and transpiration rate, which resulted in size-independent plasticity of WUE. These findings highlight how the strategies to optimize plant performance may differ in response to water deficit and high temperature (or their combination), and how different G×E effects could be targeted to improve plant tolerance to these stresses.
doi:10.1093/jxb/eru364
PMCID: PMC4246181  PMID: 25246443
Antagonistic pleiotropy; Arabidopsis thaliana; genotype by environment interactions; G-matrix; mixed-effects model; photosynthesis; QTL; water use efficiency.
20.  Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes 
BMC Genomics  2013;14:318.
Background
Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species.
Results
In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments.
Conclusions
This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion of this gene family. Populus and Arabidopsis LRR-RLK homologues not only share similar genetic structures but also exhibit comparable expression patterns which point to the possible functional conservation of these LRR-RLKs in two model systems. Transcriptome profiling provides the first insight into the functional divergence among PtLRR-RLK gene subfamilies and suggests that they might take important roles in growth and adaptation of tree species.
doi:10.1186/1471-2164-14-318
PMCID: PMC3682895  PMID: 23663326
Populus trichocarpa; Leucine-rich repeat receptor-like kinase (LRR-RLK); Phylogenetic analysis; Motif elicitation; Expression profiling
21.  Diurnal temperature fluctuations in an artificial small shallow water body 
For aquatic biological processes, diurnal and annual cycles of water temperature are very important to plants as well as to animals and microbes living in the water. An existing one-dimensional model has been extended to simulate the temperature profile within a small water body. A year-round outdoor experiment has been conducted to estimate the model input parameters and to verify the model. Both model simulations and measurements show a strong temperature stratification in the water during daytime. Throughout the night, however, a well-mixed layer starting at the water surface develops. Because the water body is relatively small, it appears that the sediment heat flux has a strong effect on the behaviour of the water temperature throughout the seasons. In spring, the water temperature remains relatively low due to the cold surrounding soil, while in autumn the opposite occurs due to the relatively warm soil. It appears that, in small water bodies, the total amount of incoming long wave radiation is sensitive to the sky view factor. In our experiments, the intensity of precipitation also appears to have a small effect on the stratification of the water temperature.
doi:10.1007/s00484-007-0121-8
PMCID: PMC2668566  PMID: 17926069
Shallow water body; Water temperature; Energy budget; Model simulation
22.  Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit 
Deep profiling of the transcriptome and proteome during leaf development reveals unexpected responses to water deficit, as well as a surprising lack of protein-level fluctuations during the day–night cycle, despite clear changes at the transcript level.
Transcript and protein variation patterns reflect the functional stages of the leaf.Protein and transcript levels correlate well during leaf development, with some notable exceptions.Diurnal transcript-level fluctuations are not matched by corresponding diurnal fluctuations in the detected proteome.Continuous reduced soil water content results in reduced leaf growth, but the plant adapts at molecular levels without showing a typical drought response.
Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.
doi:10.1038/msb.2012.39
PMCID: PMC3435506  PMID: 22929616
adaptation; integrated data analysis; leaf growth; molecular profiling; water deficit
23.  Bud Composition, Branching Patterns and Leaf Phenology in Cerrado Woody Species 
Annals of Botany  2005;96(6):1075-1084.
• Background and Aims Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions.
• Methods The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA).
• Key Results Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2–6 months and lamina expansion took place over 1–4 months. The leaf life span was 5–20 months and the main A1 shoot extension happened over 122–177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL.
• Conclusions It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.
doi:10.1093/aob/mci258
PMCID: PMC4247095  PMID: 16157631
Bauhinia rufa; branching; Brazil; bud composition; Cerrado; flowering; leaf phenology; Leandra lacunosa; meristem persistence; Miconia albicans; synchronic leaves production; continuous leaf production
24.  Parameter Optimization and Field Validation of the Functional–Structural Model GREENLAB for Maize at Different Population Densities 
Annals of Botany  2007;101(8):1185-1194.
Background and Aims
Plant population density (PPD) influences plant growth greatly. Functional–structural plant models such as GREENLAB can be used to simulate plant development and growth and PPD effects on plant functioning and architectural behaviour can be investigated. This study aims to evaluate the ability of GREENLAB to predict maize growth and development at different PPDs.
Methods
Two field experiments were conducted on irrigated fields in the North China Plain with a block design of four replications. Each experiment included three PPDs: 2·8, 5·6 and 11·1 plants m−2. Detailed observations were made on the dimensions and fresh biomass of above-ground plant organs for each phytomer throughout the seasons. Growth stage-specific target files (a description of plant organ weight and dimension according to plant topological structure) were established from the measured data required for GREENLAB parameterization. Parameter optimization was conducted using a generalized least square method for the entire growth cycles for all PPDs and years. Data from in situ plant digitization were used to establish geometrical symbol files for organs that were then applied to translate model output directly into 3-D representation for each time step of the model execution.
Key Results
The analysis indicated that the parameter values of organ sink variation function, and the values of most of the relative sink strength parameters varied little among years and PPDs, but the biomass production parameter, computed plant projection surface and internode relative sink strength varied with PPD. Simulations of maize plant growth based on the fitted parameters were reasonably good as indicated by the linearity and slopes similar to unity for the comparison of simulated and observed values. Based on the parameter values fitted from different PPDs, shoot (including vegetative and reproductive parts of the plant) and cob fresh biomass for other PPDs were simulated. Three-dimensional representation of individual plant and plant stand from the model output with two contrasting PPDs were presented with which the PPD effect on plant growth can be easily recognized.
Conclusions
This study showed that GREENLAB model has the ability to capture plant plasticity induced by PPD. The relatively stable parameter values strengthened the hypothesis that one set of equations can govern dynamic organ growth. With further validation, this model can be used for agronomic applications such as yield optimization.
doi:10.1093/aob/mcm233
PMCID: PMC2710275  PMID: 17921525
Functional–structural plant model; GREENLAB; plant architecture; source–sink relationship; plant population density; maize (Zea mays); model parameterization
25.  Strigolactone Can Promote or Inhibit Shoot Branching by Triggering Rapid Depletion of the Auxin Efflux Protein PIN1 from the Plasma Membrane 
PLoS Biology  2013;11(1):e1001474.
Shoot branching is regulated by competition between branches to export the phytohormone auxin into the main stem. The phytohormone strigolactone balances shoot system growth by making auxin export harder to establish, thus modulating the auxin transport network.
Plants continuously extend their root and shoot systems through the action of meristems at their growing tips. By regulating which meristems are active, plants adjust their body plans to suit local environmental conditions. The transport network of the phytohormone auxin has been proposed to mediate this systemic growth coordination, due to its self-organising, environmentally sensitive properties. In particular, a positive feedback mechanism termed auxin transport canalization, which establishes auxin flow from active shoot meristems (auxin sources) to the roots (auxin sinks), has been proposed to mediate competition between shoot meristems and to balance shoot and root growth. Here we provide strong support for this hypothesis by demonstrating that a second hormone, strigolactone, regulates growth redistribution in the shoot by rapidly modulating auxin transport. A computational model in which strigolactone action is represented as an increase in the rate of removal of the auxin export protein, PIN1, from the plasma membrane can reproduce both the auxin transport and shoot branching phenotypes observed in various mutant combinations and strigolactone treatments, including the counterintuitive ability of strigolactones either to promote or inhibit shoot branching, depending on the auxin transport status of the plant. Consistent with this predicted mode of action, strigolactone signalling was found to trigger PIN1 depletion from the plasma membrane of xylem parenchyma cells in the stem. This effect could be detected within 10 minutes of strigolactone treatment and was independent of protein synthesis but dependent on clathrin-mediated membrane trafficking. Together these results support the hypothesis that growth across the plant shoot system is balanced by competition between shoot apices for a common auxin transport path to the root and that strigolactones regulate shoot branching by modulating this competition.
Author Summary
Plants can adapt their form to suit the environment in which they are growing. For example, genetically identical plants can develop as a single unbranched stem or as a highly ramified bush. This broad developmental potential is possible because the shoot system is produced continuously by growing tips, known as shoot meristems. Meristems produce the stem and leaves of a shoot, and at the base of each leaf, a new meristem is formed. This meristem can remain dormant as a small bud or activate to produce a branch. Thus, the shoot system is a community of shoot meristems, the combined activity and inactivity of which shape shoot form. Here we provide evidence that growth is balanced across the Arabidopsis shoot system by competition between the shoot meristems. This competition is likely mediated by the requirement of meristems to export the plant hormone auxin in order to activate bud outgrowth. In our model, auxin in the main stem, exported from active branches, can prevent auxin export by dormant buds, thus preventing their activation. Our findings show that a second hormone, strigolactone, increases the level of competition between branches by making auxin export harder to establish. Together, these hormones balance growth across the shoot system, adjusting it according to the environmental conditions in which a plant is growing.
doi:10.1371/journal.pbio.1001474
PMCID: PMC3558495  PMID: 23382651

Results 1-25 (811257)