Search tips
Search criteria

Results 1-25 (1349101)

Clipboard (0)

Related Articles

1.  Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging 
Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging.
Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method.
Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween® 80/Span® 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween® 80/Span® 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively.
The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging.
PMCID: PMC3205143  PMID: 22072884
nanoemulsions; Phyllanthus urinaria; skin antiaging; palm kernel oil esters
2.  Ellagic Acid, the Active Compound of Phyllanthus urinaria, Exerts In Vivo Anti-Angiogenic Effect and Inhibits MMP-2 Activity 
This study aimed to assess the potential anti-angiogenic mechanism of Phyllanthus urinaria (P. urinaria) and characterize the major compound in P. urinaria that exerts anti-angiogenic effect. The water extract of P. urinaria and Ellagic Acid were used to evaluate the anti-angiogenic effect in chorioallantoic membrane (CAM) in chicken embryo and human vascular endothelial cells (HUVECs). The matrix metalloproteinase-2 (MMP-2) activity was determined by gelatin zymography. The mRNA expressions of MMP-2, MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) were analyzed by reverse transcription polymerase chain reaction (RT-PCR). Level of MMP-2 proteins in conditioned medium or cytosol was determined by western blot analysis. We confirmed that P. urinaria's in vivo anti-angiogenic effect was associated with a reduction in MMP-2 activity. Ellagic acid, one of the major polyphenolic components as identified in P. urinaria by high performance liquid chromatography mass spectrometry (HPLC/MS), exhibited the same anti-angiogenic effect in vivo. Both P. urinaria and Ellagic Acid inhibited MMP-2 activity in HUVECs with unchanged mRNA level. The mRNA expression levels of MMP-14 and TIMP-2 were not altered either. Results from comparing the change of MMP-2 protein levels in conditioned medium and cytosol of HUVECs after the P. urinaria or Ellagic Acid treatment revealed an inhibitory effect on the secretion of MMP-2 protein. This study concluded that Ellagic Acid is the active compound in P. urinaria to exhibit anti-angiogenic activity and to inhibit the secretion of MMP-2 protein from HUVECs.
PMCID: PMC3095481  PMID: 20007260
3.  Inhibition of Raf-MEK-ERK and Hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line 
Lung cancer constitutes one of the malignancies with the greatest incidence and mortality rates with 1.6 million new cases and 1.4 million deaths each year. Prognosis remains poor due to deleterious development of multidrug resistance resulting in less than 15% lung cancer patients reaching five years survival. We have previously shown that Phyllanthus induced apoptosis in conjunction with its antimetastastic action. In the current study, we aimed to determine the signaling pathways utilized by Phyllanthus to exert its antimetastatic activities.
Cancer 10-pathway reporter array was performed to screen the pathways affected by Phyllanthus in lung carcinoma cell line (A549) to exert its antimetastatic effects. Results from this array were then confirmed with western blotting, cell cycle analysis, zymography technique, and cell based ELISA assay for human total iNOS. Two-dimensional gel electrophoresis was subsequently carried out to study the differential protein expressions in A549 after treatment with Phyllanthus.
Phyllanthus was observed to cause antimetastatic activities by inhibiting ERK1/2 pathway via suppression of Raf protein. Inhibition of this pathway resulted in the suppression of MMP2, MMP7, and MMP9 expression to stop A549 metastasis. Phyllanthus also inhibits hypoxia pathway via inhibition of HIF-1α that led to reduced VEGF and iNOS expressions. Proteomic analysis revealed a number of proteins downregulated by Phyllanthus that were involved in metastatic processes, including invasion and mobility proteins (cytoskeletal proteins), transcriptional proteins (proliferating cell nuclear antigen; zinc finger protein), antiapoptotic protein (Bcl2) and various glycolytic enzymes. Among the four Phyllanthus species tested, P. urinaria showed the greatest antimetastatic activity.
Phyllanthus inhibits A549 metastasis by suppressing ERK1/2 and hypoxia pathways that led to suppression of various critical proteins for A549 invasion and migration.
PMCID: PMC4015811  PMID: 24138815
Phyllanthus; Metastasis; Apoptosis; ERK1/2; HIF-1α
4.  Hepatoprotective activity of the Phyllanthus species on tert-butyl hydroperoxide (t-BH)-induced cytotoxicity in HepG2 cells 
Pharmacognosy Magazine  2011;7(27):229-233.
Phyllanthus (Euphorbiaceae) species have long been used in folk medicine to treat various pathological conditions including liver diseases. Some species of Phyllanthus were found to exhibit hepatoprotective activity against drugs or toxins and this property was majorly attributed to phyllanthin and hypophyllanthin. In this study, we examined the hepatoprotective activity of five different species of Phyllanthus, namely, Phyllanthus amarus, Phyllanthus fraternus, Phyllanthus maderaspatensis, Phyllanthus urinaria, and Phyllanthus Rotundifolius. The extracts were also evaluated for the presence of key phytoconstituents, phyllanthin and hypophyllanthin.
Materials and Methods:
The extracts were evaluated for hepatoprotective activity against tert-butyl hydroxide (t-BH)-induced cytotoxicity using human hepatocarcinoma cells (HepG2 cell line).
Only P. urinaria and P. maderaspatensis exhibited significant hepatoprotective activity as evident from increased cell viability. The HPLC profile revealed that except P. amarus, the other extracts did not contain phyllanthin and hypophyllanthin.
P. urinaria and P. maderaspatensis demonstrated dose-dependent hepatoprotective activity and hence, can provide promising therapeutic interventions against chemical–induced liver damage.
PMCID: PMC3173898  PMID: 21969794
Cytoprotection; hepatotoxicity; lipid peroxidation; methanolic plant extracts; silymarin
5.  Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils 
The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs) with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µg/mL). There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells). The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS) inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µg/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µg/mL). Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µg/mL). Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.
PMCID: PMC3659478  PMID: 23737840
6.  Phyllanthus spp. Induces Selective Growth Inhibition of PC-3 and MeWo Human Cancer Cells through Modulation of Cell Cycle and Induction of Apoptosis 
PLoS ONE  2010;5(9):e12644.
Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells.
Methodology/Principal Findings
Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC50) values of 150–300 µg/ml for aqueous extract and 50–150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear “ladder” fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants.
Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent.
PMCID: PMC2935893  PMID: 20838625
7.  Inhibition of MAPKs, Myc/Max, NFκB, and Hypoxia Pathways by Phyllanthus Prevents Proliferation, Metastasis and Angiogenesis in Human Melanoma (MeWo) Cancer Cell Line 
Background: Melanoma is the most fatal form of skin cancer. Different signalling pathways and proteins will be differentially expressed to pace with the tumour growth. Thus, these signalling molecules and proteins are become potential targets to halt the progression of cancer. The present works were attempted to investigate the underlying molecular mechanisms of anticancer effects of Phyllanthus (P.amarus, P.niruri, P.urinaria and P.watsonii) on skin melanoma, MeWo cells. Methods: The ten cancer-related pathways reporter array was performed by transfection of plasmid construct of transcription factor-responsive reporter of each pathway in MeWo cells. The affected pathways in MeWo cells after treatment of Phyllanthus extracts were determined using luciferase assay. Western blot, 2D gel electrophoresis and mass spectrometry analysis were performed to identity and confirm the affected proteins and signalling molecules in treated cells. Results: The ten-pathway reporter array revealed five different cancer-related signalling pathways were altered by Phyllanthus species in MeWo cells; NFκB, Myc/Max, Hypoxia, MAPK/ERK and MAPK/JNK (p<0.05). Western blot revealed that their intracellular signalling molecules including pan-Ras, c-Raf, RSK, phospho-Elk1, c-myc, Akt, HIF-1α, Bcl-2, and VEGF were down-regulated with concurrent of up-regulation; Bax, phospho-JNK-1/2 and phospho-GSK3β, in MeWo cells upon Phyllanthus treatment (p<0.05). Proteomics-based approach was performed and MS/MS results revealed that 52 differential expressed proteins were identified (p<0.05) and involved in tumour growth, metastasis, apoptosis, glycogenesis and glycolysis, angiogenesis, protein synthesis and energy metabolism. Conclusion: This study provides insight into the regulation on multiple survival signalling pathways by Phyllanthus in melanoma and might be a therapeutic target for cancer treatment.
PMCID: PMC4003541  PMID: 24782645
Phyllanthus; apoptosis; signaling; melanoma.
8.  Correlation between the major components of Phyllanthus amarus and Phyllanthus urinaria and their inhibitory effects on phagocytic activity of human neutrophils 
Recently, we have highlighted the immunomodulatory activity of the standardized extracts of Phyllanthus amarus and P. urinaria. The present study was carried out to correlate between the prevalent constituents of the herbs and their inhibitory effects on phagocytic activity of human neutrophils.
The compounds, gallic acid, ellagic acid, corilagin, geraniin, phyllanthin and hypophyllanthin were identified and quantitatively analyzed in the extracts of Phyllanthus amarus and P. urinaria obtained from Malaysia and Indonesia by using a validated reversed phase high performance liquid chromatography (RP-HPLC) method. The standardized extracts and the pure compounds were evaluated for their effects on chemotaxis, β2 integrin (CD18) expression, phagocytosis and chemiluminescence of human phagocytes. Chemotactic activity was assessed using the Boyden chamber technique, inhibition of CD18 expression and phagocytic ability were tested with the aid of flow cytometry, while effect on the respiratory burst was investigated using a luminol-based chemiluminescence assay.
All plant extracts strongly inhibited migration of the phagocytes with the Malaysian P. amarus depicting the highest inhibitory activity. Amongst the compounds tested, geraniin demonstrated the strongest inhibitory activity on chemotaxis of polymorphonuclear leukocytes (PMNs) and monocytes with IC50 values of 1.09 and 1.69 μM, respectively, which were lower than that of ibuprofen. All plant extracts and pure compounds exhibited high inhibitory activity on the oxidative burst of zymosan and PMA stimulated leukocytes. Geraniin and corilagin exhibited exceptionally strong inhibition on the reactive oxygen species (ROS) activity with IC50 values lower than aspirin. The plant extracts exhibited moderate inhibition of E. coli uptake by monocytes but weak effect on PMNs. Of all the compounds, phyllanthin at 50 μg/mL exhibited the highest engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for PMNs and monocytes, respectively. All plants and compounds tested possessed weak effect on CD18 expression on leukocytes except for hypophyllanthin and phyllanthin which exhibited significant inhibitory effect.
The strong inhibition of the extracts on the phagocytic activity of neutrophils was due to the presence of their major constituents especially geraniin, corilagin, phyllanthin and hypophllanthin which were able to modulate the innate response of phagocytes at different steps.
PMCID: PMC4236485
Phyllanthus amarus; Phyllanthus urinaria; Immunomodulatory effects; Phagocytosis; Phyllanthin; Hypophyllanthin; Geraniin; Corilagin
9.  Phyllanthus Suppresses Prostate Cancer Cell, PC-3, Proliferation and Induces Apoptosis through Multiple Signalling Pathways (MAPKs, PI3K/Akt, NFκB, and Hypoxia) 
Phyllanthus is a traditional medicinal plant that has been found to have antihepatitis, antibacterial, and anticancer properties. The present studies were to investigate the in vitro molecular mechanisms of anticancer effects of Phyllanthus (P. amarus, P. niruri, P. urinaria, and P. watsonii) plant extracts in human prostate adenocarcinoma. The cancer ten-pathway reporter array was performed and revealed that the expression of six pathway reporters were significantly decreased (Wnt, NFκB, Myc/Max, hypoxia, MAPK/ERK, and MAPK/JNK) in PC-3 cells after treatment with Phyllanthus extracts. Western blot was conducted and identified several signalling molecules that were affected in the signalling pathways including pan-Ras, c-Raf, RSK, Elk1, c-Jun, JNK1/2, p38 MAPK, c-myc, DSH, β-catenin, Akt, HIF-1α, GSK3β, NFκB p50 and p52, Bcl-2, Bax, and VEGF, in treated PC-3 cells. A proteomics-based approach, 2D gel electrophoresis, was performed, and mass spectrometry (MS/MS) results revealed that there were 72 differentially expressed proteins identified in treated PC-3 cells and were involved in tumour cell adhesion, apoptosis, glycogenesis and glycolysis, metastasis, angiogenesis, and protein synthesis and energy metabolism. Overall, these findings suggest that Phyllanthus can interfere with multiple signalling cascades involved in tumorigenesis and be used as a potential therapeutic candidate for treatment of cancer.
PMCID: PMC3652183  PMID: 23690850
Shock (Augusta, Ga.)  2010;34(2):150-161.
Increased apoptotic cell death is believed to play a pathological role in septic patients and experimental animals. Apoptosis can be induced by either a cell death receptor (extrinsic) or mitochondrial (intrinsic) pathway. Bid, a pro-apoptotic member of the Bcl-2 family, is thought to mediate cross talk between the extrinsic and intrinsic pathways of apoptosis; however, little is known about the action of Bid in the development of apoptosis and organ specific tissue damage/cell death as seen in polymicrobial sepsis. Our results show that following the onset of sepsis, tBid (the active form of Bid) is significantly increased in mitochondrial fractions of the thymus, spleen, Peyer’s patches and liver and that Fas or FasL deficiency blocks Bid activation in various tissues after septic challenge. Increased Bid activation is correlated with increased active caspase-3, -9 and apoptosis during sepsis. Bid deficient mice exhibit significantly reduced apoptosis in the thymus, spleen and Peyer’s patches compared with background mice after sepsis. Furthermore, Bid deficient mice had significantly reduced systemic and local inflammatory cytokine levels and improved survival after sepsis. These data support not only the contribution of Bid to sepsis-induced apoptosis and the onset of septic morbidity/mortality, but also the existence of a bridge between extrinsic apoptotic signals, e.g., FasL:Fas, TNF:TNFR, etc., and the intrinsic mitochondrial pathway via Bid-tBid activation during sepsis.
PMCID: PMC2909339  PMID: 20023601
Fas-FasL; cytokine; chemokine; Bcl-2; mice
11.  Bcl-XL Inhibits Membrane Permeabilization by Competing with Bax 
PLoS Biology  2008;6(6):e147.
Although Bcl-XL and Bax are structurally similar, activated Bax forms large oligomers that permeabilize the outer mitochondrial membrane, thereby committing cells to apoptosis, whereas Bcl-XL inhibits this process. Two different models of Bcl-XL function have been proposed. In one, Bcl-XL binds to an activator, thereby preventing Bax activation. In the other, Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, as all three proteins are present simultaneously. We examined the mechanism of Bax activation by tBid and its inhibition by Bcl-XL using full-length recombinant proteins and measuring permeabilization of liposomes and mitochondria in vitro. Our results demonstrate that Bcl-XL and Bax are functionally similar. Neither protein bound to membranes alone. However, the addition of tBid recruited molar excesses of either protein to membranes, indicating that tBid activates both pro- and antiapoptotic members of the Bcl-2 family. Bcl-XL competes with Bax for the activation of soluble, monomeric Bax through interaction with membranes, tBid, or t-Bid-activated Bax, thereby inhibiting Bax binding to membranes, oligomerization, and membrane permeabilization. Experiments in which individual interactions were abolished by mutagenesis indicate that both Bcl-XL–tBid and Bcl-XL–Bax binding contribute to the antiapoptotic function of Bcl-XL. By out-competing Bax for the interactions leading to membrane permeabilization, Bcl-XL ties up both tBid and Bax in nonproductive interactions and inhibits Bax binding to membranes. We propose that because Bcl-XL does not oligomerize it functions like a dominant-negative Bax in the membrane permeabilization process.
Author Summary
During development and under stress, cells can become committed to die via programmed cell death (apoptosis). In most cases, the permeabilization of the outer mitochondrial membrane is a key component of this commitment. The membrane permeablization step is both positively and negatively regulated by members of the Bcl-2 family of proteins. One member of this protein family with only a BH3 region, such as tBid, activates another family member, Bax, causing it to form large complexes that generate membrane-spanning pores, hence making the membrane permeable. Antiapoptotic members of the Bcl-2 family, such as Bcl-XL, are structurally similar to Bax but inhibit the membrane permeabilization process by an unknown mechanism. Two mutually exclusive models have been proposed to explain how the Bcl-2 family is operating: one states that Bcl-XL binds to tBid, thereby preventing Bax activation, while the second suggests that Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, where multiple members of all three protein families are present simultaneously. Here, we describe an in vitro system containing the three recombinant proteins and the use of mutagenesis to selectively remove individual interactions. We show that Bcl-XL inhibits Bax by competing with it for binding to membranes, tBid, and activated Bax. Because Bcl-XL does not form pores, it inhibits apoptosis by acting as if it is a dominant-negative version of Bax.
Bcl-XL and Bax are structurally similar members of the Bcl-2 family of cell-death-related proteins, and they compete for binding to membranes, as well as to Bcl-2 family member tBid and activated Bax. Unlike Bax, Bcl-XL is unable to oligomerize and form pores in membranes, so it inhibits membrane permeabilization--a key step during commitment to apoptosis--by functioning like a dominant-negative Bax.
PMCID: PMC2422857  PMID: 18547146
12.  Mechanistic Issues of the Interaction of the Hairpin-Forming Domain of tBid with Mitochondrial Cardiolipin 
PLoS ONE  2010;5(2):e9342.
The pro-apoptotic effector Bid induces mitochondrial apoptosis in synergy with Bax and Bak. In response to death receptors activation, Bid is cleaved by caspase-8 into its active form, tBid (truncated Bid), which then translocates to the mitochondria to trigger cytochrome c release and subsequent apoptosis. Accumulating evidence now indicate that the binding of tBid initiates an ordered sequences of events that prime mitochondria from the action of Bax and Bak: (1) tBid interacts with mitochondria via a specific binding to cardiolipin (CL) and immediately disturbs mitochondrial structure and function idependently of its BH3 domain; (2) Then, tBid activates through its BH3 domain Bax and/or Bak and induces their subsequent oligomerization in mitochondrial membranes. To date, the underlying mechanism responsible for targeting tBid to mitochondria and disrupting mitochondrial bioenergetics has yet be elucidated.
Principal Findings
The present study investigates the mechanism by which tBid interacts with mitochondria issued from mouse hepatocytes and perturbs mitochondrial function. We show here that the helix αH6 is responsible for targeting tBid to mitochondrial CL and disrupting mitochondrial bioenergetics. In particular, αH6 interacts with mitochondria through electrostatic interactions involving the lysines 157 and 158 and induces an inhibition of state-3 respiration and an uncoupling of state-4 respiration. These changes may represent a key event that primes mitochondria for the action of Bax and Bak. In addition, we also demonstrate that tBid required its helix αH6 to efficiently induce cytochrome c release and apoptosis.
Our findings provide new insights into the mechanism of action of tBid, and particularly emphasize the importance of the interaction of the helix αH6 with CL for both mitochondrial targeting and pro-apoptotic activity of tBid. These support the notion that tBid acts as a bifunctional molecule: first, it binds to mitochondrial CL via its helix αH6 and destabilizes mitochondrial structure and function, and then it promotes through its BH3 domain the activation and oligomerization of Bax and/or Bak, leading to cytochrome c release and execution of apoptosis. Our findings also imply an active role of the membrane in modulating the interactions between Bcl-2 proteins that has so far been underestimated.
PMCID: PMC2825271  PMID: 20179769
13.  Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines 
PLoS ONE  2011;6(6):e20994.
Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells.
Methodology/Principal Findings
Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts.
The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence, Phyllanthus could be a valuable candidate in the treatment of metastatic cancers.
PMCID: PMC3116853  PMID: 21698198
14.  c-Jun NH2-terminal kinase-induced proteasomal degradation of c-FLIPL/S and Bcl2 sensitize prostate cancer cells to Fas- and mitochondria-mediated apoptosis by tetrandrine 
Biochemical pharmacology  2014;91(4):457-473.
Tetrandrine, a constituent of Chinese herb Stephania tetrandra, causes cell death in prostate cancer, but the molecular mechanisms leading to apoptosis is not known. Here we demonstrated that tetrandrine selectively inhibits the growth of prostate cancer PC3 and DU145 cells compared to normal prostate epithelial PWR-1E cells. Tetrandrine-induced cell death in prostate cancer cells is caused by reactive oxygen species (ROS)-mediated activation of c-Jun NH2-terminal kinase (JNK1/2). JNK1/2-mediated proteasomal degradation of c-FLIPL/S and Bcl2 proteins are key events in the sensitization of prostate cancer cells to Fas- and mitochondria-mediated apoptosis by tetrandrine. Tetrandrine-induced JNK1/2 activation caused the translocation of Bax to mitochondria by disrupting its association with Bcl2 which was accompanied by collapse of mitochondrial membrane potential (MMP), cytosolic release of cytochrome c and Smac, and apoptotic cell death. Additionally, tetrandrine-induced JNK1/2 activation increased the phosphorylation of Bcl2 at Ser70 and facilitated its degradation via the ubiquitin-mediated proteasomal pathway. In parallel, tetrandrine-mediated ROS generation also caused the induction of ligand-independent Fas-mediated apoptosis by activating procaspase-8 and Bid cleavage. Inhibition of procaspase-8 activation attenuated the cleavage of Bid, loss of MMP and caspase-3 activation suggest that tetrandrine-induced Fas-mediated apoptosis is associated with the mitochondrial pathway. Furthermore, most of the signaling effects of tetrandrine on apoptosis were significantly attenuated in the presence of antioxidant N-acetyl-L-cysteine, thereby confirming the involvement of ROS in these events. In conclusion, the results of the present study indicate that tetrandrine-induced apoptosis in prostate cancer cells is initiated by ROS generation and that both intrinsic and extrinsic pathway contributes to cell death.
PMCID: PMC4171211  PMID: 25181458
Tetrandrine; prostate cancer; apoptosis; reactive oxygen species; ubiquitination
The Journal of biological chemistry  2006;281(47):35802-35811.
During initiation of apoptosis, Bcl-2 family proteins regulate the permeability of mitochondrial outer membrane. BH3-only protein, tBid, activates pro-apoptotic Bax to release cytochrome c from mitochondria. tBid also activates anti-apoptotic Bcl-2 in the mitochondrial outer membrane, changing it from a single-spanning to a multi-spanning conformation that binds the active Bax and inhibits cytochrome c release. However, it is not known whether other mitochondrial proteins are required to elicit the tBid-induced Bcl-2 conformational alteration. To define the minimal components that are required for the functionally important Bcl-2 conformational alteration, we reconstituted the reaction using purified proteins and liposomes. We found that purified tBid was sufficient to induce a conformational alteration in the liposome-tethered, but not cytosolic Bcl-2, resulting in a multi-spanning form that is similar to the one found in the mitochondrial outer membrane of drug treated cells. Mutations that abolished tBid/Bcl-2 interaction also abolished the conformational alteration, demonstrating that a direct tBid/Bcl-2 interaction at the membrane is both required and sufficient to elicit the conformational alteration. Furthermore, active Bax also elicited the Bcl-2 conformational alteration. Bcl-2 mutants that displayed increased or decreased activity in the conformational alteration assay, showed corresponding activities in inhibiting pore formation by Bax in vitro, and in preventing apoptosis in vivo. Thus, there is a strong correlation between the direct interaction of membrane-bound Bcl-2 and tBid with activation of Bcl-2 in vitro and in vivo.
PMCID: PMC2825177  PMID: 17005564
16.  MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria 
Nature cell biology  2010;12(6):553-562.
The BH3-only BID (BH3-interacting domain death agonist) protein has a critical function in the death-receptor pathway in the liver by triggering mitochondrial outer membrane permeabilization (MOMP). Here we show that MTCH2/MIMP (mitochondrial carrier homologue 2/Met-induced mitochondrial protein), a novel truncated BID (tBID)-interacting protein, is a surface-exposed outer mitochondrial membrane protein that facilitates the recruitment of tBID to mitochondria. Knockout of MTCH2/MIMP in embryonic stem cells and in mouse embryonic fibroblasts hinders the recruitment of tBID to mitochondria, the activation of Bax/Bak, MOMP, and apoptosis. Moreover, conditional knockout of MTCH2/MIMP in the liver decreases the sensitivity of mice to Fas-induced hepatocellular apoptosis and prevents the recruitment of tBID to liver mitochondria both in vivo and in vitro. In contrast, MTCH2/MIMP deletion had no effect on apoptosis induced by other pro-apoptotic Bcl-2 family members and no detectable effect on the outer membrane lipid composition. These loss-of-function models indicate that MTCH2/MIMP has a critical function in liver apoptosis by regulating the recruitment of tBID to mitochondria.
PMCID: PMC4070879  PMID: 20436477
17.  ABT-737 promotes tBid mitochondrial accumulation to enhance TRAIL-induced apoptosis in glioblastoma cells 
Cell Death & Disease  2012;3(11):e432-.
To search for novel strategies to enhance the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis pathways in glioblastoma, we used the B-cell lymphoma 2/Bcl2-like 2-inhibitor ABT-737. Here we report that ABT-737 and TRAIL cooperate to induce apoptosis in several glioblastoma cell lines in a highly synergistic manner (combination index <0.1). Interestingly, the concerted action of ABT-737 and TRAIL to trigger the accumulation of truncated Bid (tBid) at mitochondrial membranes is identified as a key underlying mechanism. ABT-737 and TRAIL cooperate to cleave BH3-interacting domain death agonist (Bid) into its active fragment tBid, leading to increased accumulation of tBid at mitochondrial membranes. Coinciding with tBid accumulation, the activation of Bcl2-associated X protein (Bax), loss of mitochondrial membrane potential, release of cytochrome-c and second mitochondria-derived activator of caspase (Smac) into the cytosol and caspase activation are strongly increased in cotreated cells. Of note, knockdown of Bid significantly decreases ABT-737- and TRAIL-mediated Bax activation and apoptosis. Also, caspase-3 silencing reduces ABT-737- and TRAIL-induced Bid cleavage and apoptosis, indicating that a caspase-3-driven, mitochondrial feedback loop contributes to Bid processing. Importantly, ABT-737 profoundly enhances TRAIL-triggered apoptosis in primary cultured glioblastoma cells derived from tumor material, underlining the clinical relevance. Also, ABT-737 acts in concert with TRAIL to suppress tumor growth in an in vivo glioblastoma model. In conclusion, the rational combination of ABT-737 and TRAIL cooperates to trigger tBid mitochondrial accumulation and apoptosis. This approach presents a promising strategy for targeting the apoptosis pathways in glioblastoma, which warrants further investigation.
PMCID: PMC3542599  PMID: 23190604
apoptosis; TRAIL; ABT-737
18.  Apoptosis-inducing factor (AIF) is targeted in IFN-α2a-induced Bid mediated apoptosis through Bak activation in ovarian cancer cells 
Biochimica et Biophysica Acta  2012;1823(8):1378-1388.
Previously we have shown that interferon (IFN)-α induced apoptosis is predominantly mediated by the upregulation of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) via the caspase-8 pathway. It was also shown that recruitment of mitochondria in IFN-α induced apoptosis involves the cleavage of BH3 interacting domain death agonist (Bid) to truncated Bid (tBid). In the present study, we demonstrate that tBid induced by IFN-α2a activates mitochondrial Bak to trigger the loss of mitochondrial membrane integrity, consequently causing release of apoptosis-inducing factor (AIF) in ovarian cancer cells, OVCAR3. AIF translocates from the mitochondria to the nucleus and induces nuclear fragmentation and cell death. Both a small molecule Bid inhibitor (BI-6C9) or Bid-RNA interference (RNAi) preserved mitochondrial membrane potential, prevented nuclear translocation of AIF, and abrogated IFN-α2a-induced cell death. Cell death induced by tBid was inhibited by AIF-RNAi, indicating that caspase-independent AIF signaling is the main pathway through which Bid mediates cell death. This was further supported by experiments showing that BI-6C9 did not prevent the release of cytochrome c from mitochondria to cytosol, while the release of AIF was prevented. In conclusion, IFN-α2a-induced apoptosis is mediated via the mitochondria-associated pathway involving the cleavage of Bid followed by AIF release that involves Bak activation and translocation of AIF from the mitochondria to the nucleus in OVCAR3 cells.
PMCID: PMC3389262  PMID: 22683989
IFN-α; apoptosis; mitochondria; AIF; Bid; Bak
19.  Multiple partners can kiss-and-run: Bax transfers between multiple membranes and permeabilizes those primed by tBid 
Cell Death & Disease  2014;5(6):e1277-.
During apoptosis Bid and Bax are sufficient for mitochondrial outer membrane permeabilization, releasing pro-apoptotic proteins such as cytochrome c and Smac/Diablo into the cytoplasm. In most cells, both Bid and Bax are cytoplasmic but bind to mitochondrial outer membranes to exert pro-apoptotic functions. Binding to membranes is regulated by cleavage of Bid to truncated Bid (tBid), by conformation changes in tBid and Bax, and by interactions with other proteins. At least at the peripherally bound stage, binding is reversible. Therefore, regulation of apoptosis is closely linked with the interactions of tBid and Bax with mitochondria. Here we use fluorescence techniques and cell-free systems containing mitochondria or liposomes that faithfully mimic tBid/Bax-dependent membrane permeabilization to study the dynamic interactions of the proteins with membranes. We confirm that the binding of both proteins to the membrane is reversible by quantifying the binding affinity of proteins for the membrane. For Bax, both peripherally bound (inactive) and oligomerized (active) proteins migrate between membranes but much slower than and independent of tBid. When re-localized to a new membrane, Bax inserts into and permeabilizes it only if primed by an activator. In the case of tBid, the process of transfer is synergetic with Bax in the sense that tBid ‘runs' faster if it has been ‘kissed' by Bax. Furthermore, Mtch2 accelerates the re-localization of tBid at the mitochondria. In contrast, binding to Bcl-XL dramatically impedes tBid re-localization by lowering the off-rate threefold. Our results suggest that the transfer of activated tBid and Bax to different mitochondria is governed by dynamic equilibria and potentially contributes more than previously anticipated to the dissemination of the permeabilization signal within the cell.
PMCID: PMC4611711  PMID: 24901048
Bcl-2 family; Bax; tBid; liposomes; mitochondria; fluorescence
20.  Caveolin-1 mediates Fas–BID signaling in hyperoxia-induced apoptosis 
Free radical biology & medicine  2011;50(10):1252-1262.
Fas-mediated apoptosis is a crucial cellular event. Fas, the Fas-associated death domain, and caspase 8 form the death-inducing signaling complex (DISC). Activated caspase 8 mediates the extrinsic pathways and cleaves cytosolic BID. Truncated BID (tBID) translocates to the mitochondria, facilitates the release of cytochrome c, and activates the intrinsic pathways. However, the mechanism causing these DISC components to aggregate and form the complex remains unclear. We found that Cav-1 regulated Fas signaling and mediated the communication between extrinsic and intrinsic pathways. Shortly after hyperoxia (4 h), the colocalization and interaction of Cav-1 and Fas increased, followed by Fas multimer and DISC formation. Deletion of Cav-1 (Cav-1−/−) disrupted DISC formation. Further, Cav-1 interacted with BID. Mutation of Cav-1 Y14 tyrosine to phenylalanine (Y14F) disrupted the hyperoxia-induced interaction between BID and Cav-1 and subsequently yielded a decreased level of tBID and resistance to hyperoxia-induced apoptosis. The reactive oxygen species (ROS) scavenger N-acetylcysteine decreased the Cav-1–Fas interaction. Deletion of glutathione peroxidase-2 using siRNA aggravated the BID–Cav-1 interaction and tBID formation. Taken together, these results indicate that Cav-1 regulates hyperoxia/ROS-induced apoptosis through interactions with Fas and BID, probably via Fas palmitoylation and Cav-1 Y14 phosphorylation, respectively.
PMCID: PMC4134776  PMID: 21382479
Hyperoxia; Fas; Caveolin-1; Apoptosis; Free radicals
21.  BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane 
Cell Death and Differentiation  2010;18(3):538-548.
Caspase-8 stably inserts into the mitochondrial outer membrane during extrinsic apoptosis. Inhibition of caspase-8 enrichment on the mitochondria impairs caspase-8 activation and prevents apoptosis. However, the function of active caspase-8 on the mitochondrial membrane remains unknown. In this study, we have identified a native complex containing caspase-8 and BID on the mitochondrial membrane, and showed that death receptor activation by Fas or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced the cleavage of BID (tBID formation) within this complex. tBID then shifted to separate mitochondria-associated complexes that contained other BCL-2 family members, such as BAK and BCL-XL. We report that cells stabilize active caspase-8 on the mitochondria in order to specifically target mitochondria-associated BID, and that BID cleavage on the mitochondria is essential for caspase-8-induced cytochrome c release. Our findings indicate that during extrinsic apoptosis, caspase-8 can specifically target BID where it is mostly needed, on the surface of mitochondria.
PMCID: PMC3132005  PMID: 21072056
apoptosis; BID; caspase-8; Fas; TRAIL
22.  BH3-Only Protein Bid Participates in the Bcl-2 Network in Healthy Liver Cells 
Hepatology (Baltimore, Md.)  2009;50(6):1972-1980.
Bcl-2 homology domain 3 (BH3)-only protein Bid is posttranslationally cleaved by caspase-8 into its truncated form (tBid) and couples with stress signals to the mitochondrial cell death pathway. However, the physiological relevance of Bid is not clearly understood. Hepatocyte-specific knockout (KO) of Bcl-xL leads to naturally-occurring apoptosis despite co-expression of Mcl-1, which shares a similar anti-apoptotic function. We generated Bcl-xL KO, Bcl-xL/Bid double KO, Bcl-xL/Bak double KO, Bcl-xL/Bax double KO, and Bcl-xL/Bak/Bax triple KO mice and found that hepatocyte apoptosis caused by Bcl-xL deficiency was completely dependent on Bak and Bax, and surprisingly on Bid. This indicated that, in the absence of Bid, Bcl-xL is not required for the integrity of differentiated hepatocytes, suggesting a complicated interaction between core Bcl-2 family proteins and BH3-only proteins even in a physiological setting. Indeed, a small but significant level of tBid was present in wild-type liver under physiological conditions. tBid was capable of binding to Bcl-xL and displacing Bak and Bax from Bcl-xL, leading to release of cytochrome c from wild-type mitochondria. Bcl-xL–deficient mitochondria were more susceptible to tBid-induced cytochrome c release. Finally, administration of ABT-737, a pharmacological inhibitor of Bcl-2/Bcl-xL, caused Bak/Bax-dependent liver injury, but this was clearly ameliorated with a Bid KO background.
Bid, originally considered to be a sensor for apoptotic stimuli, is constitutively active in healthy liver cells and is involved in the Bak/Bax-dependent mitochondrial cell death pathway. Healthy liver cells are addicted to a single Bcl-2–like molecule because of BH3 stresses, and therefore special caution may be required for the use of the Bcl-2 inhibitor for cancer therapy.
PMCID: PMC3560855  PMID: 19839062
23.  Inhibitory effect of Phyllanthus urinaria L. extract on the replication of lamivudine-resistant hepatitis B virus in vitro 
Long-term treatment of chronic hepatitis B (CHB) with nucleos(t)ide analogs results in the emergence of drug-resistant hepatitis B virus (HBV) harboring mutations in the polymerase (P) gene. The Phyllanthus extract has anti-HBV activity; however, its antiviral activity against lamivudine (LMV)-resistant mutants has not been examined.
HBV harboring LMV-resistant mutations (rtM204I, rtM204V, and rtM204S) in the P gene at the YMDD (203tyrosine-methionine-aspartate-aspartate206) reverse transcriptase (RT) active site were generated and their sensitivity to Phyllanthus urinaria koreanis extract examined. Southern blotting and real-time PCR were used to determine the concentration of plant extract required to inhibit HBV DNA synthesis by 50 and 90 % (EC50 and EC90, respectively). An enzyme-linked immunosorbent assay was used to measure the EC50 of HBV surface antigen (HBsAg) and HBV core antigen (HBcAg) secretion, and the 50 % cytotoxic concentration of the extract was measured in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Real-time RT-PCR was used to measure mRNA expression levels.
The expression of intracellular HBV DNAs in HBV WT- or mutant-transfected HepG2 cells decreased upon treatment with Phyllanthus extract. The secretion of HBsAg and HBcAg also fell in a dose-dependent manner. Phyllanthus extract induced interferon-beta (IFN-β), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) mRNA expression in HBV WT-transfected HepG2 cells, possibly via activation of extracellular signal-regulated kinases and c-jun N-terminal kinases and the induction of retinoic acid inducible gene-I, toll-like receptor 3, myeloid differentiation primary response gene 88, and/or tumor necrosis factor receptor-associated factor 6 gene expression. HBV transfection in the absence of extract or exposure of cells to extract alone did not trigger these signaling cascades.
Phyllanthus extract inhibited HBV DNA synthesis and HBsAg and HBcAg secretion by replicating cells harboring HBV wild-type and LMV-resistant mutants, likely by inducing the expression of IFN-β, COX-2, and IL-6. These data indicate that Phyllanthus extract may be useful as an alternative therapeutic agent for the treatment of drug-resistant CHB patients.
Electronic supplementary material
The online version of this article (doi:10.1186/s12906-015-0792-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4518506  PMID: 26220282
Phyllanthus extract; Hepatitis B virus DNA synthesis; Lamivudine-resistant HBV
24.  α-Mangostin from Cratoxylum arborescens demonstrates apoptogenesis in MCF-7 with regulation of NF-κB and Hsp70 protein modulation in vitro, and tumor reduction in vivo 
Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
PMCID: PMC4189707  PMID: 25302018
α-Mangostin; apoptosis; mitochondria; protein array; caspace 3/7; NF-κB
25.  Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens 
Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments.
α-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-κB) was also analyzed.
Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus.
Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-κB and HSP70 signaling pathways.
PMCID: PMC4227646  PMID: 25395836
mitochondria; protein array; caspase-3/7

Results 1-25 (1349101)