PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (532624)

Clipboard (0)
None

Related Articles

1.  Proteomic Analysis of Cattle Tick Rhipicephalus (Boophilus) microplus Saliva: A Comparison between Partially and Fully Engorged Females 
PLoS ONE  2014;9(4):e94831.
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.
doi:10.1371/journal.pone.0094831
PMCID: PMC3998978  PMID: 24762651
2.  Bm86 homologues and novel ATAQ proteins with multiple epidermal growth factor (EGF)-like domains from hard and soft ticks☆ 
International Journal for Parasitology  2010;40(14):1587-1597.
Graphical abstract
Tick control on livestock relies principally on the use of acaricides but the development of acaricide resistance and concerns for environmental pollution underscore the need for alternative control methods, for instance through the use of anti-tick vaccines. Two commercial vaccines based on the recombinant Bm86 protein from Rhipicephalus (Boophilus) microplus ticks were developed. Partial protection of the Bm86 vaccine against other Rhipicephalus (Boophilus) and Hyalomma tick species suggests that the efficacy of a Bm86-based vaccine may be enhanced when based on the orthologous recombinant Bm86 antigen. We therefore identified and analysed the Bm86 homologues from species representing the main argasid and ixodid tick genera, including two from the prostriate Ixodes ricinus tick species. A novel protein from metastriate ticks with multiple epidermal growth factor (EGF)-like domains which is structurally related to Bm86 was identified by using a 3′ rapid amplification of cDNA ends (3′-RACE) method with a degenerate primer based on a highly conserved region of Bm86 and its orthologues. This second protein was named ATAQ after a part of its signature peptide. Quantitative reverse transcriptase-PCR showed that ATAQ proteins are expressed in both midguts and Malpighian tubules, in contrast to Bm86 orthologues which are expressed exclusively in tick midguts. Furthermore, expression of this protein over the life stages of R. microplus and Rhipicephalus appendiculatus was more continuous compared with Bm86. Although a highly effective vaccine antigen, gene silencing of Bm86 by RNA interference (RNAi) produced only a weak phenotype. Similarly the RNAi phenotype of Rhipicephalus evertsi evertsi females in which the expression of Ree86, ReeATAQ or a combination of both genes was silenced by RNAi did not differ from a mock-injected control group. The vaccine potential of ATAQ proteins against tick infestations is yet to be evaluated.
doi:10.1016/j.ijpara.2010.06.003
PMCID: PMC2998001  PMID: 20647015
Bm86; Homologues; ATAQ; Tick; Vaccine; RNA interference; Expression profile
3.  Proteomics Approach to the Study of Cattle Tick Adaptation to White Tailed Deer 
BioMed Research International  2013;2013:319812.
Cattle ticks, Rhipicephalus (Boophilus) microplus, are a serious threat to animal health and production. Some ticks feed on a single host species while others such as R. microplus infest multiple hosts. White tailed deer (WTD) play a role in the maintenance and expansion of cattle tick populations. However, cattle ticks fed on WTD show lower weight and reproductive performance when compared to ticks fed on cattle, suggesting the existence of host factors that affect tick feeding and reproduction. To elucidate these factors, a proteomics approach was used to characterize tick and host proteins in R. microplus ticks fed on cattle and WTD. The results showed that R. microplus ticks fed on cattle have overrepresented tick proteins involved in blood digestion and reproduction when compared to ticks fed on WTD, while host proteins were differentially represented in ticks fed on cattle or WTD. Although a direct connection cannot be made between differentially represented tick and host proteins, these results suggested that differentially represented host proteins together with other host factors could be associated with higher R. microplus tick feeding and reproduction observed in ticks fed on cattle.
doi:10.1155/2013/319812
PMCID: PMC3865695  PMID: 24364032
4.  Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and Bos taurus cattle 
BMC Genomics  2010;11:437.
Background
Rhipicephalus (Boophilus) microplus is an obligate blood feeder which is host specific to cattle. Existing knowledge pertaining to the host or host breed effects on tick transcript expression profiles during the tick - host interaction is poor.
Results
Global analysis of gene expression changes in whole R. microplus ticks during larval, pre-attachment and early adult stages feeding on Bos indicus and Bos taurus cattle were compared using gene expression microarray analysis. Among the 13,601 R. microplus transcripts from BmiGI Version 2 we identified 297 high and 17 low expressed transcripts that were significantly differentially expressed between R. microplus feeding on tick resistant cattle [Bos indicus (Brahman)] compared to R. microplus feeding on tick susceptible cattle [Bos taurus (Holstein-Friesian)] (p ≤ 0.001). These include genes encoding enzymes involved in primary metabolism, and genes related to stress, defence, cell wall modification, cellular signaling, receptor, and cuticle formation. Microarrays were validated by qRT-PCR analysis of selected transcripts using three housekeeping genes as normalization controls.
Conclusion
The analysis of all tick stages under survey suggested a coordinated regulation of defence proteins, proteases and protease inhibitors to achieve successful attachment and survival of R. microplus on different host breeds, particularly Bos indicus cattle. R. microplus ticks demonstrate different transcript expression patterns when they encounter tick resistant and susceptible breeds of cattle. In this study we provide the first transcriptome evidence demonstrating the influence of tick resistant and susceptible cattle breeds on transcript expression patterns and the molecular physiology of ticks during host attachment and feeding.
The microarray data used in this analysis have been submitted to NCBI GEO database under accession number GSE20605 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20605.
doi:10.1186/1471-2164-11-437
PMCID: PMC3224725  PMID: 20637126
5.  Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages 
Parasites & Vectors  2010;3:103.
Background
Tick parasitism is a major impediment for cattle production in many parts of the world. The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an obligate hematophagous parasite of domestic and wild animals that serves as vector of infectious agents lethal to cattle. Tick saliva contains molecules evolved to modulate host innate and adaptive immune responses which facilitates blood feeding and pathogen transmission. Tick feeding promotes CD4 T cell polarization to a Th2 profile usually accompanied by down-regulation of Th1 cytokines through as yet undefined mechanisms. Co-stimulatory molecules on antigen presenting cells are central to development of T cell responses including Th1 and Th2 responses. Tick induced changes to antigen presenting cell signal transduction pathways are largely unknown. Here we document the ability of R. microplus salivary gland extracts (SGE) to effect differential CD86 expression.
Results
We examined changes in co-stimulatory molecule expression in murine RAW 264.7 cells in response to R. microplus SGE exposure in the presence of the toll-like receptor 4 (TLR4) ligand, LPS. After 24 hrs, CD86, but not CD80, was preferentially up-regulated on mouse macrophage RAW 264.7 cells when treated with SGE and then LPS, but not SGE alone. CD80 and CD40 expression was increased with LPS, but the addition of SGE did not alter expression. Higher concentrations of SGE were less effective at increasing CD86 RNA expression. The addition of mitogen or extracellular kinase (MEK) inhibitor, PD98059, significantly reduced the ability for SGE to induce CD86 expression, indicating activation of MEK is necessary for SGE induced up-regulation.
Conclusions
Molecules in SGE of R. microplus have a concentration-dependent effect on differential up-regulation of CD86 in a macrophage cell line activated by the TLR4 ligand, LPS. This CD86 up-regulation is at least partially dependent on the ERK1/2 pathway and may serve to promote Th2 polarization of the immune response.
doi:10.1186/1756-3305-3-103
PMCID: PMC2993695  PMID: 21054882
6.  Global comparative analysis of ESTs from the southern cattle tick, Rhipicephalus (Boophilus) microplus 
BMC Genomics  2007;8:368.
Background
The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an economically important parasite of cattle and can transmit several pathogenic microorganisms to its cattle host during the feeding process. Understanding the biology and genomics of R. microplus is critical to developing novel methods for controlling these ticks.
Results
We present a global comparative genomic analysis of a gene index of R. microplus comprised of 13,643 unique transcripts assembled from 42,512 expressed sequence tags (ESTs), a significant fraction of the complement of R. microplus genes. The source material for these ESTs consisted of polyA RNA from various tissues, lifestages, and strains of R. microplus, including larvae exposed to heat, cold, host odor, and acaricide. Functional annotation using RPS-Blast analysis identified conserved protein domains in the conceptually translated gene index and assigned GO terms to those database transcripts which had informative BlastX hits. Blast Score Ratio and SimiTri analysis compared the conceptual transcriptome of the R. microplus database to other eukaryotic proteomes and EST databases, including those from 3 ticks. The most abundant protein domains in BmiGI were also analyzed by SimiTri methodology.
Conclusion
These results indicate that a large fraction of BmiGI entries have no homologs in other sequenced genomes. Analysis with the PartiGene annotation pipeline showed 64% of the members of BmiGI could not be assigned GO annotation, thus minimal information is available about a significant fraction of the tick genome. This highlights the important insights in tick biology which are likely to result from a tick genome sequencing project. Global comparative analysis identified some tick genes with unexpected phylogenetic relationships which detailed analysis attributed to gene losses in some members of the animal kingdom. Some tick genes were identified which had close orthologues to mammalian genes. Members of this group would likely be poor choices as targets for development of novel tick control technology.
doi:10.1186/1471-2164-8-368
PMCID: PMC2100071  PMID: 17935616
7.  Haplotypes of the bovine IgG2 heavy gamma chain in tick-resistant and tick-susceptible breeds of cattle 
Immunogenetics  2011;63(5):319-324.
Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations.
Electronic supplementary material
The online version of this article (doi:10.1007/s00251-011-0515-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s00251-011-0515-y
PMCID: PMC3068256  PMID: 21301827
Bovine IgG2; Allotypes; Haplotypes; Hinge region; Rhipicephalus (Boophilus) microplus
8.  Novel Immunomodulators from Hard Ticks Selectively Reprogramme Human Dendritic Cell Responses 
PLoS Pathogens  2013;9(6):e1003450.
Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission.
Author Summary
Dendritic cells (DC) are specialised cells of the vertebrate immune system. DC can sense different types of infectious agents and parasites, and both trigger and help regulate the specific types of immunity needed to eliminate them. We have discovered that the largest and globally most important group of hard ticks produce a unique family of proteins in their saliva that selectively targets DC, radically altering functions that would otherwise induce robust immune responses; these proteins also prevent DC developing from precursor cells. The production of these salivary molecules may help to explain two highly unusual features of these hard ticks compared with other blood-feeding parasites: their ability to feed continuously on their vertebrate hosts for considerable lengths of time (7 days or more) without eliciting potentially damaging immune responses, and their capacity to transmit possibly the greatest variety of pathogens of any type of invertebrate.
doi:10.1371/journal.ppat.1003450
PMCID: PMC3695081  PMID: 23825947
9.  A further insight into the sialome of the tropical bont tick, Amblyomma variegatum 
BMC Genomics  2011;12:136.
Background
Ticks--vectors of medical and veterinary importance--are themselves also significant pests. Tick salivary proteins are the result of adaptation to blood feeding and contain inhibitors of blood clotting, platelet aggregation, and angiogenesis, as well as vasodilators and immunomodulators. A previous analysis of the sialotranscriptome (from the Greek sialo, saliva) of Amblyomma variegatum is revisited in light of recent advances in tick sialomes and provides a database to perform a proteomic study.
Results
The clusterized data set has been expertly curated in light of recent reviews on tick salivary proteins, identifying many new families of tick-exclusive proteins. A proteome study using salivary gland homogenates identified 19 putative secreted proteins within a total of 211 matches.
Conclusions
The annotated sialome of A. variegatum allows its comparison to other tick sialomes, helping to consolidate an emerging pattern in the salivary composition of metastriate ticks; novel protein families were also identified. Because most of these proteins have no known function, the task of functional analysis of these proteins and the discovery of novel pharmacologically active compounds becomes possible.
doi:10.1186/1471-2164-12-136
PMCID: PMC3060141  PMID: 21362191
10.  Blood feeding by the Rocky Mountain spotted fever vector, Dermacentor andersoni, induces interleukin-4 expression by cognate antigen responding CD4+ T cells 
Parasites & Vectors  2009;2:47.
Background
Tick modulation of host defenses facilitates both blood feeding and pathogen transmission. Several tick species deviate host T cell responses toward a Th2 cytokine profile. The majority of studies of modulation of T cell cytokine expression by ticks were performed with lymphocytes from infested mice stimulated in vitro with polyclonal T cell activators. Those reports did not examine tick modulation of antigen specific responses. We report use of a transgenic T cell receptor (TCR) adoptive transfer model reactive with influenza hemagglutinin peptide (110-120) to examine CD4+ T cell intracellular cytokine responses during infestation with the metastriate tick, Dermacentor andersoni, or exposure to salivary gland extracts.
Results
Infestation with pathogen-free D. andersoni nymphs or administration of an intradermal injection of female or male tick salivary gland extract induced significant increases of IL-4 transcripts in skin and draining lymph nodes of BALB/c mice as measured by quantitative real-time RT-PCR. Furthermore, IL-10 transcripts were significantly increased in skin while IL-2 and IFN-γ transcripts were not significantly changed by tick feeding or intradermal injection of salivary gland proteins, suggesting a superimposed Th2 response. Infestation induced TCR transgenic CD4+ T cells to divide more frequently as measured by CFSE dilution, but more notably these CD4+ T cells also gained the capacity to express IL-4. Intracellular levels of IL-4 were significantly increased. A second infestation administered 14 days after a primary exposure to ticks resulted in partially reduced CFSE dilution with no change in IL-4 expression when compared to one exposure to ticks. Intradermal inoculation of salivary gland extracts from both male and female ticks also induced IL-4 expression.
Conclusion
This is the first report of the influence of a metastriate tick on the cytokine profile of antigen specific CD4+ T cells. Blood feeding by D. andersoni pathogen-free nymphs or intradermal injection of salivary gland extracts programs influenza hemagglutinin influenza peptide specific TCR transgenic CD4+ T cells to express IL-4.
doi:10.1186/1756-3305-2-47
PMCID: PMC2764639  PMID: 19814808
11.  Transovarial Transmission Efficiency of Babesia bovis Tick Stages Acquired by Rhipicephalus (Boophilus) microplus during Acute Infection▿  
Journal of Clinical Microbiology  2006;45(2):426-431.
The protozoan parasite Babesia bovis, a reemerging threat to U.S. cattle, is acquired by adult female ticks of the subgenus Boophilus and is transovarially transmitted as the kinete stage to developing larval offspring. Sporozoites develop within larvae and are transmitted during larval feeding on a bovine host. This study evaluated the efficiency of B. bovis infection within Rhipicephalus (Boophilus) microplus following acquisition feeding on acutely parasitemic cattle. Parasite levels were quantified in blood from experimentally infected cattle and within hemolymph and larvae derived from acquisition-fed female B. microplus. There was a positive correlation between blood parasite levels in acutely parasitemic cattle and kinete levels in the hemolymph of adult female Boophilus ticks following acquisition feeding; however, there was no relationship between kinete levels in females and infection rates of larval progeny. Boophilus microplus females that acquisition fed produced larval progeny with infection rates of 12% to 48%. Importantly, larvae derived from replete females with very low levels of kinete infection, as demonstrated by microscopy and PCR, had infection rates of 22% to 30% and transmitted B. bovis during transmission feeding. These data demonstrate that although hemolymph infection may be undetectable, transmission to larval progeny occurs at a level which ensures transmission to the bovine host.
doi:10.1128/JCM.01757-06
PMCID: PMC1829031  PMID: 17166964
12.  The ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis 
Parasites & Vectors  2013;6:276.
Background
Cattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (Boophilus) microplus, which is distributed throughout the tropical and subtropical countries of the world. The transmission of B. bovis is transovarian and a previous study of the R. microplus ovarian proteome identified several R. microplus proteins that were differentially expressed in response to infection. Through various approaches, we studied the reaction of the R. microplus ovarian transcriptome in response to infection by B. bovis.
Methods
A group of ticks were allowed to feed on a B. bovis-infected splenectomized calf while a second group fed on an uninfected splenectomized control calf. RNA was purified from dissected adult female ovaries of both infected and uninfected ticks and a subtracted B. bovis-infected cDNA library was synthesized, subtracting with the uninfected ovarian RNA. Four thousand ESTs were sequenced from the ovary subtracted library and annotated.
Results
The subtracted library dataset assembled into 727 unique contigs and 2,161 singletons for a total of 2,888 unigenes, Microarray experiments designed to detect B. bovis-induced gene expression changes indicated at least 15 transcripts were expressed at a higher level in ovaries from ticks feeding upon the B. bovis-infected calf as compared with ovaries from ticks feeding on an uninfected calf. We did not detect any transcripts from these microarray experiments that were expressed at a lower level in the infected ovaries compared with the uninfected ovaries. Using the technique called serial analysis of gene expression, 41 ovarian transcripts from infected ticks were differentially expressed when compared with transcripts of controls.
Conclusion
Collectively, our experimental approaches provide the first comprehensive profile of the R. microplus ovarian transcriptome responding to infection by B. bovis. This dataset should prove useful in molecular studies of host-pathogen interactions between this tick and its apicomplexan parasite.
doi:10.1186/1756-3305-6-276
PMCID: PMC4028808  PMID: 24330595
Cattle tick; Rhipicephalus microplus; Babesia bovis; Ovary; Transcriptome; EST
13.  Temporal characterisation of the organ-specific Rhipicephalusmicroplus transcriptional response to Anaplasma marginale infection 
Graphical abstract
Highlights
► Analysis of Rhipicephalus microplus tick gene expression during feeding. ► A massive organ-specific transcriptional response to tick feeding is confirmed. ► Analysis of tick response to infection with the cattle pathogen Anaplasma marginale. ► Anaplasma marginale exerts a minimal effect on the tick transcriptome.
Arthropods transmit important infectious diseases of humans and animals. Importantly, replication and the development of pathogen infectivity are tightly linked to vector feeding on the mammalian host; thus analysis of the transcriptomes of both vector and pathogen during feeding is fundamental to understanding transmission. Using Anaplasma marginale infection of Rhipicephalusmicroplus as the experimental model, we tested three hypotheses exploring the temporal and organ-specific nature of the tick midgut and salivary gland transcriptomes during feeding and in response to infection. Numerous R. microplus genes were regulated in response to feeding and were differentially regulated between the midgut and salivary gland; additionally, there was a progression in regulated gene expression in the salivary gland over time. In contrast, relatively few tick genes were specifically regulated in response to A. marginale infection and these genes were predominantly annotated as hypothetical or were of unknown function. Notable among the genes with informative annotation was that several ribosomal proteins were down-regulated, suggesting that there may be a corresponding decrease in translation. The hypotheses that R. microplus midgut and salivary gland genes are differentially regulated and that the salivary gland transcriptome is dynamic over time were accepted. This is consistent with, and important for understanding the roles of, the two organs, the midgut serving as an initial site of uptake and replication while the salivary gland serves as the final site of replication and secretion. The nominal effect of A. marginale on the tick transcriptome in terms of numbers of regulated genes and fold of regulation supports the view that the vector–pathogen relationship is well established with minimal deleterious effect on the tick. The small set of predominantly hypothetical genes regulated by infection suggests that A. marginale is affecting a novel set of tick genes and may provide new opportunities for blocking transmission from the tick.
doi:10.1016/j.ijpara.2011.03.003
PMCID: PMC3114074  PMID: 21514300
Tick-borne disease; Ixodid; Rickettsial; Gene expression; Microarray
14.  Molecular epidemiology of the emerging zoonosis agent Anaplasma phagocytophilum (Foggie, 1949) in dogs and ixodid ticks in Brazil 
Parasites & Vectors  2013;6:348.
Background
Anaplasma phagocytophilum is an emerging pathogen of humans, dogs and other animals, and it is transmitted by ixodid ticks. The objective of the current study was a) detect A. phagocytophilum in dogs and ixodid ticks using real-time Polymerase Chain Reaction (qPCR); and b) Determine important variables associated to host, environment and potential tick vectors that are related to the presence of A. phagocytophilum in dogs domiciled in Rio de Janeiro, Brazil.
Methods
We tested blood samples from 398 dogs and samples from 235 ticks, including 194 Rhipicephalus sanguineus sensu lato, 15 Amblyomma cajennense, 8 Amblyomma ovale and 18 pools of Amblyomma sp. nymphs. A semi-structured questionnaire was applied by interviewing each dog owner. Deoxyribonucleic acid obtained from ticks and dog buffy coat samples were amplified by qPCR (msp2 gene). The sequencing of 16S rRNA and groESL heat shock operon genes and a phylogenetic analysis was performed. The multiple logistic regression model was created as a function of testing positive dogs for A. phagocytophilum.
Results
Among the 398 blood samples from dogs, 6.03% were positive for A. phagocytophilum. Anaplasma phagocytophilum was detected in one A. cajennense female tick and in five R. sanguineus sensu lato ticks (four males and one female). The partial sequences of the 16S rRNA, and groESL genes obtained were highly similar to strains of A. phagocytophilum isolated from wild birds from Brazil and human pathogenic strains. The tick species collected in positive dogs were R. sanguineus sensu lato and A. cajennense, with A.cajennense being predominant. Tick infestation history (OR = 2.86, CI = 1.98-14.87), dog size (OR = 2.41, IC: 1.51-12.67), the access to forest areas (OR = 3:51, CI: 1.52-16.32), hygiene conditions of the environment in which the dogs lived (OR = 4.35, CI: 1.86-18.63) and Amblyomma sp. infestation (OR = 6.12; CI: 2.11-28.15) were associated with A. phagocytophilum infection in dogs.
Conclusions
This is the first report of A. phagocytophilum in ixodid ticks from Brazil. The detection of A. phagocitophylum in A. cajennense, an aggressive feeder on a wide variety of hosts, including humans, is considered a public health concern.
doi:10.1186/1756-3305-6-348
PMCID: PMC3874603  PMID: 24330631
Anaplasma phagocytophilum; Dogs; Ticks; Epidemiology; Emerging zoonoses
15.  Persistently Infected Horses Are Reservoirs for Intrastadial Tick-Borne Transmission of the Apicomplexan Parasite Babesia equi▿  
Infection and Immunity  2008;76(8):3525-3529.
Tick-borne pathogens may be transmitted intrastadially and transstadially within a single vector generation as well as vertically between generations. Understanding the mode and relative efficiency of this transmission is required for infection control. In this study, we established that adult male Rhipicephalus microplus ticks efficiently acquire the protozoal pathogen Babesia equi during acute and persistent infections and transmit it intrastadially to naïve horses. Although the level of parasitemia during acquisition feeding affected the efficiency of the initial tick infection, infected ticks developed levels of ≥104 organisms/pair of salivary glands independent of the level of parasitemia during acquisition feeding and successfully transmitted them, indicating that replication within the tick compensated for any initial differences in infectious dose and exceeded the threshold for transmission. During the development of B. equi parasites in the salivary gland granular acini, the parasites expressed levels of paralogous surface proteins significantly different from those expressed by intraerythrocytic parasites from the mammalian host. In contrast to the successful intrastadial transmission, adult female R. microplus ticks that fed on horses with high parasitemia passed the parasite vertically into the eggs with low efficiency, and the subsequent generation (larvae, nymphs, and adults) failed to transmit B. equi parasites to naïve horses. The data demonstrated that intrastadial but not transovarial transmission is an efficient mode for B. equi transmission and that persistently infected horses are an important reservoir for transmission. Consequently, R. microplus male ticks and persistently infected horses should be targeted for disease control.
doi:10.1128/IAI.00251-08
PMCID: PMC2493223  PMID: 18490466
16.  Biology and ecology of the brown dog tick, Rhipicephalus sanguineus 
Parasites & Vectors  2010;3:26.
The brown dog tick (Rhipicephalus sanguineus) is the most widespread tick in the world and a well-recognized vector of many pathogens affecting dogs and occasionally humans. This tick can be found on dogs living in both urban and rural areas, being highly adapted to live within human dwellings and being active throughout the year not only in tropical and subtropical regions, but also in some temperate areas. Depending on factors such as climate and host availability, Rh. sanguineus can complete up to four generations per year. Recent studies have demonstrated that ticks exposed to high temperatures attach and feed on humans and rabbits more rapidly. This observation suggests that the risk of human parasitism by Rh. sanguineus could increase in areas experiencing warmer and/or longer summers, consequently increasing the risk of transmission of zoonotic agents (e.g., Rickettsia conorii and Rickettsia rickettsii). In the present article, some aspects of the biology and ecology of Rh. sanguineus ticks are discussed including the possible impact of current climate changes on populations of this tick around the world.
doi:10.1186/1756-3305-3-26
PMCID: PMC2857863  PMID: 20377860
17.  Tick salivary compounds: their role in modulation of host defences and pathogen transmission 
Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases.
doi:10.3389/fcimb.2013.00043
PMCID: PMC3747359  PMID: 23971008
ticks; saliva; immunomodulation; pathogen; transmission
18.  Expression of Equi Merozoite Antigen 2 during Development of Babesia equi in the Midgut and Salivary Gland of the Vector Tick Boophilus microplus 
Journal of Clinical Microbiology  2003;41(12):5803-5809.
Equi merozoite antigens 1 and 2 (EMA-1 and EMA-2) are Babesia equi proteins expressed on the parasite surface during infection in horses and are orthologues of proteins in Theileria spp., which are also tick-transmitted protozoal pathogens. We determined in this study whether EMA-1 and EMA-2 were expressed within the vector tick Boophilus microplus. B. equi transitions through multiple, morphologically distinct stages, including sexual stages, and these transitions culminate in the formation of infectious sporozoites in the tick salivary gland. EMA-2-positive B. equi stages in the midgut lumen and midgut epithelial cells of Boophilus microplus nymphs were identified by reactivity with monoclonal antibody 36/253.21. This monoclonal antibody also recognized B. equi in salivary glands of adult Boophilus microplus. In addition, quantification of B. equi in the mammalian host and vector tick indicated that the duration of tick feeding and parasitemia levels affected the percentage of nymphs that contained morphologically distinct B. equi organisms in the midgut. In contrast, there was no conclusive evidence that B. equi EMA-1 was expressed in either the Boophilus microplus midgut or salivary gland when monoclonal antibody 36/18.57 was used. The expression of B. equi EMA-2 in Boophilus microplus provides a marker for detecting the various development stages and facilitates the identification of novel stage-specific Babesia proteins for testing transmission-blocking immunity.
doi:10.1128/JCM.41.12.5803-5809.2003
PMCID: PMC308990  PMID: 14662988
19.  Detection of Rickettsia parkeri from within Piura, Peru, and the First Reported Presence of Candidatus Rickettsia andeanae in the Tick Rhipicephalus sanguineus 
Abstract
Domestic farm animals (n=145) were sampled for the presence of ectoparasites in northwestern Peru during March, 2008. Ninety domestic animals (62%) were positive for the presence of an ectoparasite(s) and produced a total collection of the following: 728 ticks [Amblyomma maculatum, Anocentor nitens, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus, and Otobius megnini], 12 lice (Haematopinus suis), and 3 fleas (Ctenocephalides felis). A Rickettsia genus-specific qPCR assay was performed on nucleic acid preparations of the collected ectoparasites that resulted in 5% (37/743, 35 ticks and 2 fleas) of the ectoparasites positive for the presence of Rickettsia. DNA from the positive individual ticks was tested with 2 other qPCR assays for the presence of the ompB gene in Candidatus Rickettsia andeanae or Rickettsia parkeri. Candidatus R. andeanae was found in 25 A. maculatum ticks and in two Rh. sanguineus ticks, whereas R. parkeri was detected in 6 A. maculatum ticks. Two A. maculatum were co-infected with both Candidatus R. andeanae and R. parkeri. Rickettsia felis was detected in 2 fleas, Ctenocephalides felis, by multilocus sequence typing of the 17-kD antigen and ompA genes. These findings expand the geographic range of R. parkeri to include Peru as well as expand the natural arthropod vector of Candidatus R. andeanae to include Rhipicephalus sanguineus.
doi:10.1089/vbz.2012.1028
PMCID: PMC3700472  PMID: 23488453
Candidatus Rickettsia andeanae; Rickettsia parkeri; Ticks; Peru
20.  Coinfection with Antigenically and Genetically Distinct Virulent Strains of Babesia bovis Is Maintained through All Phases of the Parasite Life Cycle▿  
Infection and Immunity  2007;75(12):5769-5776.
Antigenic polymorphism is a defining characteristic of the Babesia bovis variable merozoite surface antigen (VMSA) family. Sequence analysis strongly suggests that recombination between virulent strains contributes to VMSA diversity. While meiosis during the aneuploid stage of the parasite's life cycle in the tick vector Rhipicephalus (Boophilus) microplus is the most probable source of interstrain recombination, there is no definitive evidence that coinfection of the mammalian host or R. microplus ticks with more than one virulent strain occurs. Using allele-specific real-time quantitative PCR, we tested the hypotheses that cattle could support coinfection of two antigenically variant virulent tick-transmissible strains of B. bovis and that R. microplus ticks could acquire and transmit these two divergent strains. The results indicate that both calves and ticks can support virulent B. bovis coinfection through all phases of the hemoparasite's life cycle. Neither strain dominated in either the mammalian or invertebrate host, and larval tick progeny, which could be coinfected individually, were also able to transmit both strains, resulting in virulent babesiosis in recipients. While coinfection of the tick vector provides the context in which allelic antigenic diversity can be generated, recombination of VMSA genes could not be confirmed, suggesting that VMSA allelic changes are slow to accumulate.
doi:10.1128/IAI.00802-07
PMCID: PMC2168326  PMID: 17893136
21.  Biogeography of Tick-Borne Bhanja Virus (Bunyaviridae) in Europe 
Bhanja virus (BHAV) is pathogenic for young domestic ruminants and also for humans, causing fever and affections of the central nervous system. This generally neglected arbovirus of the family Bunyaviridae is transmitted by metastriate ticks of the genera Haemaphysalis, Dermacentor, Hyalomma, Rhipicephalus, Boophilus, and Amblyomma. Geographic distribution of BHAV covers southern and Central Asia, Africa, and southern (partially also central) Europe. Comparative biogeographic study of eight known natural foci of BHAV infections in Europe (in Italy, Croatia, Bulgaria, Slovakia) has revealed their common features. (1) submediterranean climatic pattern with dry growing season and wet mild winter (or microlimatically similar conditions, e.g., limestone karst areas in central Europe), (2) xerothermic woodland-grassland ecosystem, with plant alliances Quercetalia pubescentis, Festucetalia valesiacae, and Brometalia erecti, involving pastoral areas, (3) presence of at least one of the tick species Haemaphysalis punctata, Dermacentor marginatus, Rhipicephalus bursa, and/or Hyalomma marginatum, and (4) presence of ≥60% of the 180 BHAV bioindicator (157 plant, 4 ixodid tick, and 19 vertebrate spp.). On that basis, Greece, France (southern, including Corsica), Albania, Spain, Hungary, European Turkey, Ukraine (southern), Switzerland (southern), Austria (southeastern), Germany (southern), Moldova, and European Russia (southern) have been predicted as additional European regions where BHAV might occur.
doi:10.1155/2009/372691
PMCID: PMC2825549  PMID: 20182535
22.  Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus)microplus in response to infection with Anaplasma marginale 
BMC Genomics  2010;11:186.
Background
Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus)microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection.
Results
Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells.
Conclusions
Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.
doi:10.1186/1471-2164-11-186
PMCID: PMC2848250  PMID: 20298599
23.  Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations 
Parasitology Research  2009;106(2):471-479.
The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems.
doi:10.1007/s00436-009-1689-1
PMCID: PMC2797406  PMID: 19943063
24.  Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus 
Parasites & Vectors  2012;5:38.
Background
Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE) obtained from 2-3 day fed, pathogen-free adult R. microplus.
Methods
Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 μg/mL of SGE followed by 1, 6, 24 hr of 1 μg/mL of lipopolysaccharide (LPS). Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response.
Results
Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R. microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 μg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression.
Conclusions
Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-dependent effects on differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R. microplus-cattle interactions at the blood-feeding interface.
doi:10.1186/1756-3305-5-38
PMCID: PMC3320552  PMID: 22333193
25.  Borrelia burgdorferi OspA is an arthropod-specific transmission- blocking Lyme disease vaccine 
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is transmitted by Ixodes ticks. A vaccine based on B. burgdorferi outer surface protein (Osp) A protects mice from spirochete infection. Here we report on the expression of OspA on spirochetes inside engorging ticks and relate OspA expression to antispirochetal immunity. Spirochetes in the gut of unfed nymphal ticks were stained by an OspA antibody, whereas in feeding ticks, the majority of spirochetes in the gut and salivary glands did not stain with the antibody. Thus, OspA was not expressed on most spirochetes during transmission from the vector to the vertebrate host. To examine the mechanism of protection afforded by OspA antibody, mice were passively immunized with OspA antibody at different times relative to tick attachment. When OspA antibody was administered to mice before or at the time of tick attachment, spirochetal development events in the vector, such as growth and salivary gland invasion, were blocked and the mice were protected from B. burgdorferi infection. When OspA antibody was administered to mice 48 h after tick attachment, spirochetes persisted in the nymphs and the mice were not protected despite the presence of circulating antibodies in the host as well as in the tick blood meal. Thus, OspA immunity appears to be effective only during a narrow window time at the beginning of the blood meal when antibodies bind to OspA-expressing spirochetes in the tick gut and block transmission from the vector to the host.
PMCID: PMC2192397  PMID: 8551231

Results 1-25 (532624)