PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (782296)

Clipboard (0)
None

Related Articles

1.  Phenotypic and genetic characterization of Dunaliella (Chlorophyta) from Indian salinas and their diversity 
Aquatic Biosystems  2012;8:27.
Background
The genus Dunaliella (Class – Chlorophyceae) is widely studied for its tolerance to extreme habitat conditions, physiological aspects and many biotechnological applications, such as a source of carotenoids and many other bioactive compounds. Biochemical and molecular characterization is very much essential to fully explore the properties and possibilities of the new isolates of Dunaliella. In India, hyper saline lakes and salt pans were reported to bloom with Dunaliella spp. However, except for the economically important D. salina, other species are rarely characterized taxonomically from India. Present study was conducted to describe Dunaliella strains from Indian salinas using a combined morphological, physiological and molecular approach with an aim to have a better understanding on the taxonomy and diversity of this genus from India.
Results
Comparative phenotypic and genetic studies revealed high level of diversity within the Indian Dunaliella isolates. Species level identification using morphological characteristics clearly delineated two strains of D. salina with considerable β-carotene content (>20 pg/cell). The variation in 18S rRNA gene size, amplified with MA1-MA2 primers, ranged between ~1800 and ~2650 base pairs, and together with the phylogeny based on ITS gene sequence provided a pattern, forming five different groups within Indian Dunaliella isolates. Superficial congruency was observed between ITS and rbcL gene phylogenetic trees with consistent formation of major clades separating Indian isolates into two distinct clusters, one with D. salina and allied strains, and another one with D. viridis and allied strains. Further in both the trees, few isolates showed high level of genetic divergence than reported previously for Dunaliella spp. This indicates the scope of more numbers of clearly defined/unidentified species/sub-species within Indian Dunaliella isolates.
Conclusion
Present work illustrates Indian Dunaliella strains phenotypically and genetically, and confirms the presence of not less than five different species (or sub-species) in Indian saline waters, including D. salina and D. viridis. The study emphasizes the need for a combined morphological, physiological and molecular approach in the taxonomic studies of Dunaliella.
doi:10.1186/2046-9063-8-27
PMCID: PMC3598838  PMID: 23114277
Dunaliella; Diversity; India; 18S rDNA; ITS; rbcL gene
2.  DNA fingerprinting differentiation between β-carotene hyperproducer strains of Dunaliella from around the world 
Saline Systems  2009;5:5.
Background
Dunaliella salina is the most important species of the genus for β-carotene production. Several investigations have demonstrated that D. salina produces more than 10% dry weight of pigment and that the species grows in salt saturated lagoons. High plasticity in the green stage and the almost indistinguishable differences in the red phase make identification and differentiation of species and ecotypes very difficult and time consuming.
Results
In this work, we applied our intron-sizing method to compare the 18S rDNA fingerprint between D. salina (CCAP 19/18), D. salina/bardawil (UTEX LB2538) and β-carotene hyperproducing strains of Dunaliella isolated from salt saturated lagoons in Baja, Mexico. All hyperproducer strains reached β-carotene levels of about 10 pg/cell. Optical microscopy did not allow to differentiate between these Dunaliella strains; however, 18S rDNA fingerprinting methodology allowed us to differentiate D. salina from D. salina/bardawil.
Conclusion
In Baja Mexico we found D. salina and D. salina/bardawil species by using intron-sizing-method. The National Center for Biotechnology Information (NCBI) Dunaliella 18S rDNA gene sequences were analyzed with our methodology and extraordinary correlation was found with experimental results.
doi:10.1186/1746-1448-5-5
PMCID: PMC2710335  PMID: 19563682
3.  The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA 
BMC Plant Biology  2010;10:83.
Background
Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β-carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri.
Results
The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. salina ptDNA.
Conclusions
These findings confirm the notion that chlamydomonadalean algae have some of the most extreme organelle genomes of all eukaryotes. They also suggest that the events giving rise to the expanded ptDNA architecture of D. salina and other Chlamydomonadales may have occurred early in the evolution of this lineage. Although interesting from a genome evolution standpoint, the D. salina organelle DNA sequences will aid in the development of a viable plastid transformation system for this model alga, and they will complement the forthcoming D. salina nuclear genome sequence, placing D. salina in a group of a select few photosynthetic eukaryotes for which complete genome sequences from all three genetic compartments are available.
doi:10.1186/1471-2229-10-83
PMCID: PMC3017802  PMID: 20459666
4.  Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella 
Saline Systems  2010;6:4.
Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 μmol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days.
doi:10.1186/1746-1448-6-4
PMCID: PMC2867797  PMID: 20377865
5.  Molecular Clone and Expression of a NAD+-Dependent Glycerol-3-Phosphate Dehydrogenase Isozyme Gene from the Halotolerant alga Dunaliella salina 
PLoS ONE  2013;8(4):e62287.
Glycerol is an important osmotically compatible solute in Dunaliella. Glycerol-3-phosphate dehydrogenase (G3PDH) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. Generally, the glycerol-DHAP cycle pathway, which is driven by G3PDH, is considered as the rate-limiting enzyme to regulate the glycerol level under osmotic shocks. Considering the peculiarity in osmoregulation, the cDNA of a NAD+-dependent G3PDH was isolated from D. salina using RACE and RT-PCR approaches in this study. Results indicated that the length of the cDNA sequence of G3PDH was 2,100 bp encoding a 699 amino acid deduced polypeptide whose computational molecular weight was 76.6 kDa. Conserved domain analysis revealed that the G3PDH protein has two independent functional domains, SerB and G3PDH domains. It was predicted that the G3PDH was a nonsecretory protein and may be located in the chloroplast of D. salina. Phylogenetic analysis demonstrated that the D. salina G3PDH had a closer relationship with the G3PDHs from the Dunaliella genus than with those from other species. In addition, the cDNA was subsequently subcloned in the pET-32a(+) vector and was transformed into E. coli strain BL21 (DE3), a expression protein with 100 kDa was identified, which was consistent with the theoretical value.
doi:10.1371/journal.pone.0062287
PMCID: PMC3633914  PMID: 23626797
6.  A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae) 
Background
The second Internal Transcriber Spacer (ITS2) is a fast evolving part of the nuclear-encoded rRNA operon located between the 5.8S and 28S rRNA genes. Based on crossing experiments it has been proposed that even a single Compensatory Base Change (CBC) in helices 2 and 3 of the ITS2 indicates sexual incompatibility and thus separates biological species. Taxa without any CBC in these ITS2 regions were designated as a 'CBC clade'. However, in depth comparative analyses of ITS2 secondary structures, ITS2 phylogeny, the origin of CBCs, and their relationship to biological species have rarely been performed. To gain 'close-up' insights into ITS2 evolution, (1) 86 sequences of ITS2 including secondary structures have been investigated in the green algal order Ulvales (Chlorophyta, Viridiplantae), (2) after recording all existing substitutions, CBCs and hemi-CBCs (hCBCs) were mapped upon the ITS2 phylogeny, rather than merely comparing ITS2 characters among pairs of taxa, and (3) the relation between CBCs, hCBCs, CBC clades, and the taxonomic level of organisms was investigated in detail.
Results
High sequence and length conservation allowed the generation of an ITS2 consensus secondary structure, and introduction of a novel numbering system of ITS2 nucleotides and base pairs. Alignments and analyses were based on this structural information, leading to the following results: (1) in the Ulvales, the presence of a CBC is not linked to any particular taxonomic level, (2) most CBC 'clades' sensu Coleman are paraphyletic, and should rather be termed CBC grades. (3) the phenetic approach of pairwise comparison of sequences can be misleading, and thus, CBCs/hCBCs must be investigated in their evolutionary context, including homoplasy events (4) CBCs and hCBCs in ITS2 helices evolved independently, and we found no evidence for a CBC that originated via a two-fold hCBC substitution.
Conclusions
Our case study revealed several discrepancies between ITS2 evolution in the Ulvales and generally accepted assumptions underlying ITS2 evolution as e.g. the CBC clade concept. Therefore, we developed a suite of methods providing a critical 'close-up' view into ITS2 evolution by directly tracing the evolutionary history of individual positions, and we caution against a non-critical use of the ITS2 CBC clade concept for species delimitation.
doi:10.1186/1471-2148-11-262
PMCID: PMC3225284  PMID: 21933414
7.  Determination of biological and physicochemical parameters of Artemia franciscana strains in hypersaline environments for aquaculture in the Colombian Caribbean 
Saline Systems  2005;1:9.
Background
Artemia (Crustacea, Anostraca), also known as brine shrimp, are typical inhabitants of extreme environments. These hypersaline environments vary considerably in their physicochemical composition, and even their climatic conditions and elevation. Several thalassohaline (marine) environments along the Colombian Caribbean coast were surveyed in order to contribute to the knowledge of brine shrimp biotopes in South America by determining some vital biological and physicochemical parameters for Artemia survival. Additionally, cyst quality tests, biometrical and essential fatty acids analysis were performed to evaluate the economic viability of some of these strains for the aquaculture industry.
Results
In addition to the three locations (Galerazamba, Manaure, and Pozos Colorados) reported in the literature three decades ago in the Colombian Caribbean, six new locations were registered (Salina Cero, Kangaru, Tayrona, Bahía Hondita, Warrego and Pusheo). All habitats sampled showed that chloride was the prevailing anion, as expected, because of their thalassohaline origin. There were significant differences in cyst diameter grouping strains in the following manner according to this parameter: 1) San Francisco Bay (SFB-Control, USA), 2) Galerazamba and Tayrona, 3) Kangarú, 4) Manaure, and 5) Salina Cero and Pozos Colorados. Chorion thickness values were smaller in Tayrona, followed by Salina Cero, Galerazamba, Manaure, SFB, Kangarú and Pozos Colorados. There were significant differences in naupliar size, grouping strains as follows (smallest to largest): 1) Galerazamba, 2) Manaure, 3) SFB, Kangarú, and Salina Cero, 4) Pozos Colorados, and 5) Tayrona. Overall, cyst quality analysis conducted on samples from Manaure, Galerazamba, and Salina Cero revealed that all sites exhibited a relatively high number of cysts.g-1. Essential fatty acids (EFA) analysis performed on nauplii from cyst samples from Manaure, Galerazamba, Salina Cero and Tayrona revealed that cysts from all sites exhibited high arachidonic acid:20:4(n-6) (ArA) and eicosapentaenoic acid: 20:5(n-3) (EPA) levels comparable to the control sample (SFB). In contrast, most cysts collected (including SFB) at different locations, and during different months, presented low docosahexaenoic acid: 22:6(n-3) (DHA) levels (Manaure was the only exception with high DHA levels). Some variations in EPA and ArA levels were observed in all sites, contrasting with the much lower DHA levels which remained constant for all locations, except for Manaure which exhibited variable DHA levels. DHA/EPA ratio was overall very low for all sites compared to SFB cysts. All strains had a low DHA/ArA, but a high EPA/ArA ratio, including the control.
Conclusion
The Colombian A. franciscana habitats analyzed were determined to be thalassohaline, and suitable for A. franciscana development. EFA profiles demonstrated that Tayrona, Galerazamba, Manaure and Salina Cero strains are suitable food for marine fish and crustacean culture because of their high EPA/ArA ratio, but might have to be fortified with DHA rich emulsions depending on the nutritional requirements of the species to be cultured, because of their overall low DHA content. The relatively small nauplii are appropriate for marine larvaeculture. In contrast, the strains from Tayrona, Kangarú, Salina Cero, and Pozos Colorados may be of use but limited to Artemia small biomass production quantities, because of the small surface area of their respective locations; Artemia could be exploited at these locations for local aquaculture applications. In general, cyst quality evaluation for Manaure, Salina Cero and Galerazamba cysts revealed that cysts from these three locations could improve their quality by concentrating efforts on cyst processing techniques. Finally, most locations had great A. franciscana production potential and require different degrees of water quality and/or infrastructure management.
doi:10.1186/1746-1448-1-9
PMCID: PMC1280932  PMID: 16250916
8.  DsHsp90 Is Involved in the Early Response of Dunaliella salina to Environmental Stress† 
Heat shock protein 90 (Hsp90) is a molecular chaperone highly conserved across the species from prokaryotes to eukaryotes. Hsp90 is essential for cell viability under all growth conditions and is proposed to act as a hub of the signaling network and protein homeostasis of the eukaryotic cells. By interacting with various client proteins, Hsp90 is involved in diverse physiological processes such as signal transduction, cell mobility, heat shock response and osmotic stress response. In this research, we cloned the dshsp90 gene encoding a polypeptide composed of 696 amino acids from the halotolerant unicellular green algae Dunaliella salina. Sequence alignment indicated that DsHsp90 belonged to the cytosolic Hsp90A family. Further biophysical and biochemical studies of the recombinant protein revealed that DsHsp90 possessed ATPase activity and existed as a dimer with similar percentages of secondary structures to those well-studied Hsp90As. Analysis of the nucleotide sequence of the cloned genomic DNA fragment indicated that dshsp90 contained 21 exons interrupted by 20 introns, which is much more complicated than the other plant hsp90 genes. The promoter region of dshsp90 contained putative cis-acting stress responsive elements and binding sites of transcriptional factors that respond to heat shock and salt stress. Further experimental research confirmed that dshsp90 was upregulated quickly by heat and salt shock in the D. salina cells. These findings suggested that dshsp90 might serve as a component of the early response system of the D. salina cells against environmental stresses.
doi:10.3390/ijms13077963
PMCID: PMC3430215  PMID: 22942684
Dunaliella salina; gene structure; haloadaption; heat shock; Hsp90; osmotic stress; structural feature
9.  Oxidative Stress Is a Mediator for Increased Lipid Accumulation in a Newly Isolated Dunaliella salina Strain 
PLoS ONE  2014;9(3):e91957.
Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that oxidative stress mediates lipid accumulation. Understanding such relationships may provide guidance for efficient production of algal biodiesels.
doi:10.1371/journal.pone.0091957
PMCID: PMC3961284  PMID: 24651514
10.  Alternaria redefined 
Studies in Mycology  2013;75(1):171-212.
Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNA-based studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always correlate to species-groups based on morphological characteristics. The Alternaria complex currently comprises nine genera and eight Alternaria sections. The aim of this study was to delineate phylogenetic lineages within Alternaria and allied genera based on nucleotide sequence data of parts of the 18S nrDNA, 28S nrDNA, ITS, GAPDH, RPB2 and TEF1-alpha gene regions. Our data reveal a Pleospora/Stemphylium clade sister to Embellisia annulata, and a well-supported Alternaria clade. The Alternaria clade contains 24 internal clades and six monotypic lineages, the assemblage of which we recognise as Alternaria. This puts the genera Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum and Ybotromyces in synonymy with Alternaria. In this study, we treat the 24 internal clades in the Alternaria complex as sections, which is a continuation of a recent proposal for the taxonomic treatment of lineages in Alternaria. Embellisia annulata is synonymised with Dendryphiella salina, and together with Dendryphiella arenariae, are placed in the new genus Paradendryphiella. The sexual genera Clathrospora and Comoclathris, which were previously associated with Alternaria, cluster within the Pleosporaceae, outside Alternaria s. str., whereas Alternariaster, a genus formerly seen as part of Alternaria, clusters within the Leptosphaeriaceae. Paradendryphiella is newly described, the generic circumscription of Alternaria is emended, and 32 new combinations and 10 new names are proposed. A further 10 names are resurrected, while descriptions are provided for 16 new Alternaria sections.
Taxonomic novelties:
New combinations - Alternaria abundans (E.G. Simmons) Woudenb. & Crous, Alternaria alternariae (Cooke) Woudenb. & Crous, Alternaria atra (Preuss) Woudenb. & Crous, Alternaria bornmuelleri (Magnus) Woudenb. & Crous, Alternaria botrytis (Preuss) Woudenb. & Crous, Alternaria caespitosa (de Hoog & C. Rubio) Woudenb. & Crous, Alternaria cantlous (Yong Wang bis & X.G. Zhang) Woudenb. & Crous, Alternaria caricis (E.G. Simmons) Woudenb. & Crous, Alternaria cinerea (Baucom & Creamer) Woudenb. & Crous, Alternaria didymospora (Munt.-Cvetk.) Woudenb. & Crous, Alternaria fulva (Baucom & Creamer) Woudenb. & Crous, Alternaria hyacinthi (de Hoog & P.J. Mull. bis) Woudenb. & Crous, Alternaria indefessa (E.G. Simmons) Woudenberg & Crous, Alternaria leptinellae (E.G. Simmons & C.F. Hill) Woudenb. & Crous, Alternaria lolii (E.G. Simmons & C.F. Hill) Woudenb. & Crous, Alternaria multiformis (E.G. Simmons) Woudenb. & Crous, Alternaria obclavata (Crous & U. Braun) Woudenb. & Crous, Alternaria obovoidea (E.G. Simmons) Woudenb. & Crous, Alternaria oudemansii (E.G. Simmons) Woudenb. & Crous, Alternaria oxytropis (Q. Wang, Nagao & Kakish.) Woudenb. & Crous, Alternaria penicillata (Corda) Woudenb. & Crous, Alternaria planifunda (E.G. Simmons) Woudenb. & Crous, Alternaria proteae (E.G. Simmons) Woudenb. & Crous, Alternaria scirpinfestans (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria scirpivora (E.G. Simmons & D.A. Johnson) Woudenb. & Crous, Alternaria septospora (Preuss) Woudenb. & Crous, Alternaria slovaca (Svob.-Pol., L. Chmel & Bojan.) Woudenb. & Crous, Alternaria subcucurbitae (Yong Wang bis & X.G. Zhang) Woudenb. & Crous, Alternaria tellustris (E.G. Simmons) Woudenb. & Crous, Alternaria tumida (E.G. Simmons) Woudenb. & Crous, Paradendryphiella salina (G.K. Sutherl.) Woudenb. & Crous, Paradendryphiella arenariae (Nicot) Woudenb. & Crous. New names - Alternaria aspera Woudenb. & Crous, Alternaria botryospora Woudenb. & Crous, Alternaria brassicae-pekinensis Woudenb. & Crous, Alternaria breviramosa Woudenb. & Crous, Alternaria chlamydosporigena Woudenb. & Crous, Alternaria concatenata Woudenb. & Crous, Alternaria embellisia Woudenb. & Crous, Alternaria heterospora Woudenb. & Crous, Alternaria papavericola Woudenb. & Crous, Alternaria terricola Woudenb. & Crous. Resurrected names - Alternaria cetera E.G. Simmons, Alternaria chartarum Preuss, Alternaria consortialis (Thüm.) J.W. Groves & S. Hughes, Alternaria cucurbitae Letendre & Roum., Alternaria dennisii M.B. Ellis, Alternaria eureka E.G. Simmons, Alternaria gomphrenae Togashi, Alternaria malorum (Ruehle) U. Braun, Crous & Dugan, Alternaria phragmospora Emden, Alternaria scirpicola (Fuckel) Sivan. New sections, all in Alternaria - sect. Chalastospora Woudenb. & Crous, sect. Cheiranthus Woudenb. & Crous, sect. Crivellia Woudenb. & Crous, sect. Dianthicola Woudenb. & Crous, sect. Embellisia Woudenb. & Crous, sect. Embellisioides Woudenb. & Crous, sect. Eureka Woudenb. & Crous, sect. Infectoriae Woudenb. & Crous, sect. Japonicae Woudenb. & Crous, sect. Nimbya Woudenb. & Crous, sect. Phragmosporae Woudenb. & Crous, sect. Pseudoulocladium Woudenb. & Crous, sect. Teretispora Woudenb. & Crous, sect. Ulocladioides Woudenb. & Crous, sect. Ulocladium Woudenb. & Crous, sect. Undifilum Woudenb. & Crous. New genus - Paradendryphiella Woudenb. & Crous.
doi:10.3114/sim0015
PMCID: PMC3713888  PMID: 24014900
Allewia; Chalastospora; Crivellia; Embellisia; Lewia; Nimbya; Paradendryphiella; Sinomyces; systematics; Teretispora; Ulocladium; Undifilum
11.  Rapid and sensitive detection of Citrus Bacterial Canker by loop-mediated isothermal amplification combined with simple visual evaluation methods 
BMC Microbiology  2010;10:176.
Background
Citrus Bacterial Canker (CBC) is a major, highly contagious disease of citrus plants present in many countries in Asia, Africa and America, but not in the Mediterranean area. There are three types of Citrus Bacterial Canker, named A, B, and C that have different genotypes and posses variation in host range within citrus species. The causative agent for type A CBC is Xanthomonas citri subsp. citri, while Xanthomonas fuscans subsp. aurantifolii, strain B causes type B CBC and Xanthomonas fuscans subsp. aurantifolii strain C causes CBC type C. The early and accurate identification of those bacteria is essential for the protection of the citrus industry. Detection methods based on bacterial isolation, antibodies or polymerase chain reaction (PCR) have been developed previously; however, these approaches may be time consuming, laborious and, in the case of PCR, it requires expensive laboratory equipment. Loop-mediated isothermal amplification (LAMP), which is a novel isothermal DNA amplification technique, is sensitive, specific, fast and requires no specialized laboratory equipment.
Results
A loop-mediated isothermal amplification assay for the diagnosis of Citrus Bacterial Canker (CBC-LAMP) was developed and evaluated. DNA samples were obtained from infected plants or cultured bacteria. A typical ladder-like pattern on gel electrophoresis was observed in all positive samples in contrast to the negative controls. In addition, amplification products were detected by visual inspection using SYBRGreen and using a lateral flow dipstick, eliminating the need for gel electrophoresis. The sensitivity and specificity of the assay were evaluated in different conditions and using several sample sources which included purified DNA, bacterium culture and infected plant tissue. The sensitivity of the CBC-LAMP was 10 fg of pure Xcc DNA, 5 CFU in culture samples and 18 CFU in samples of infected plant tissue. No cross reaction was observed with DNA of other phytopathogenic bacteria. The assay was capable of detecting CBC-causing strains from several geographical origins and pathotypes.
Conclusions
The CBC-LAMP technique is a simple, fast, sensitive and specific method for the diagnosis of Citrus Bacterial Canker. This method can be useful in the phytosanitary programs of the citrus industry worldwide.
doi:10.1186/1471-2180-10-176
PMCID: PMC2895605  PMID: 20565886
12.  The Selectivity of Milking of Dunaliella salina 
The process of the simultaneous production and extraction of carotenoids, milking, of Dunaliella salina was studied. We would like to know the selectivity of this process. Could all the carotenoids produced be extracted? And would it be possible to vary the profile of the produced carotenoids and, consequently, influence the type of carotenoids extracted? By using three different D. salina strains and three different stress conditions, we varied the profiles of the carotenoids produced. Between Dunaliella bardawil and D. salina 19/18, no remarkable differences were seen in the extraction profiles, although D. salina 19/18 seemed to be better extractable. D. salina 19/25 was not “milkable” at all. The milking process could only be called selective for secondary carotenoids in case gentle mixing was used. In aerated flat-panel photobioreactors, extraction was much better, but selectiveness decreased and also chlorophyll and primary carotenoids were extracted. This was possibly related to cell damage due to shear stress.
doi:10.1007/s10126-009-9195-0
PMCID: PMC2816252  PMID: 19475448
Dunaliella salina; Carotenoids; Extraction; Selectivity; Stress conditions
13.  Molecular Phylogeny and Ontogeny of a New Ciliate Genus, Paracladotricha salina n. g., n. sp. (Ciliophora, Hypotrichia) 
A hypotrichous ciliate, Paracladotricha salina n. g., n. sp., was discovered in hypersaline waters (salinity about 80‰) from Qingdao, China. Its morphology and some major ontogenetic stages were studied and the phylogenetic position was estimated using standard methods. Paracladotricha salina is characterized by a flexible, more or less slender body (size 50–120 × 20–35 μm), a gonostomatid oral apparatus, one short and two long frontoventral rows, four macronuclear nodules, almost completely reduced dorsal kineties 1–3, and a loss of several parts of the ciliature, namely, the slightly shortened ciliary row of the adoral membranelles, the paroral, and the buccal, the postoral and pretransverse ventral, the transverse, and the caudal cirri. The ontogenesis is rather simple: anlage II of both filial products and anlage III of the opisthe originate de novo, while anlagen IV and V are formed within the parental rows. This combination of features requires the establishment of a new genus, Paracladotricha, which is, according to the morphological data, closely related to Schmidingerothrix and Cladotricha. The small-subunit rRNA gene was sequenced, indicating that P. salina is, as also demonstrated by the oral apparatus, a member of the gonostomatids. We provide a first, vague hypothesis about the phylogenetic relationships of the Gonostomatidae, Cladotrichidae, and Schmidingerotrichidae. However, since molecular data of the type species of these higher taxa are lacking, their validity and relationships remain obscure.
doi:10.1111/jeu.12117
PMCID: PMC4140608  PMID: 24773314
Cladotricha; infraciliature; morphology; morphogenesis; Stichotrichida
14.  Potential of Microalgae and Lactobacilli in Biosynthesis of Silver Nanoparticles  
BioImpacts : BI  2011;1(3):149-152.
Introduction
Application of nanoparticles has been extensively increased in last decades. Nanoparticles of noble metals such as gold, platinum and especially silver are widely applied in medical and pharmaceutical applications. Although, variety of physical and chemical methods has been developed for production of metal nanoparticles, because of destructive effects of them on environment, biosynthetic methods have been suggested as a novel alternative. Some bacteria and microalgae have different ranges of potentiality to uptake metal ions and produce nanoparticles during detoxification process. In the present work, we study the potential of three Lactobacilli and three algal species in production of AgNPs in different concentrations of silver nitrate.
Methods
Utilizing AAS, XRD and TEM methods, Nannochloropsis oculata, Dunaliella salina and Chlorella vulgaris as three algal species in addition to three Lactobacilli including L. acidophilus, L. casei, L. reuteri were monitored for production of silver nanoparticles. Three concentrations of AgNO3 (0.001, 0.002, 0.005 M) and two incubation times (24h and 48h) were included in this study.
Results
Our findings demonstrated that C. vulgaris, N. oculata and L. acidophilus have the potential of nanosilver production in a culture medium containing 0.001 M of AgNO3 within 24 hours. Also L. casei and L. reuteri species exhibited their potential for production of silver nanoparticles in 0.002 M concentration of AgNO3 in 24 hours. The size range of particles was approximately less than 15 nm. The uptake rate of silver in the five species was between 1.0 to 2.7 mg/g of dry weight. Nanoparticle production was not detected in other treatments and the algae Dunaliella.
Conclusion
The biosynthesis of silver nanoparticles in all of three Lactobacilli and two algal species including N. oculata and C. vulgaris was confirmed.
doi:10.5681/bi.2011.020
PMCID: PMC3648959  PMID: 23678420
Silver nanoparticles; Biosynthesis; Lactobacilli; Microalgae
15.  System Development for Linked-Fermentation Production of Solvents from Algal Biomass 
Five species of the genus Dunaliella (D. tertiolecta, D. primolecta, D. parva, D. bardawil, and D. salina) were examined for glycerol accumulation, growth rate, cell density, and protein and chlorophyll content. The suitability of each algal species for use as a fermentation substrate was judged according to glycerol accumulation and quantities of neutral solvents produced after sequential bacterial fermentations. When grown in 2 M NaCl, with 24 mM NaHCO3 or 3% CO2 at 28°C and with 10,000 to 15,000 lx of incident light on two sides of a glass aquarium, four of the five species tested produced ca. 10 to 20 mg of glycerol per liter of culture. Clostridium pasteurianum was found to convert an algal biomass mixture supplemented with 4% glycerol to ca. 16 g of mixed solvents (n-butanol, 1,3-propanediol, and ethanol) per liter. Acetone was not detected. Additionally, it has been demonstrated that Dunaliella concentrates of up to 300-fold can be directly fermented to an identical pattern of mixed solvents. Overall solvent yields were reduced by >50% when fermentations were performed in the presence of 2% NaCl. These results are discussed in terms of practical application in tropical coastal zones.
PMCID: PMC239513  PMID: 16346410
16.  Declining Incidence of Contralateral Breast Cancer in the United States From 1975 to 2006 
Journal of Clinical Oncology  2011;29(12):1564-1569.
Purpose
Contralateral breast cancer (CBC) is the most frequent new malignancy among women diagnosed with a first breast cancer. Although temporal trends for first breast cancers have been well studied, trends for CBC are not so well established.
Patients and Methods
We examined temporal trends in CBC incidence using US Surveillance, Epidemiology, and End Results database (1975 to 2006). Data were stratified by estrogen receptor (ER) status of the first breast cancer for the available time period (1990+). We estimated the annual percent change (EAPC) in CBC rates using Poisson regression models adjusted for the age at and time since first breast cancer diagnosis.
Results
Before 1985, CBC incidence rates were stable (EAPC, 0.27% per year; 95% CI, −0.4 to 0.9), after which they declined with an EAPC of −3.07% per year (95% CI, −3.5 to −2.7). From 1990 forward, the declines were restricted to CBC after an ER-positive cancer (EAPC, −3.18%; 95% CI, −4.2 to −2.2) with no clear decreases after an ER-negative cancer. Estimated current age-specific CBC rates (per 100/year) after an ER-positive first cancer were: 0.45 for first cancers diagnosed before age 30 years and 0.25 to 0.37 for age 30 years or older. Rates after an ER-negative cancer were higher: 1.26 before age 30 years, 0.85 for age 30 to 35 years, and 0.45 to 0.65 for age 40 or older.
Conclusion
Results show a favorable decrease of 3% per year for CBC incidence in the United States since 1985. This overall trend was driven by declining CBC rates after an ER-positive cancer, possibly because of the widespread usage of adjuvant hormone therapies, after the results of the Nolvadex Adjuvant Trial Organisation were published in 1983, and/or other adjuvant treatments.
doi:10.1200/JCO.2010.32.7395
PMCID: PMC3082975  PMID: 21402610
17.  Genetic Relationship among Worldwide Strains of Xanthomonas Causing Canker in Citrus Species and Design of New Primers for Their Identification by PCR†  
Partial sequence analysis of the ribosomal operon in Xanthomonas axonopodis allowed discrimination among strains causing the A, B, and C types of citrus bacterial canker (CBC) and quantification of the relationship of these organisms with other species and pathovars in the same genus. Sets of primers based on sequence differences in the internally transcribed spacer and on a sequence from the plasmid gene pthA involved in virulence were designed for specific identification of xanthomonads causing CBC diseases. The two sets were validated with a collection of Xanthomonas strains associated with citrus species. The primer set based on ribosomal sequences had a high level of specificity for X. axonopodis pv. citri, whereas the set based on the pthA gene was universal for all types of CBC organisms. Moreover, the relationships among worldwide Xanthomonas strains causing CBC were analyzed by amplification of repetitive sequences (enterobacterial repetitive intergenic consensus and BOX elements). Under specific conditions, pathotypes of these Xanthomonas strains could be discerned, and subgroups of the pathotypes were identified. Subgroups of strains were associated with certain geographic areas of the world, and on this basis the origin of type A strains introduced into Florida could be inferred.
doi:10.1128/AEM.68.3.1257-1264.2002
PMCID: PMC123760  PMID: 11872476
18.  Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution 
There is a particularly high interest to derive carotenoids such as β-carotene and lutein from higher plants and algae for the global market. It is well known that β-carotene can be overproduced in the green microalga Dunaliella salina in response to stressful light conditions. However, little is known about the effects of light quality on carotenoid metabolism, e.g., narrow spectrum red light. In this study, we present UPLC-UV-MS data from D. salina consistent with the pathway proposed for carotenoid metabolism in the green microalga Chlamydomonas reinhardtii. We have studied the effect of red light-emitting diode (LED) lighting on growth rate and biomass yield and identified the optimal photon flux for D. salina growth. We found that the major carotenoids changed in parallel to the chlorophyll b content and that red light photon stress alone at high level was not capable of upregulating carotenoid accumulation presumably due to serious photodamage. We have found that combining red LED (75 %) with blue LED (25 %) allowed growth at a higher total photon flux. Additional blue light instead of red light led to increased β-carotene and lutein accumulation, and the application of long-term iterative stress (adaptive laboratory evolution) yielded strains of D. salina with increased accumulation of carotenoids under combined blue and red light.
Electronic supplementary material
The online version of this article (doi:10.1007/s00253-012-4502-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s00253-012-4502-5
PMCID: PMC3586100  PMID: 23095941
Dunaliella salina; Adaptive laboratory evolution; β-carotene and lutein; Carotenoid metabolism; LED-based photobioreactor
19.  The alternative oxidase mediated respiration contributes to growth, resistance to hyperosmotic media and accumulation of secondary metabolites in three species 
Plant respiration, similar to respiration in animal mitochondria, exhibits both osmosensitive and insensitive components with the clear distinction that the insensitive respiration in plants is quantitatively better described as ‘less’ sensitive rather than ‘insensitive’. Salicylic hydroxamic acid (SHAM)-sensitive respiration was compared with the respiration sensitive to other inhibitors in rice, yeast and Dunaliella salina. The influence of SHAM was largely in the osmotically less sensitive component and enhanced with external osmotic pressure unlike other inhibitors that inhibited the osmotically sensitive component. SHAM inhibited germination and root growth but not shoot growth. Osmotic remediation of respiration that developed in due course of time with rice seedlings was abolished by SHAM and was not due to water and ionic uptake mechanisms. Yeast and Dunaliella also showed susceptibility of growth and respiration to SHAM. Glycerol retention was influenced by all inhibitors, while growth was inhibited demonstrably by SHAM in Dunaliella. Respiration in plants needs to be seen as a positive contribution to overall growth and not merely for burning away of the biomass.
doi:10.1007/s12298-008-0023-1
PMCID: PMC3550620  PMID: 23572891
SHAM; inhibitors of respiration; yeast; rice; Dunaliella; osmotic sensitivity; voids
20.  The biology of habitat dominance; can microbes behave as weeds? 
Microbial Biotechnology  2013;6(5):453-492.
Summary
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These ‘microbial weeds’ are able to dominate the communities that develop in fertile but uncolonized – or at least partially vacant – habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a ‘dustbin’ group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
doi:10.1111/1751-7915.12027
PMCID: PMC3918151  PMID: 23336673
21.  Description of Meloidoderita salina sp. n. (Nematoda, Sphaeronematidae) from a micro-tidal salt marsh at Mont-Saint-Michel Bay in France  
ZooKeys  2012;1-26.
Meloidoderita salina sp. n. is described and illustrated from the halophytic plant Atriplex portulacoides L. (sea purslane) growing in a micro-tidal salt marsh in the Mont-Saint-Michel Bay in France. This new species is the first member of Meloidoderita Poghossian, 1966 collected from a saline environment, and is characterized by the following features: sedentary mature females having a small swollen body with a clear posterior protuberance; slightly dorsally curved stylet, 19.9 µm long, with posteriorly sloping knobs; neck region irregular in shape and twisted; well developed secretory-excretory (S–E) pore, with markedly sclerotized S-E duct running posteriorly; prominent uterus bordered by a thick hyaline wall and filled with eggs. The adult female transforms into a cystoid. Eggs are deposited in both egg-mass and cystoid. Cystoids of Meloidoderita salina sp. n. display a unique sub-cuticular hexagonal beaded pattern.
Male without stylet, pharyngeal region degenerated, S-E duct prominent, deirids small, developed testis 97.5 µm long, spicules 18.4 µm long, cloacal opening ventrally protruded, small phasmids posterior to cloaca opening and situated at 5.9 (3.2–7.7) µm from tail end, and conical tail ending in a rounded terminus marked with one (rarely two) ventrally positioned mucro. Additionally, some young malesof the new species were observed enveloped in the last J2 cuticle. Second-stage juvenile body 470 µm long, with a 16.4 µm long stylet, prominent rounded knobs set off from the shaft, hemizonid anterior and adjacent to S-E pore, small deirids located just above S-E pore level, genital primordium located at 68–77% of body length, phasmids small and located at about 19 µm from tail tip, and tail 38.7 µm long, tapering to finely pointed terminus with a finger-like projection. Phylogenetic analyses based on the nearly full length small subunit ribosomal DNA sequences of Meloidoderita salina sp. n. revealed a close relationship of the new species with Sphaeronema alni Turkina & Chizhov, 1986 and placed these two species sister to the rest of Criconematina.
doi:10.3897/zookeys.249.4138
PMCID: PMC3536011  PMID: 23378798
Atriplex portulacoides; cystoid; halophyte; hexagonal; morphology; morphometrics; nematode; new species; sea purslane; SEM; SSU rDNA; taxonomy
22.  On the mechanism of rapid plasma membrane and chloroplast envelope expansion in Dunaliella salina exposed to hypoosmotic shock 
The Journal of Cell Biology  1986;102(1):289-297.
Dunaliella salina cells rapidly diluted from their normal 1.71 M NaCl- containing growth medium into medium containing 0.86 M NaCl swelled within 2--4 min to an average volume 1.76 X larger and a surface area 1.53 X larger than found in control cells. Morphometric analysis of thin section electron micrographs revealed that certain organelles, including the chloroplast, nucleus, and some types of vacuoles, also expanded in surface area as much or more than did the entire cell. It is likely that glycerol, the most important osmotically active intracellular solute, was present in high concentration within these organelles as well as in the cytoplasm itself. Thin section and freeze- fracture electron microscopy were utilized to trace the origin of membrane material whose addition permitted the large increase in plasma membrane surface area and the equally large growth of the chloroplast outer envelope. The findings indicated that the plasma membrane's expansion resulted from its selective fusion with numerous small (less than or equal to 0.25 micron diam) vesicles prevalent throughout the cytoplasm. In contrast, new membrane added to the chloroplast outer envelope was drawn from an entirely different source, namely, elements of the endoplasmic reticulum.
PMCID: PMC2114047  PMID: 3941156
23.  Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock 
The Journal of Cell Biology  1988;107(2):529-538.
Hyperosmotic shock, induced by raising the NaCl concentration of Dunaliella salina medium from 1.71 to 3.42 M, elicited a rapid decrease of nearly one-third in whole cell volume and in the volume of intracellular organelles. The decrease in cell volume was accompanied by plasmalemma infolding without overall loss of surface area. This contrasts with the dramatic increase in plasmalemma surface area after hypoosmotic shock (Maeda, M., and G. A. Thompson. 1986. J. Cell Biol. 102:289-297). Although plasmalemma surface area remained constant after hyperosmotic shock, the nucleus, chloroplast, and mitochondria lost membrane surface area, apparently through membrane fusion with the endoplasmic reticulum. Thus the endoplasmic reticulum serves as a reservoir for excess membrane during hyperosmotic stress, reversing its role as membrane donor to the same organelles during hypoosmotically induced cell expansion. Hyperosmotic shock also induced rapid changes in phospholipid metabolism. The mass of phosphatidic acid dropped to 56% of control and that of phosphatidylinositol 4,5-bisphosphate rose to 130% of control within 4 min. Further analysis demonstrated that within 10 min after hyperosmotic shock, there was 2.5-fold increase in phosphatidylcholine turnover, a twofold increase in lysophosphatidylcholine mass, a four-fold increase in lysophosphatidate mass, and an elevation in free fatty acids to 124% of control, all observations suggesting activation of phospholipase A. The observed biophysical and biochemical phenomena are likely to be causally interrelated in providing mechanisms for successful accommodation to such severe osmotic extremes.
PMCID: PMC2115205  PMID: 3417760
24.  Copper-Binding Compounds from Methylosinus trichosporium OB3b 
Journal of Bacteriology  1998;180(14):3606-3613.
Two copper-binding compounds/cofactors (CBCs) were isolated from the spent media of both the wild type and a constitutive soluble methane monooxygenase (sMMOC) mutant, PP319 (P. A. Phelps et al., Appl. Environ. Microbiol. 58:3701–3708, 1992), of Methylosinus trichosporium OB3b. Both CBCs are small polypeptides with molecular masses of 1,218 and 779 Da for CBC-L1 and CBC-L2, respectively. The amino acid sequence of CBC-L1 is S?MYPGS?M, and that of CBC-L2 is SPMP?S. Copper-free CBCs showed absorption maxima at 204, 275, 333, and 356 with shoulders at 222 and 400 nm. Copper-containing CBCs showed a broad absorption maximum at 245 nm. The low-temperature electron paramagnetic resonance (EPR) spectra of copper-containing CBC-L1 showed the presence of a copper center with an EPR splitting constant between those of type 1 and type 2 copper centers (g⊥ = 2.087, g∥ = 2.42 G, |A∥| = 128 G). The EPR spectrum of CBC-L2 was more complex and showed two spectrally distinct copper centers. One signal can be attributed to a type 2 Cu2+ center (g⊥ = 2.073, g∥ = 2.324 G, |A∥| = 144 G) which could be saturated at higher powers, while the second shows a broad, nearly isotropic signal near g⊥ = 2.063. In wild-type strains, the concentrations of CBCs in the spent media were highest in cells expressing the pMMO and stressed for copper. In contrast to wild-type strains, high concentrations of CBCs were observed in the extracellular fraction of the sMMOC mutants PP319 and PP359 regardless of the copper concentration in the culture medium.
PMCID: PMC107329  PMID: 9658004
25.  Estrogen Receptor Status in Relation to Risk of Contralateral Breast Cancer–A Population-Based Cohort Study 
PLoS ONE  2012;7(10):e46535.
Background
It is unclear whether estrogen receptor (ER)-status of first primary breast cancer is associated with risk of metachronous (non-simultaneous) contralateral breast cancer (CBC), and to what extent endocrine therapy affects this association.
Methods
We studied the effect of ER-status of the first cancer on the risk of CBC overall, and for different ER-subtypes of CBC, using a large, population-based cohort. The cohort consisted of all women diagnosed with breast cancer in the Stockholm region 1976–2005; 25715 patients, of whom 940 suffered CBC. The relative risk was analyzed mainly using standardized incidence ratios (SIR).
Results
Women with breast cancer had a doubled risk of CBC compared to the risk of breast cancer in the general female population (SIR: 2.22 [2.08–2.36]), for women with a previous ER-positive cancer: SIR = 2.30 (95% CI:2.11–2.50) and for women with a previous ER-negative cancer: SIR = 2.17 (95% CI:1.82–2.55). The relative risk of ER-positive and ER-negative CBC was very similar for women with ER-positive first cancer (SIR = 2.02 [95%CI: 1.80–2.27] and SIR = 1.89 [95%CI: 1.46–2.41] respectively) while for patients with ER-negative first cancer the relative risk was significantly different (SIR = 1.27 [95% CI:0.94–1.68] for ER-positive CBC and SIR = 4.96 [95%CI:3.67–6.56] for ER-negative CBC). Patients with ER-positive first cancer who received hormone therapy still had a significantly higher risk of CBC than the risk of breast cancer for the general female population (SIR = 1.74 [95% CI:1.47–2.03]).
Conclusion
The risk of CBC for a breast cancer patient is increased to about two-fold, compared to the risk of breast cancer in the general female population. This excess risk decreases, but does not disappear, with adjuvant endocrine therapy. Patients with ER-positive first cancers have an increased risk for CBC of both ER subtypes, while patients with ER-negative first cancer have a specifically increased risk of ER-negative CBC.
doi:10.1371/journal.pone.0046535
PMCID: PMC3466301  PMID: 23056335

Results 1-25 (782296)