Search tips
Search criteria

Results 1-25 (727394)

Clipboard (0)

Related Articles

1.  A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.) 
BMC Genomics  2009;10:523.
Chickpea (Cicer arietinum L.), an important grain legume crop of the world is seriously challenged by terminal drought and salinity stresses. However, very limited number of molecular markers and candidate genes are available for undertaking molecular breeding in chickpea to tackle these stresses. This study reports generation and analysis of comprehensive resource of drought- and salinity-responsive expressed sequence tags (ESTs) and gene-based markers.
A total of 20,162 (18,435 high quality) drought- and salinity- responsive ESTs were generated from ten different root tissue cDNA libraries of chickpea. Sequence editing, clustering and assembly analysis resulted in 6,404 unigenes (1,590 contigs and 4,814 singletons). Functional annotation of unigenes based on BLASTX analysis showed that 46.3% (2,965) had significant similarity (≤1E-05) to sequences in the non-redundant UniProt database. BLASTN analysis of unique sequences with ESTs of four legume species (Medicago, Lotus, soybean and groundnut) and three model plant species (rice, Arabidopsis and poplar) provided insights on conserved genes across legumes as well as novel transcripts for chickpea. Of 2,965 (46.3%) significant unigenes, only 2,071 (32.3%) unigenes could be functionally categorised according to Gene Ontology (GO) descriptions. A total of 2,029 sequences containing 3,728 simple sequence repeats (SSRs) were identified and 177 new EST-SSR markers were developed. Experimental validation of a set of 77 SSR markers on 24 genotypes revealed 230 alleles with an average of 4.6 alleles per marker and average polymorphism information content (PIC) value of 0.43. Besides SSR markers, 21,405 high confidence single nucleotide polymorphisms (SNPs) in 742 contigs (with ≥ 5 ESTs) were also identified. Recognition sites for restriction enzymes were identified for 7,884 SNPs in 240 contigs. Hierarchical clustering of 105 selected contigs provided clues about stress- responsive candidate genes and their expression profile showed predominance in specific stress-challenged libraries.
Generated set of chickpea ESTs serves as a resource of high quality transcripts for gene discovery and development of functional markers associated with abiotic stress tolerance that will be helpful to facilitate chickpea breeding. Mapping of gene-based markers in chickpea will also add more anchoring points to align genomes of chickpea and other legume species.
PMCID: PMC2784481  PMID: 19912666
2.  A transcriptome analysis of mitten crab testes (Eriocheir sinensis) 
Genetics and Molecular Biology  2011;34(1):136-141.
The identification of expressed genes involved in sexual precocity of the mitten crab (Eriocheir sinensis) is critical for a better understanding of its reproductive development. To this end, we constructed a cDNA library from the rapid developmental stage of testis of E. sinensis and sequenced 3,388 randomly picked clones. After processing, 2,990 high-quality expressed sequence tags (ESTs) were clustered into 2,415 unigenes including 307 contigs and 2,108 singlets, which were then compared to the NCBI non-redundant (nr) protein and nucleotide (nt) database for annotation with Blastx and Blastn, respectively. After further analysis, 922 unigenes were obtained with concrete annotations and 30 unigenes were found to have functions possibly related to the process of reproduction in male crabs – six transcripts relevant to spermatogenesis (especially Cyclin K and RecA homolog DMC1), two transcripts involved in nuclear protein transformation, two heat-shock protein genes, eleven transcription factor genes (a series of zinc-finger proteins), and nine cytoskeleton protein-related genes. Our results, besides providing valuable information related to crustacean reproduction, can also serve as a base for future studies of reproductive and developmental biology.
PMCID: PMC3085360  PMID: 21637557
reproduction; testis; EST; Eriocheir sinensis
3.  Molecular Taxonomy of Ganoderma cupreum from Southern India Inferred from ITS rDNA Sequences Analysis 
Mycobiology  2013;41(4):248-251.
Ganoderma is a cosmopolitan wood-rot basidiomycete that has been extensively studied for its pathogencity and medicinal properties. Identification of Ganoderma based on macro-microscopic features led to large number of synonyms which resulted in 250 taxonomic names. A Ganoderma species collected from Courtallam, Tamil Nadu was identified as G. cupreum. Phylogenetic analysis inferred from internal transcribed spacer rDNA region resolved the Indian isolate MYC1 as Ganoderma cupreum which clustered with Australian and Asian "cupreum" clade with 85% bootstrap support BS and shared 99% and 98% nucleotide similarity with Malaysian and Australian 'cupreum' respectively. This study represents the first molecular evidence of G. cupreum from Asian origin.
PMCID: PMC3905131  PMID: 24493948
Ganodermataceae; Mycogeography; Polyporales; Taxonomy
4.  A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga hermonthica 
BMC Plant Biology  2010;10:55.
The obligate parasitic plant witchweed (Striga hermonthica) infects major cereal crops such as sorghum, maize, and millet, and is the most devastating weed pest in Africa. An understanding of the nature of its parasitism would contribute to the development of more sophisticated management methods. However, the molecular and genomic resources currently available for the study of S. hermonthica are limited.
We constructed a full-length enriched cDNA library of S. hermonthica, sequenced 37,710 clones from the library, and obtained 67,814 expressed sequence tag (EST) sequences. The ESTs were assembled into 17,317 unigenes that included 10,319 contigs and 6,818 singletons. The S. hermonthica unigene dataset was subjected to a comparative analysis with other plant genomes or ESTs. Approximately 80% of the unigenes have homologs in other dicotyledonous plants including Arabidopsis, poplar, and grape. We found that 589 unigenes are conserved in the hemiparasitic Triphysaria species but not in other plant species. These are good candidates for genes specifically involved in plant parasitism. Furthermore, we found 1,445 putative simple sequence repeats (SSRs) in the S. hermonthica unigene dataset. We tested 64 pairs of PCR primers flanking the SSRs to develop genetic markers for the detection of polymorphisms. Most primer sets amplified polymorphicbands from individual plants collected at a single location, indicating high genetic diversity in S. hermonthica. We selected 10 primer pairs to analyze S. hermonthica harvested in the field from different host species and geographic locations. A clustering analysis suggests that genetic distances are not correlated with host specificity.
Our data provide the first extensive set of molecular resources for studying S. hermonthica, and include EST sequences, a comparative analysis with other plant genomes, and useful genetic markers. All the data are stored in a web-based database and freely available. These resources will be useful for genome annotation, gene discovery, functional analysis, molecular breeding, epidemiological studies, and studies of plant evolution.
PMCID: PMC2923529  PMID: 20353604
5.  Generation, Annotation and Analysis of First Large-Scale Expressed Sequence Tags from Developing Fiber of Gossypium barbadense L 
PLoS ONE  2011;6(7):e22758.
Cotton fiber is the world's leading natural fiber used in the manufacture of textiles. Gossypium is also the model plant in the study of polyploidization, evolution, cell elongation, cell wall development, and cellulose biosynthesis. G. barbadense L. is an ideal candidate for providing new genetic variations useful to improve fiber quality for its superior properties. However, little is known about fiber development mechanisms of G. barbadense and only a few molecular resources are available in GenBank.
Methodology and Principal Findings
In total, 10,979 high-quality expressed sequence tags (ESTs) were generated from a normalized fiber cDNA library of G. barbadense. The ESTs were clustered and assembled into 5852 unigenes, consisting of 1492 contigs and 4360 singletons. The blastx result showed 2165 unigenes with significant similarity to known genes and 2687 unigenes with significant similarity to genes of predicted proteins. Functional classification revealed that unigenes were abundant in the functions of binding, catalytic activity, and metabolic pathways of carbohydrate, amino acid, energy, and lipids. The function motif/domain-related cytoskeleton and redox homeostasis were enriched. Among the 5852 unigenes, 282 and 736 unigenes were identified as potential cell wall biosynthesis and transcription factors, respectively. Furthermore, the relationships among cotton species or between cotton and other model plant systems were analyzed. Some putative species-specific unigenes of G. barbadense were highlighted.
The ESTs generated in this study are from the first large-scale EST project for G. barbadense and significantly enhance the number of G. barbadense ESTs in public databases. This knowledge will contribute to cotton improvements by studying fiber development mechanisms of G. barbadense, establishing a breeding program using marker-assisted selection, and discovering candidate genes related to important agronomic traits of cotton through oligonucleotide array. Our work will also provide important resources for comparative genomics, polyploidization, and genome evolution among Gossypium species.
PMCID: PMC3145671  PMID: 21829504
6.  Does an expressed sequence tag (EST) library of Salsola iberica (tumbleweed) help to understand plant responses to environmental stresses? 
Plant Signaling & Behavior  2010;5(11):1330-1335.
Weeds play an important role in agriculture and molecular techniques are useful to help understand traits that contribute to weediness and weeds' interactions with the environment. A total of 377 expressed sequence tags (ESTs) from a modest library were arranged into 227 unique fragments and 61 contigs, which consisted of two or more ESTs. From blastx results, we mapped and annotated unigenes using the gene ontology vocabulary according to biological process, cellular component and molecular function. These were then compared to a reference set of Arabidopsis thaliana sequences for statistically significant over- or underrepresented genes. The sequences were also compared against multiple protein databases for similarity of functional domains. Overall, the S. iberica sequences showed high similarity to response to stress, which included salt-induced proteins, betaine aldehydehyde dehydrogenase and calcium binding proteins. Only a modest number of transcripts were sequenced; however, the results presented here demonstrate the metabolic versatility of S. iberica in sub-optimal conditions that are likely to contribute to its cosmopolitan distribution. Here we propose that an EST library of an economically important weed species could be used to understand the weed's interactions with the environment.
PMCID: PMC3115229  PMID: 20935479
expressed sequence tag; gene ontology; Salsola iberica; weed; weediness
7.  Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers 
BMC Genetics  2010;11:66.
Expressed Sequence Tag (EST) has been a cost-effective tool in molecular biology and represents an abundant valuable resource for genome annotation, gene expression, and comparative genomics in plants.
In this study, we constructed a cDNA library of Prunus mume flower and fruit, sequenced 10,123 clones of the library, and obtained 8,656 expressed sequence tag (EST) sequences with high quality. The ESTs were assembled into 4,473 unigenes composed of 1,492 contigs and 2,981 singletons and that have been deposited in NCBI (accession IDs: GW868575 - GW873047), among which 1,294 unique ESTs were with known or putative functions. Furthermore, we found 1,233 putative simple sequence repeats (SSRs) in the P. mume unigene dataset. We randomly tested 42 pairs of PCR primers flanking potential SSRs, and 14 pairs were identified as true-to-type SSR loci and could amplify polymorphic bands from 20 individual plants of P. mume. We further used the 14 EST-SSR primer pairs to test the transferability on peach and plum. The result showed that nearly 89% of the primer pairs produced target PCR bands in the two species. A high level of marker polymorphism was observed in the plum species (65%) and low in the peach (46%), and the clustering analysis of the three species indicated that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the Prunus species.
We have constructed the first cDNA library of P. mume flower and fruit, and our data provide sets of molecular biology resources for P. mume and other Prunus species. These resources will be useful for further study such as genome annotation, new gene discovery, gene functional analysis, molecular breeding, evolution and comparative genomics between Prunus species.
PMCID: PMC2920227  PMID: 20626882
8.  Comparative Gene Expression Analysis of Susceptible and Resistant Near-Isogenic Lines in Common Wheat Infected by Puccinia triticina 
Gene expression after leaf rust infection was compared in near-isogenic wheat lines differing in the Lr10 leaf rust resistance gene. RNA from susceptible and resistant plants was used for cDNA library construction. In total, 55 008 ESTs were sequenced from the two libraries, then combined and assembled into 14 268 unigenes for further analysis. Of these ESTs, 89% encoded proteins similar to (E value of ≤10−5) characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions, cellular localization and biological processes based on gene ontology classification. Further, the unigenes were classified into susceptible and resistant classes based on the EST members assembled from the respective libraries. Several genes from the resistant sample (14-3-3 protein, wali5 protein, actin-depolymerization factor and ADP-ribosylation factor) and the susceptible sample (brown plant hopper resistance protein, caffeic acid O-methyltransferase, pathogenesis-related protein and senescence-associated protein) were selected and their differential expression in the resistant and susceptible samples collected at different time points after leaf rust infection was confirmed by RT–PCR analysis. The molecular pathogenicity of leaf rust in wheat was studied and the EST data generated made a foundation for future studies.
PMCID: PMC2920755  PMID: 20360266
wheat; leaf rust; ESTs; resistance; susceptible
9.  Generation and Analysis of Expressed Sequence Tags from Chimonanthus praecox (Wintersweet) Flowers for Discovering Stress-Responsive and Floral Development-Related Genes 
A complementary DNA library was constructed from the flowers of Chimonanthus praecox, an ornamental perennial shrub blossoming in winter in China. Eight hundred sixty-seven high-quality expressed sequence tag sequences with an average read length of 673.8 bp were acquired. A nonredundant set of 479 unigenes, including 94 contigs and 385 singletons, was identified after the expressed sequence tags were clustered and assembled. BLAST analysis against the nonredundant protein database and nonredundant nucleotide database revealed that 405 unigenes shared significant homology with known genes. The homologous unigenes were categorized according to Gene Ontology hierarchies (biological, cellular, and molecular). By BLAST analysis and Gene Ontology annotation, 95 unigenes involved in stress and defense and 19 unigenes related to floral development were identified based on existing knowledge. Twelve genes, of which 9 were annotated as “cold response,” were examined by real-time RT-PCR to understand the changes in expression patterns under cold stress and to validate the findings. Fourteen genes, including 11 genes related to floral development, were also detected by real-time RT-PCR to validate the expression patterns in the blooming process and in different tissues. This study provides a useful basis for the genomic analysis of C. praecox.
PMCID: PMC3318203  PMID: 22536115
10.  ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale 
PLoS ONE  2013;8(8):e72705.
Dendrobiumofficinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.
PMCID: PMC3742586  PMID: 23967335
11.  EST2Prot: Mapping EST sequences to proteins 
BMC Genomics  2006;7:41.
EST libraries are used in various biological studies, from microarray experiments to proteomic and genetic screens. These libraries usually contain many uncharacterized ESTs that are typically ignored since they cannot be mapped to known genes. Consequently, new discoveries are possibly overlooked.
We describe a system (EST2Prot) that uses multiple elements to map EST sequences to their corresponding protein products. EST2Prot uses UniGene clusters, substring analysis, information about protein coding regions in existing DNA sequences and protein database searches to detect protein products related to a query EST sequence. Gene Ontology terms, Swiss-Prot keywords, and protein similarity data are used to map the ESTs to functional descriptors.
EST2Prot extends and significantly enriches the popular UniGene mapping by utilizing multiple relations between known biological entities. It produces a mapping between ESTs and proteins in real-time through a simple web-interface. The system is part of the Biozon database and is accessible at .
PMCID: PMC1456965  PMID: 16515706
12.  PEDB: the Prostate Expression Database. 
Nucleic Acids Research  1999;27(1):204-208.
The Prostate Expression Database (PEDB) is a curated relational database and suite of analysis tools designed for the study of prostate gene expression in normal and disease states. Expressed Sequence Tags (ESTs) and full-length cDNA sequences derived from more than 40 human prostate cDNA libraries are maintained and represent a wide spectrum of normal and pathological conditions. Detailed library information including tissue source, library construction methods, sequence diversity and abundance are available in a library archive. Prostate ESTs are assembled into distinct species groups using the multiple alignment program CAP2 and are annotated with information from the GenBank, dbEST and Unigene public sequence databases. Annotated sequences in PEDB are searched using the BLAST algorithm. The differential expression of each EST species can be viewed across all libraries using a Virtual Expression Analysis Tool (VEAT), a graphical user interface written in Java for intra- and inter-library species comparisons. PEDB may be accessed via the World Wide Web at
PMCID: PMC148136  PMID: 9847181
13.  Construction of a full-length cDNA Library from Chinese oak silkworm pupa and identification of a KK-42-binding protein gene in relation to pupa-diapause termination 
In this study we successfully constructed a full-length cDNA library from Chinese oak silkworm, Antheraea pernyi, the most well-known wild silkworm used for silk production and insect food. Total RNA was extracted from a single fresh female pupa at the diapause stage. The titer of the library was 5 × 105 cfu/ml and the proportion of recombinant clones was approximately 95%. Expressed sequence tag (EST) analysis was used to characterize the library. A total of 175 clustered ESTs consisting of 24 contigs and 151 singlets were generated from 250 effective sequences. Of the 175 unigenes, 97 (55.4%) were known genes but only five from A. pernyi, 37 (21.2%) were known ESTs without function annotation, and 41 (23.4%) were novel ESTs. By EST sequencing, a gene coding KK-42-binding protein in A. pernyi (named as ApKK42-BP; GenBank accession no. FJ744151) was identified and characterized. Protein sequence analysis showed that ApKK42-BP was not a membrane protein but an extracellular protein with a signal peptide at position 1-18, and contained two putative conserved domains, abhydro_lipase and abhydrolase_1, suggesting it may be a member of lipase superfamily. Expression analysis based on number of ESTs showed that ApKK42-BP was an abundant gene in the period of diapause stage, suggesting it may also be involved in pupa-diapause termination.
PMCID: PMC2702828  PMID: 19564928
Chinese oak silkworm; Antheraea pernyi; cDNA library; Expressed sequence tag; KK-42-binding protein; diapause termination
14.  Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens 
Development of transgenic Nicotiana tabacum and Lycopersicon esculentum expressing an endochitinase (ech42) gene from biocontrol fungus Trichoderma virens using Agrobacterium-mediated genetic transformation is reported in this paper. Integration of transgene in the genome of transgenic plants was demonstrated using polymerase chain reaction and Southern-blot hybridization, while expression was ascertained by reverse transcription polymerase chain reaction. Histochemical analysis confirmed the expression of GUS enzyme in transformed shoots. Levels of endochitinase enzyme in transgenic plants were found to be up to 10 fold higher compared to control plants. Endochitinase enzyme of 42 kDa was also visualized on SDS-PAGE gel using fluorimetric zymogram in transgenic plants. Endochitinase activity was found to be higher in leaf and stem than the root tissue in transgenic tomato plants. Transgenic lines of both plants showed enhanced resistance to fungal pathogens and a strong negative correlation was found between expression level of endochitinase enzyme and size of disease lesions. Inheritance of transgene, expression and resistance to fungal pathogens of T1 transgenic tobacco lines was also analysed. The results of the present studies show that ech42 is a promising candidate gene for developing fungal disease resistance in tomato plants.
PMCID: PMC3550631  PMID: 23572953
Chitinase; Tobacco; Tomato; Transgenic plants; Trichoderma virens
15.  Bioinformatic analysis of fruit-specific expressed sequence tag libraries of Diospyros kaki Thunb.: view at the transcriptome at different developmental stages 
3 Biotech  2011;1(1):35-45.
We present here a systematic analysis of the Diospyros kaki expressed sequence tags (ESTs) generated from development stage-specific libraries. A total of 2,529 putative tentative unigenes were identified in the MF library whereas the OYF library displayed 3,775 tentative unigenes. Among the two cDNA libraries, 325 EST-Simple sequence repeats (SSRs) in 296 putative unigenes were detected in the MF library showing an occurrence of 11.7% with a frequency of 1 SSR/3.16 kb whereas the OYF library had an EST-SSRs occurrence of 10.8% with 407 EST-SSRs in the 352 putative unigenes with a frequency of 1 SSR/2.92 kb. We observed a higher frequency of SNPs and indels in the OYF library (20.94 SNPs/indels per 100 bp) in comparison to MF library showed a relatively lower frequency (0.74 SNPs/indels per 100 bp). A combined homology and secondary structure analysis approach identified a potential miRNA precursor, an ortholog of miR159, and potential miR159 targets, in the development-specific ESTs of D. kaki.
Electronic supplementary material
The online version of this article (doi:10.1007/s13205-011-0005-9) contains supplementary material, which is available to authorized users.
PMCID: PMC3339603  PMID: 22558534
Diospyros kaki; Expressed sequence tag; GC3 biology; MicroRNA; SSRs; SSR-FDM; SNPs; Chemistry; Biotechnology; Stem Cells; Biomaterials; Bioinformatics; Agriculture; Cancer Research
16.  Bioinformatic analysis of fruit-specific expressed sequence tag libraries of Diospyros kaki Thunb.: view at the transcriptome at different developmental stages 
3 Biotech  2011;1(1):35-45.
We present here a systematic analysis of the Diospyros kaki expressed sequence tags (ESTs) generated from development stage-specific libraries. A total of 2,529 putative tentative unigenes were identified in the MF library whereas the OYF library displayed 3,775 tentative unigenes. Among the two cDNA libraries, 325 EST-Simple sequence repeats (SSRs) in 296 putative unigenes were detected in the MF library showing an occurrence of 11.7% with a frequency of 1 SSR/3.16 kb whereas the OYF library had an EST-SSRs occurrence of 10.8% with 407 EST-SSRs in the 352 putative unigenes with a frequency of 1 SSR/2.92 kb. We observed a higher frequency of SNPs and indels in the OYF library (20.94 SNPs/indels per 100 bp) in comparison to MF library showed a relatively lower frequency (0.74 SNPs/indels per 100 bp). A combined homology and secondary structure analysis approach identified a potential miRNA precursor, an ortholog of miR159, and potential miR159 targets, in the development-specific ESTs of D. kaki.
Electronic supplementary material
The online version of this article (doi:10.1007/s13205-011-0005-9) contains supplementary material, which is available to authorized users.
PMCID: PMC3339603  PMID: 22558534
Diospyros kaki; Expressed sequence tag; GC3 biology; MicroRNA; SSRs; SSR-FDM; SNPs
17.  Generation and analysis of expressed sequence tags from a cDNA library of the fruiting body of Ganoderma lucidum 
Chinese Medicine  2010;5:9.
Little genomic or trancriptomic information on Ganoderma lucidum (Lingzhi) is known. This study aims to discover the transcripts involved in secondary metabolite biosynthesis and developmental regulation of G. lucidum using an expressed sequence tag (EST) library.
A cDNA library was constructed from the G. lucidum fruiting body. Its high-quality ESTs were assembled into unique sequences with contigs and singletons. The unique sequences were annotated according to sequence similarities to genes or proteins available in public databases. The detection of simple sequence repeats (SSRs) was preformed by online analysis.
A total of 1,023 clones were randomly selected from the G. lucidum library and sequenced, yielding 879 high-quality ESTs. These ESTs showed similarities to a diverse range of genes. The sequences encoding squalene epoxidase (SE) and farnesyl-diphosphate synthase (FPS) were identified in this EST collection. Several candidate genes, such as hydrophobin, MOB2, profilin and PHO84 were detected for the first time in G. lucidum. Thirteen (13) potential SSR-motif microsatellite loci were also identified.
The present study demonstrates a successful application of EST analysis in the discovery of transcripts involved in the secondary metabolite biosynthesis and the developmental regulation of G. lucidum.
PMCID: PMC2848221  PMID: 20230644
18.  Expressed sequence tags from organ-specific cDNA libraries of tea (Camellia sinensis) and polymorphisms and transferability of EST-SSRs across Camellia species 
Breeding Science  2012;62(2):186-195.
Tea is one of the most popular beverages in the world and the tea plant, Camellia sinensis (L.) O. Kuntze, is an important crop in many countries. To increase the amount of genomic information available for C. sinensis, we constructed seven cDNA libraries from various organs and used these to generate expressed sequence tags (ESTs). A total of 17,458 ESTs were generated and assembled into 5,262 unigenes. About 50% of the unigenes were assigned annotations by Gene Ontology. Some were homologous to genes involved in important biological processes, such as nitrogen assimilation, aluminum response, and biosynthesis of caffeine and catechins. Digital northern analysis showed that 67 unigenes were expressed differentially among the seven organs. Simple sequence repeat (SSR) motif searches among the unigenes identified 1,835 unigenes (34.9%) harboring SSR motifs of more than six repeat units. A subset of 100 EST-SSR primer sets was tested for amplification and polymorphism in 16 tea accessions. Seventy-one primer sets successfully amplified EST-SSRs and 70 EST-SSR loci were polymorphic. Furthermore, these 70 EST-SSR markers were transferable to 14 other Camellia species. The ESTs and EST-SSR markers will enhance the study of important traits and the molecular genetics of tea plants and other Camellia species.
PMCID: PMC3405963  PMID: 23136530
Camellia sinensis; tea plants; expressed sequence tags; EST-SSR
19.  Analysis of Transcripts Expressed in One-Day-Old Larvae and Fifth Instar Silk Glands of Tasar Silkworm, Antheraea mylitta 
Antheraea mylitta is one of the wild nonmulberry silkworms, which produces tasar silk. An EST project has been undertaken to understand the gene expression profile of A. mylitta silk gland. Two cDNA libraries, one from the whole bodies of one-day-old larvae and the other from the silkglands of fifth instar larvae, were constructed and sequenced. A total of 2476 good-quality ESTs (1239 clones) were obtained and grouped into 648 clusters containing 390 contigs and 258 singletons to represent 467 potential unigenes. Forty-five sequences contained putative coding region, and represented potentially novel genes. Among the 648 clusters, 241 were categorized according to Gene Ontology hierarchy and showed presence of several silk and immune-related genes. The A. mylitta ESTs have been organized into a freely available online database “AmyBASE”. These data provide an initial insight into the A. mylitta transcriptome and help to understand the molecular mechanism of silk protein production in a Lepidopteran species.
PMCID: PMC2864506  PMID: 20454581
20.  Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413 
BMC Genomics  2006;7:193.
The filamentous fungus Trichoderma harzianum is used as biological control agent of several plant-pathogenic fungi. In order to study the genome of this fungus, a functional genomics project called "TrichoEST" was developed to give insights into genes involved in biological control activities using an approach based on the generation of expressed sequence tags (ESTs).
Eight different cDNA libraries from T. harzianum strain CECT 2413 were constructed. Different growth conditions involving mainly different nutrient conditions and/or stresses were used. We here present the analysis of the 8,710 ESTs generated. A total of 3,478 unique sequences were identified of which 81.4% had sequence similarity with GenBank entries, using the BLASTX algorithm. Using the Gene Ontology hierarchy, we performed the annotation of 51.1% of the unique sequences and compared its distribution among the gene libraries. Additionally, the InterProScan algorithm was used in order to further characterize the sequences. The identification of the putatively secreted proteins was also carried out. Later, based on the EST abundance, we examined the highly expressed genes and a hydrophobin was identified as the gene expressed at the highest level. We compared our collection of ESTs with the previous collections obtained from Trichoderma species and we also compared our sequence set with different complete eukaryotic genomes from several animals, plants and fungi. Accordingly, the presence of similar sequences in different kingdoms was also studied.
This EST collection and its annotation provide a significant resource for basic and applied research on T. harzianum, a fungus with a high biotechnological interest.
PMCID: PMC1562415  PMID: 16872539
21.  Characterization of an Atlantic cod (Gadus morhua) embryonic stem cell cDNA library 
BMC Research Notes  2009;2:74.
The Atlantic cod is an ecologically and economically important North Atlantic fish species and also an emerging aquaculture species. To study gene expression in Atlantic cod embryonic stem (ES) cells, our goal was to generate and analyze expressed sequence tags (ESTs) from an ES cell cDNA library of mRNA consisting of approximately 3,900 ESTs.
We sequenced 3,935 EST clones using a directional cDNA library made from pooled ES cells harvested at the blastula stage. Quality filtering of these ESTs allowed identification of 2,719 high-quality sequences with an average length of 442 bp containing 368 contigs and 1,276 singletons (1,644 unique sequences). BLASTX searches produced 889 significant (E-value < 10-3) hits, of which 698 (42.5%) were annotated with Gene Ontology terms (E-value < 10-6). The number of unknown unique sequences was 946 (57.5%). All the high-quality EST sequences have been deposited in GenBank (GenBank: 2,719 sequences in UniGene library dbEST id: 22,021). Gene discovery and annotations are presented and discussed.
This set of ESTs represents one of the first attempts to describe mRNA in ES cells from a marine cold-water fish species, and provides a basis for gene expression studies of Atlantic cod ES cells.
PMCID: PMC2686721  PMID: 19416549
22.  Identification of Key Drought Stress-Related Genes in the Hyacinth Bean 
PLoS ONE  2013;8(3):e58108.
Hyacinth bean (Lablab purpureus [Linn.] Sweet) possesses excellent characteristics for field production, but the response of this plant to drought stress has not been described at the molecular level. Suppression subtraction hybridization (SSH) is an effective way to exploit key factors for plant responses to drought stress that are involved in transcriptional and metabolic activities. In this study, forward and reverse SSH libraries were generated from root tissues of the drought-tolerant hyacinth bean genotype MEIDOU 2012 under water–stress conditions. A total of 1,287 unigenes (94 contigs and 1,193 singletons) were derived from sequence alignment and cluster assembly of 1400 ESTs, and 80.6% of those hit against NCBI non-redundant (nr) database with E value <1E−06. BLASTX analysis revealed that the majority top matches were proteins form Glycine max (L.) Merrill. (61.5%). According to a gene ontology (GO) functional classification, 816 functionally annotated unigenes were assigned to the biological process category (74.1%), and 83.9% of them classified into molecular function and 69.2% involved in cellular component. A total of 168 sequences were further annotated with 207 Enzyme Commission (EC) codes and mapped to 83 different KEGG pathways. Seventeen functionally relevant genes were found to be overrepresented under drought stress using enrichment analysis. Differential expression of unigenes were confirmed by quantitative real-time PCR assays, and their transcript profiles generally divided into three patterns, depending on the expression peaked levels after 6, 8 or 10 days dehydration, which indicated that these genes are functionally associated in the drought-stress response.
PMCID: PMC3589356  PMID: 23472143
23.  Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress 
BMC Plant Biology  2011;11:70.
Chickpea (Cicer arietinum L.) is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs) by suppression subtraction hybridization (SSH) to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea.
EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant) and ICC 1882 (drought resistant) exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs) (10 each) for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons), 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71%) unigenes showed significant BLASTX similarity (<1E-06) in the NCBI non-redundant (nr) database. Gene ontology functional classification terms (BLASTX results and GO term), were retrieved for 2006 (92.0%) sequences, and 656 sequences were further annotated with 812 Enzyme Commission (EC) codes and were mapped to 108 different KEGG pathways. In addition, expression status of 830 unigenes in response to terminal drought stress was evaluated using macro-array (dot blots). The expression of few selected genes was validated by northern blotting and quantitative real-time PCR assay.
Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide a better insight into the selection of candidate genes (both up- and downregulated) associated with drought tolerance. These results can be used to identify suitable targets for manipulating the drought-tolerance trait in chickpea.
PMCID: PMC3110109  PMID: 21513527
24.  A genome-wide 20 K citrus microarray for gene expression analysis 
BMC Genomics  2008;9:318.
Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant.
We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability.
This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos.
PMCID: PMC2483987  PMID: 18598343
25.  Analysis of the Asian Seabass Transcriptome Based on Expressed Sequence Tags 
Analysis of transcriptomes is of great importance in genomic studies. Asian seabass is an important fish species. A number of genomic tools in it were developed, while large expressed sequence tag (EST) data are lacking. We sequenced ESTs from nine normalized cDNA libraries and obtained 11 431 high-quality ESTs. We retrieved 8524 ESTs from dbEST database and analyzed all 19 975 ESTs using bioinformatics tools. After clustering, we obtained 8837 unique sequences (2838 contigs and 5999 singletons). The average contig length was 574 bp. Annotation of these unique sequences revealed that 48.9% of them showed significant homology to RNA sequences in GenBank. Functional classification of the unique ESTs identified a broad range of genes involved in different functions. We identified 6114 putative single-nucleotide polymorphisms and 634 microsatellites in ESTs. We discovered different temporal and spatial expression patterns of some immune-related genes in the Asian seabass after challenging with a pathogen Vibrio harveyi. The unique EST sequences are being used in developing a cDNA microarray to examine global gene expression and will also facilitate future whole-genome sequence assembly and annotation of Asian seabass and comparative genomics.
PMCID: PMC3223082  PMID: 22086997
Asian seabass; EST; function; expression

Results 1-25 (727394)