Search tips
Search criteria

Results 1-25 (983565)

Clipboard (0)

Related Articles

1.  Roscovitine Inhibits EBNA1 Serine 393 Phosphorylation, Nuclear Localization, Transcription, and Episome Maintenance▿ †  
Journal of Virology  2011;85(6):2859-2868.
Latent Epstein-Barr virus (EBV) infection causes human lymphomas and carcinomas. EBV usually persists as an episome in malignant cells. EBV episome persistence, replication, and gene expression are dependent on EBNA1 binding to multiple cognate sites in oriP. To search for inhibitors of EBNA1- and oriP-dependent episome maintenance or transcription, a library of 40,550 small molecules was screened for compounds that inhibit EBNA1- and oriP-dependent transcription and do not inhibit EBNA1- and oriP-independent transcription. This screening identified roscovitine, a selective inhibitor of cyclin-dependent kinase 1 (CDK1), CDK2, CDK5, and CDK7. Based on motif predictions of EBNA1 serine 393 as a CDK phosphorylation site and 486RALL489 and 580KDLVM584 as potential cyclin binding domains, we hypothesized that cyclin binding to EBNA1 may enable CDK1, -2, -5, or -7 to phosphorylate serine 393. We found that Escherichia coli-expressed EBNA1 amino acids 387 to 641 were phosphorylated in vitro by CDK1-, -2-, -5-, and -7/cyclin complexes and serine 393 phosphorylation was roscovitine inhibited. Further, S393A mutation abrogated phosphorylation. S393A mutant EBNA1 was deficient in supporting EBNA1- and oriP-dependent transcription and episome persistence, and roscovitine had little further effect on the diminished S393A mutant EBNA1-mediated transcription or episome persistence. Immunoprecipitated FLAG-EBNA1 was phosphorylated in vitro, and roscovitine inhibited this phosphorylation. Moreover, roscovitine decreased nuclear EBNA1 and often increased cytoplasmic EBNA1, whereas S393A mutant EBNA1 was localized equally in the nucleus and cytoplasm and was unaffected by roscovitine treatment. These data indicate that roscovitine effects are serine 393 specific and that serine 393 is important in EBNA1- and oriPCp-dependent transcription and episome persistence.
PMCID: PMC3067954  PMID: 21209116
2.  Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. 
Journal of Virology  1989;63(1):101-110.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.
PMCID: PMC247662  PMID: 2535719
3.  The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). 
Journal of Virology  1996;70(5):3068-3074.
The ability of Epstein-Barr virus (EBV) latent infection nuclear protein EBNA3C to activate transcription of two EBNA2-responsive genes and to inhibit EBNA2 activation of transcription in transient-transfection assays appears to be due to its ability to interact with RBPJkappa, a cell protein that links EBNA2 to its response elements. We now show that EBNA3A and EBNA3B expressed in non-EBV-infected Burkitt tumor lymphoblasts are similar to EBNA3C in binding to glutathione S-transferase-RBPJkappa in vitro and in coimmunoprecipitating from cell lysates with antibody to RBPJkappa. EBNA3A and EBNA3B can also inhibit the interaction of RBPJkappa with cognate DNA in vitro. Although EBNA3 open reading frames are each close to 1,000 codons long, EBNA3A amino acids 1 to 138, EBNA3B amino acids 1 to 311, and EBNA3C amino acids 1 to 183 are sufficient for RBPJkappa interaction, while EBNA3B amino acids I to 109 have less or no binding. The RBPJkappa interacting domains overlap with the most highly conserved domain (amino acids 90 to 320) among the EBNA3 proteins. Thus, the EBNA3 gene family appears to have evolved to differentially regulate promoters with RBPJkappa binding sites. EBNA2, EBNA3A, and EBNA3C are important in EBV transformation of primary human B lymphocytes. Their interaction with RBPJkappa links EBV transformation to the notch signaling pathway and the effects of activated notch in T-cell leukemogenesis.
PMCID: PMC190168  PMID: 8627785
4.  Discovery of Selective Inhibitors Against EBNA1 via High Throughput In Silico Virtual Screening 
PLoS ONE  2010;5(4):e10126.
Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies and is a causal agent of lymphoproliferative diseases during immunosuppression. While inhibitors of herpesvirus DNA polymerases, like gancyclovir, reduce EBV lytic cycle infection, these treatments have limited efficacy for treating latent infection. EBNA1 is an EBV-encoded DNA-binding protein required for viral genome maintenance during latent infection.
Here, we report the identification of a new class of small molecules that inhibit EBNA1 DNA binding activity. These compounds were identified by virtual screening of 90,000 low molecular mass compounds using computational docking programs with the solved crystal structure of EBNA1. Four structurally related compounds were found to inhibit EBNA1-DNA binding in biochemical assays with purified EBNA1 protein. Compounds had a range of 20–100 µM inhibition of EBNA1 in fluorescence polarization assays and were further validated for inhibition using electrophoresis mobility shift assays. These compounds exhibited no significant inhibition of an unrelated DNA binding protein. Three of these compounds inhibited EBNA1 transcription activation function in cell-based assays and reduced EBV genome copy number when incubated with a Burkitt lymphoma cell line.
These experiments provide a proof-of-principle that virtual screening can be used to identify specific inhibitors of EBNA1 that may have potential for treatment of EBV latent infection.
PMCID: PMC2853575  PMID: 20405039
5.  Epstein-Barr Virus (EBV) Nuclear Antigen 1 Colocalizes with Cellular Replication Foci in the Absence of EBV Plasmids 
Journal of Virology  2003;77(6):3824-3831.
Epstein-Barr virus (EBV) EBNA-1 is the only EBV-encoded protein that is essential for the once-per-cell-cycle replication and maintenance of EBV plasmids in latently infected cells. EBNA-1 binds to the oriP region of latent EBV plasmids and cellular metaphase chromosomes. In the absence of oriP-containing plasmids, EBNA-1 was highly colocalized with cellular DNA replication foci that were identified by immunostaining S-phase cells for proliferating cell nuclear antigen and replication protein A (RP-A) in combination with DNA short pulse-labeling. For the association of EBNA-1 with the cellular replication focus areas, the EBNA-1 regions of amino acids (aa) 8 to 94 and/or aa 315 to 410, but not the RP-A-interacting carboxy-terminal region, were necessary. These results suggest a new aspect of latent virus-cell interactions.
PMCID: PMC149516  PMID: 12610157
6.  EBNA1-Mediated Recruitment of a Histone H2B Deubiquitylating Complex to the Epstein-Barr Virus Latent Origin of DNA Replication 
PLoS Pathogens  2009;5(10):e1000624.
The EBNA1 protein of Epstein-Barr virus (EBV) plays essential roles in enabling the replication and persistence of EBV genomes in latently infected cells and activating EBV latent gene expression, in all cases by binding to specific recognition sites in the latent origin of replication, oriP. Here we show that EBNA1 binding to its recognition sites in vitro is greatly stimulated by binding to the cellular deubiquitylating enzyme, USP7, and that USP7 can form a ternary complex with DNA-bound EBNA1. Consistent with the in vitro effects, the assembly of EBNA1 on oriP elements in human cells was decreased by USP7 silencing, whereas assembly of an EBNA1 mutant defective in USP7 binding was unaffected. USP7 affinity column profiling identified a complex between USP7 and human GMP synthetase (GMPS), which was shown to stimulate the ability of USP7 to cleave monoubiquitin from histone H2B in vitro. Accordingly, silencing of USP7 in human cells resulted in a consistent increase in the level of monoubquitylated H2B. The USP7-GMPS complex formed a quaternary complex with DNA-bound EBNA1 in vitro and, in EBV infected cells, was preferentially detected at the oriP functional element, FR, along with EBNA1. Down-regulation of USP7 reduced the level of GMPS at the FR, increased the level of monoubiquitylated H2B in this region of the origin and decreased the ability of EBNA1, but not an EBNA1 USP7-binding mutant, to activate transcription from the FR. The results indicate that USP7 can stimulate EBNA1-DNA interactions and that EBNA1 can alter histone modification at oriP through recruitment of USP7.
Author Summary
Epstein-Barr virus (EBV) infections persist for the lifetime of the host largely due to the actions of the EBNA1 viral protein. EBNA1 enables the replication and stable persistence of EBV genomes and activates the expression of other EBV genes by binding to specific DNA sequences in the EBV genome. We have shown that the cellular protein USP7 stimulates EBNA1 binding to its DNA sequences and that EBNA1 recruits USP7 to the EBV genome, which in turn recruits another cellular protein GMP synthetase. The complex of USP7 and GMP synthetase then functions to alter the chromatin structure at a region of the EBV genome that controls EBV persistence. These changes to the EBV genome are likely important for enabling the persistence of EBV genomes in infected cells.
PMCID: PMC2757719  PMID: 19834552
7.  Autorepression of Epstein-Barr Virus Nuclear Antigen 1 Expression by Inhibition of Pre-mRNA Processing▿  
Journal of Virology  2007;82(4):1679-1687.
Epstein-Barr virus (EBV) latent infection, and its associated oncogenic potential, is dependent on genome maintenance functions of EBV nuclear antigen 1 (EBNA-1), one of six EBNAs expressed from a common promoter (Wp and then Cp) upon infection of naive B cells. Subsequent host-mediated silencing, however, necessitates the expression of EBNA-1 from the EBNA-1-specific promoter Qp to ensure against genome loss during cell division, including EBV-associated malignancy. Here we addressed the mechanism by which EBNA-1 represses Qp through binding downstream of the transcription start site and the role of this autoregulatory function in EBV latency. Our results revealed that EBNA-1 does not inhibit transcription from Qp, as previously predicted, but acts post- or cotranscriptionally to block the processing of primary transcripts. This does not, however, require the RGG motifs responsible for strong but nonspecific RNA binding by EBNA-1. Within isogenic B-cell lines using either Cp/Wp or Qp, EBNA-1 occupancy of Qp is equivalent, suggesting that autoregulation occurs, albeit to different degrees, during full and restricted EBV latency programs. Finally, in cell lines using Cp or Wp for EBNA expression, unprocessed transcripts from Qp are detectable in the absence of corresponding mRNAs, providing further evidence that this novel mechanism of EBNA-1 action functions during latency. This posttranscriptional mechanism of regulation would provide an efficient means to monitor and regulate EBNA-1 expression from Qp, ensuring levels adequate for genome maintenance but, perhaps more importantly, below an immunogenic threshold above which latently infected cells may be at risk for elimination by EBNA-1-specific cytotoxic T cells.
PMCID: PMC2258721  PMID: 18077719
8.  Epstein-Barr Virus EBNA-3C Is Targeted to and Regulates Expression from the Bidirectional LMP-1/2B Promoter▿  
Journal of Virology  2006;80(22):11200-11208.
Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) is essential for EBV-mediated immortalization of human B lymphocytes and regulates both the cell cycle and transcription. Transient reporter gene assays have implicated a pivotal role for EBNA-3C in the regulation of transcription of the majority of latency-associated genes expressed during the EBV growth program, including the viral oncoprotein LMP-1. To examine the regulation of latency gene expression by EBNA-3C, we generated an EBV-positive cell line that inducibly expresses EBNA-3C. This cell line allowed us to examine expression from the endogenous latency gene promoters in the context of an actual latent infection and the presence of other EBNA proteins, in particular EBNA-2, which is presumed to coregulate transcription with EBNA-3C. EBNA-3C induced the expression of both LMP-1 and LMP-2B mRNAs from the bidirectional LMP-1/LMP-2B promoter. In contrast, no effect was seen on expression from the common EBNA promoter Cp, which is responsive to EBNA-3C in reporter assays. Activation of LMP expression was not the consequence of increases in EBNA-2, PU.1 or Spi-B transcription factors, all of which are believed to be critical for activation of LMP-1. Chromatin immunoprecipitation assays furthermore indicated that EBNA-3C is present at the bidirectional LMP-1/LMP-2B promoter. These results indicate that EBNA-3C directly activates the expression of LMP-1 and LMP-2B but is unlikely to significantly regulate EBNA expression via Cp under normal growth conditions.
PMCID: PMC1642179  PMID: 16956945
9.  Role for G-Quadruplex RNA Binding by Epstein-Barr Virus Nuclear Antigen 1 in DNA Replication and Metaphase Chromosome Attachment▿  
Journal of Virology  2009;83(20):10336-10346.
Latent infection by Epstein-Barr virus (EBV) requires both replication and maintenance of the viral genome. EBV nuclear antigen 1 (EBNA1) is a virus-encoded protein that is critical for the replication and maintenance of the genome during latency in proliferating cells. We have previously demonstrated that EBNA1 recruits the cellular origin recognition complex (ORC) through an RNA-dependent interaction with EBNA1 linking region 1 (LR1) and LR2. We now show that LR1 and LR2 bind to G-rich RNA that is predicted to form G-quadruplex structures. Several chemically distinct G-quadruplex-interacting drugs disrupted the interaction between EBNA1 and ORC. The G-quadruplex-interacting compound BRACO-19 inhibited EBNA1-dependent stimulation of viral DNA replication and preferentially blocked proliferation of EBV-positive cells relative to EBV-negative cell lines. BRACO-19 treatment also disrupted the ability of EBNA1 to tether to metaphase chromosomes, suggesting that maintenance function is also mediated through G-quadruplex recognition. These findings suggest that the EBNA1 replication and maintenance function uses a common G-quadruplex binding capacity of LR1 and LR2, which may be targetable by small-molecule inhibitors.
PMCID: PMC2753104  PMID: 19656898
10.  Genetic Evidence that EBNA-1 Is Needed for Efficient, Stable Latent Infection by Epstein-Barr Virus 
Journal of Virology  1999;73(4):2974-2982.
Replication and maintenance of the 170-kb circular chromosome of Epstein-Barr virus (EBV) during latent infection are generally believed to depend upon a single viral gene product, the nuclear protein EBNA-1. EBNA-1 binds to two clusters of sites at oriP, an 1,800-bp sequence on the EBV genome which can support replication and maintenance of artificial plasmids introduced into cell lines that contain EBNA-1. To investigate the importance of EBNA-1 to latent infection by EBV, we introduced a frameshift mutation into the EBNA-1 gene of EBV by recombination along with a flanking selectable marker. EBV genomes carrying the frameshift mutation could be isolated readily after superinfecting EBV-positive cell lines, but not if recombinant virus was used to infect EBV-negative B-cell lines or to immortalize peripheral blood B cells. EBV mutants lacking almost all of internal repeat 3, which encode a repetitive glycine and alanine domain of EBNA-1, were generated in the same way and found to immortalize B cells normally. An EBNA-1-deficient mutant of EBV was isolated and found to be incapable of establishing a latent infection of the cell line BL30 at a detectable frequency, indicating that the mutant was less than 1% as efficient as an isogenic, EBNA-1-positive strain in this assay. The data indicate that EBNA-1 is required for efficient and stable latent infection by EBV under the conditions tested. Evidence from other studies now indicates that autonomous maintenance of the EBV chromosome during latent infection does not depend on the replication initiation function of oriP. It is therefore likely that the viral chromosome maintenance (segregation) function of oriP and EBNA-1 is what is required.
PMCID: PMC104057  PMID: 10074147
11.  Contributions of Epstein–Barr Nuclear Antigen 1 (EBNA1) to Cell Immortalization and Survival 
Viruses  2012;4(9):1537-1547.
Epstein–Barr virus (EBV) immortalizes host cells as part of its latent mode of infection. As a result of this ability to promote cell proliferation and survival, EBV infection contributes to the development of several kinds of B-cell lymphomas and epithelial tumours. The EBV Epstein–Barr nuclear antigen 1 (EBNA1) protein is the only EBV protein expressed in all EBV-associated tumours and plays multiple important roles in EBV latency. In addition to its well-studied roles in viral DNA replication, segregation and transcriptional activation, several studies have identified roles of EBNA1 in manipulating cellular processes that result in reduced apoptosis and increased cell survival. This review discusses these cellular effects of EBNA1 and mechanisms by which they occur.
PMCID: PMC3499818  PMID: 23170171
EBNA1; USP7; PML; p53; survivin; Nm23-H1; ROS; oxidative stress; NFκB; STAT1
12.  Dominant-negative inhibitors of EBNA-1 of Epstein-Barr virus. 
Journal of Virology  1997;71(3):1766-1775.
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is required in trans to support replication of the EBV genome once per cell cycle via the latent origin of replication, oriP. EBNA-1 can also activate transcription on binding to the family of repeats of oriP to enhance some heterologous as well as native EBV promoters. We have made and screened derivatives of EBNA-1 for the ability to act as inhibitors of wild-type EBNA-1. These derivatives lack the linking or the retention functions of EBNA-1 and were analyzed for the residual ability to activate transcription and replication. We have identified derivatives of EBNA-1 that can inhibit up to 98% of wild-type EBNA-1's activities. We have also identified one derivative of EBNA-1 with only two of EBNA-1's three linking domains which can support transcription and replication inefficiently.
PMCID: PMC191245  PMID: 9032305
13.  The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein–Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance 
Virology  2003;311(2):263-274.
Epstein–Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein–Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.
PMCID: PMC2922029  PMID: 12842617
14.  The Epstein-Barr Virus EBNA1 Protein 
Scientifica  2012;2012:438204.
Epstein-Barr virus (EBV) is a widespread human herpes virus that immortalizes cells as part of its latent infection and is a causative agent in the development of several types of lymphomas and carcinomas. Replication and stable persistence of the EBV genomes in latent infection require the viral EBNA1 protein, which binds specific DNA sequences in the viral DNA. While the roles of EBNA1 were initially thought to be limited to effects on the viral genomes, more recently EBNA1 has been found to have multiple effects on cellular proteins and pathways that may also be important for viral persistence. In addition, a role for EBNA1 in lytic infection has been recently identified. The multiple roles of EBNA1 in EBV infection are the subject of this paper.
PMCID: PMC3820569  PMID: 24278697
15.  Transcriptional Activation Signals Found in the Epstein-Barr Virus (EBV) Latency C Promoter Are Conserved in the Latency C Promoter Sequences from Baboon and Rhesus Monkey EBV-Like Lymphocryptoviruses (Cercopithicine Herpesviruses 12 and 15) 
Journal of Virology  1999;73(1):826-833.
The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (−1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates.
PMCID: PMC103898  PMID: 9847397
16.  The Amino Terminus of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Contains AT Hooks That Facilitate the Replication and Partitioning of Latent EBV Genomes by Tethering Them to Cellular Chromosomes 
Journal of Virology  2004;78(21):11487-11505.
During latency, Epstein-Barr virus (EBV) is stably maintained as a circular plasmid that is replicated once per cell cycle and partitioned at mitosis. Both these processes require a single viral protein, EBV nuclear antigen 1 (EBNA1), which binds two clusters of cognate binding sites within the latent viral origin, oriP. EBNA1 is known to associate with cellular metaphase chromosomes through chromosome-binding domains within its amino terminus, an association that we have determined to be required not only for the partitioning of oriP plasmids but also for their replication. One of the chromosome-binding domains of EBNA1 associates with a cellular nucleolar protein, EBP2, and it has been proposed that this interaction underlies that ability of EBNA1 to bind metaphase chromosomes. Here we demonstrate that EBNA1's chromosome-binding domains are AT hooks, a DNA-binding motif found in a family of proteins that bind the scaffold-associated regions on metaphase chromosomes. Further, we demonstrate that the ability of EBNA1 to stably replicate and partition oriP plasmids correlates with its AT hook activity and not its association with EBP2. Finally, we examine the contributions of EBP2 toward the ability of EBNA1 to associate with metaphase chromosomes in human cells, as well as support the replication and partitioning of oriP plasmids in human cells. Our results indicate that it is unlikely that EBP2 directly mediates these activities of EBNA1 in human cells.
PMCID: PMC523237  PMID: 15479791
17.  Hyperphosphorylation of EBNA2 by Epstein-Barr Virus Protein Kinase Suppresses Transactivation of the LMP1 Promoter 
Journal of Virology  2005;79(9):5880-5885.
The Epstein-Barr virus (EBV) BGLF4 gene encodes a serine/threonine protein kinase (PK) that is expressed in the cytolytic cycle. EBV nuclear antigen 2 (EBNA2) is a key latency gene essential for immortalization of B lymphocytes and transactivation of viral and cellular promoters. Here we report that EBV PK phosphorylates EBNA2 at Ser-243 and that these two proteins physically associate. PK suppresses EBNA2's ability to transactivate the LMP1 promoter, and Ser-243 of EBNA2 is involved in this suppression. Moreover, EBNA2 is hyperphosphorylated during EBV reactivation in latently infected B cells, which is associated with decreased LMP1 protein levels. This is the first report about the effect of EBV PK on the function of one of its target proteins and regulation of EBNA2 phosphorylation during the EBV lytic cycle.
PMCID: PMC1082719  PMID: 15827205
18.  Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. 
Journal of Virology  1991;65(3):1466-1478.
The Epstein-Barr virus (EBV)-encoded latency product EBNA-1 is functionally pleiotropic, being required for replication of the episomal form of the EBV genome and having a role in the regulation of latency transcription. EBNA-1 is a direct DNA-binding protein, and both replication and transactivation are dependent on the interaction of EBNA-1 with its cognate DNA recognition sequences. To better understand EBNA-1 function, we have further characterized the DNA-binding domain of EBNA-1 and have examined the contributions of other domains of the protein to EBNA-1 transactivation activity. A Bal31 deletional analysis of the carboxy-terminal region of EBNA-1 identified a core DNA-binding domain located between amino acids 493 and 584. Column chromatographic, sedimentation, and cross-linking studies indicated that EBNA-1 exists in solution as a dimer. Mobility retardation assays using in vitro-translated variants of EBNA-1 showed that the active DNA-binding form of EBNA-1 is also a dimer. In short-term cotransfections, a pFRTK-CAT target containing EBNA-1-binding sites from the EBV origin of plasmid replication, ori-P, was transactivated by a carboxy-terminal EBNA-1 construction (amino acids 450 to 641) that also carried a c-myc nuclear localization signal. These reconstruction experiments demonstrated that a transactivation domain exists within the carboxy-terminal region of EBNA-1, that transactivation is more efficient when a nuclear localization signal is present, and that the natural karyophilic signal lies outside of the carboxy-terminal 191 amino acids. To identify the EBNA-1 nuclear localization signal, small oligonucleotides representing EBNA-1 sequences that encode clusters of basic peptides were transferred into two different vectors expressing cytoplasmic proteins (pyruvate kinase and herpes simplex virus delta IE175 protein) and the cellular locations of the fusion constructions were determined by immunofluorescence staining of transfected cells. In this way we identified a functional nuclear localization signal, Leu-Lys-Arg-Pro-Arg-Ser-Pro-Ser-Ser, encompassing amino acids 379 to 386 of the EBNA-1 protein.
PMCID: PMC239927  PMID: 1847464
19.  Functional Analyses of the EBNA1 Origin DNA Binding Protein of Epstein-Barr Virus 
Journal of Virology  2000;74(11):4939-4948.
The EBNA1 protein of Epstein-Barr virus (EBV) governs the replication and segregation of the viral episomes in latently infected cells and transactivates the expression of other EBV latency proteins through direct interactions with DNA sequences in the EBV latent origin of replication, oriP. To better understand how EBNA1 controls these processes, we have assessed the contribution of various EBNA1 sequences to its replication, segregation, and transactivation functions. Here we show that EBNA1 residues 325 to 376 are responsible for the transactivation activity of EBNA1. This region coincides with the DNA looping domain previously shown to mediate interactions at a distance between DNA-bound EBNA1 molecules. The same residues mediate DNA segregation but have no apparent role in DNA replication, indicating that the replication and transcription activation activities of EBNA1 are distinct. The acidic C-terminal tail of EBNA1 was not found to contribute to replication, transactivation, or segregation. We have also investigated the functional significance of two structural motifs within the DNA binding and dimerization domains of EBNA1, the proline loop and the WF motif. Although the amino acids in these motifs do not directly contact the DNA, both of these motifs were found to contribute to EBNA1 functions by increasing the DNA-binding ability of EBNA1. Mechanisms by which DNA binding is stimulated by these motifs are discussed.
PMCID: PMC110845  PMID: 10799567
20.  Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) 
Virology Journal  2010;7:262.
The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA1 binding sites.
PMCID: PMC2964674  PMID: 20929547
21.  Live-Cell Imaging Reveals Multiple Interactions between Epstein-Barr Virus Nuclear Antigen 1 and Cellular Chromatin during Interphase and Mitosis 
Journal of Virology  2012;86(9):5314-5329.
Epstein-Barr virus (EBV) establishes a life-long latent infection in humans. In proliferating latently infected cells, EBV genomes persist as multiple episomes that undergo one DNA replication event per cell cycle and remain attached to the mitotic chromosomes. EBV nuclear antigen 1 (EBNA-1) binding to the episome and cellular genome is essential to ensure proper episome replication and segregation. However, the nature and regulation of EBNA-1 interaction with chromatin has not been clearly elucidated. This activity has been suggested to involve EBNA-1 binding to DNA, duplex RNA, and/or proteins. EBNA-1 binding protein 2 (EBP2), a nucleolar protein, has been proposed to act as a docking protein for EBNA-1 on mitotic chromosomes. However, there is no direct evidence thus far for EBP2 being associated with EBNA-1 during mitosis. By combining video microscopy and Förster resonance energy transfer (FRET) microscopy, we demonstrate here for the first time that EBNA-1 and EBP2 interact in the nucleoplasm, as well as in the nucleoli during interphase. However, in strong contrast to the current proposed model, we were unable to observe any interaction between EBNA-1 and EBP2 on mitotic chromosomes. We also performed a yeast double-hybrid screening, followed by a FRET analysis, that led us to identify HMGB2 (high-mobility group box 2), a well-known chromatin component, as a new partner for EBNA-1 on chromatin during interphase and mitosis. Although the depletion of HMGB2 partly altered EBNA-1 association with chromatin in HeLa cells during interphase and mitosis, it did not significantly impact the maintenance of EBV episomes in Raji cells.
PMCID: PMC3347338  PMID: 22345443
22.  EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. 
Journal of Virology  1994;68(9):5375-5383.
The EBNA-2 protein is essential for the establishment of a latent Epstein-Barr virus (EBV) infection and for B-cell immortalization. EBNA-2 functions as a transcriptional activator that modulates viral latency gene expression as well as the expression of cellular genes, including CD23. We recently demonstrated that EBNA-2 transactivation of the EBV latency C promoter (Cp) is dependent on an interaction with a cellular DNA-binding protein, CBF1, for promoter targeting. To determine whether targeting via CBF1 is a common mechanism for EBNA-2-mediated transactivation, we have examined the requirements for activation of the cellular CD23 promoter. Binding of CBF1 to a 192-bp mapped EBNA-2-responsive region located at position -85 bp to -277 bp upstream of the CD23 promoter was detected in electrophoretic mobility shift assays. The identity of the bound protein as CBF1 was established by showing that the bound complex was competed for by the CBF1 binding site from the EBV Cp, that the bound protein could be supershifted with a bacterially expressed fusion protein' containing amino acids 252 to 425 of EBNA-2 but was unable to interact with a non-CBF1-binding EBNA-2 mutant (WW323SR), and that in UV cross-linking experiments, the Cp CBF1 binding site and the CD23 probe bound proteins of the same size. The requirement for interaction with CBF1 was demonstrated in a transient cotransfection assay in which the multimerized 192-bp CD23 response region was transactivated by wild-type EBNA-2 but not by the WW323SR mutant. Reporter constructions carrying multimerized copies of the 192-bp CD23 response region or multimers of the CBF1 binding site from the CD23 promoter were significantly less responsive to EBNA-2 transactivation than equivalent constructions carrying a multimerized region from the Cp or multimers of the CBF1 binding site from the Cp. Direct binding and competition assays using 30-mer oligonucleotide probes representing the individual CBF1 binding sites indicated that CBF1 bound less efficiently to the CD23 promoter and the EBV LMP-1 promoter sites than to the Cp site. To investigate the basis for this difference, we synthesized a series of oligonucleotides carrying mutations across the CBF1 binding site and used these as competitors in electrophoretic mobility shift assays. The competition experiments indicated that a central core sequence, GTGGGAA, common to all known EBNA-2-responsive elements, is crucial for CBF1 binding. Flanking sequences on either side of this core influence the affinity for CBF1.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC236937  PMID: 8057421
23.  Functional limits of oriP, the Epstein-Barr virus plasmid origin of replication. 
Journal of Virology  1989;63(7):3016-3025.
The Epstein-Barr virus (EBV) genome contains two cis-acting elements which are required for stable extrachromosomal plasmid maintenance in latently infected cells. The first consists of 20 30-base-pair (bp) repeats, each of which contains a DNA-binding site for EBV nuclear antigen 1 (EBNA-1), the trans-acting factor required for plasmid persistence. The second element is composed of a 65-bp dyad symmetry, containing four EBNA-1-binding sites. Deletion mutants were constructed which reduce the number of EBNA-1-binding sites in the 30-bp repeats, alter the number of EBNA-1-binding sites in the dyad region, or truncate the dyad element. The effect of the deletion mutations on plasmid maintenance was examined by transfecting recombinant plasmids, containing both the mutated EBV sequences and a drug resistance marker, into D98-Raji cells. The plasmids were tested for their ability to generate drug-resistant D98-Raji cell colonies and their capacity to be maintained in an extrachromosomal form without undergoing extensive rearrangements. EBV plasmids with 12 or 15 copies of the 30-bp repeats were wild type in both assays. Plasmids with just two or six copies of these repeated elements failed to generate drug-resistant colonies at a normal level, and normal episomal plasmids were not detected in the resulting colonies. Rare colonies of cells resulting from transfection of these two- or six-copy mutants contained rearranged, episomal forms of the input plasmids. The rearrangements most often produced head-to-tail oligomers containing a minimum of eight 30-bp repeated elements. The rearranged plasmids were shown to be revertant for plasmid maintenance in that they yielded wild-type or greater numbers of drug-resistant colonies and persisted at the wild-type or a greater episomal copy number. By use of an EBV plasmid that contained no 30-bp elements, no revertants could be isolated. One to five copies of a synthetic linker corresponding to a consensus 30-bp repeated element inserted into a plasmid with no 30-bp elements now permitted the generation of oligomeric, episomal forms of the mutant test plasmid. These experiments demonstrate a requirement for a minimal number (six to eight copies) of the 30-bp repeated element. Deletions in the 65-bp dyad region had little or no effect upon the ability to generate enhanced numbers of drug-resistant D98-Raji colonies, indicating that the 30-bp repeated element is predominantly required for this phenotype.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC250856  PMID: 2542609
24.  Sequence requirements of the Epstein-Barr virus latent origin of DNA replication. 
Journal of Virology  1994;68(3):1913-1925.
The Epstein-Barr virus (EBV) latent origin of DNA replication (oriP) is composed of two elements that contain binding sites for the sole viral gene product required for latent cycle replication, EBNA-1. One of these elements, region I, functions as an EBNA-1-dependent enhancer for RNA polymerase II-transcribed genes, may play a role in plasmid segregation, and is required for origin function in B cells latently infected with EBV. The second element, region II, contains or is very near the site of initiation of DNA replication. A genetic approach was taken to determine the contribution of the EBNA-1 binding sites in oriP to origin function. Although region I is required for the transient replication of plasmids bearing region II in EBV-infected B cells, a plasmid lacking region I but containing region II, was observed to replicate transiently in both D98/Raji and HeLa cells expressing EBNA-1. Thus, binding of EBNA-1 to region I is not absolutely required for the molecular events that lead to initiation of DNA replication at region II. Site-directed mutagenesis of the four EBNA-1-binding sites in region II, individually and in various combinations, demonstrated that only two EBNA-1-binding sites are required for region II function. The results obtained with these mutants, together with the analysis of the replicative ability of plasmids containing insertions between EBNA-1-binding sites, suggested that the spatial relationship of the two sites is critical. Mutants that contain only two EBNA-1-binding sites separated by 26 to 31 bp in region II were not maintained as plasmids over many cell generations and were greatly reduced in their ability to replicate transiently in D98/Raji cells. The EBNA-1-induced bending or untwisting of the DNA in EBNA-1-binding sites 1 and 4 in region II did not, however, demonstrate this spatial constraint. It may be concluded from these results that specific protein-protein interactions between EBNA-1 and/or between EBNA-1 and a cellular protein(s) are required for origin function.
PMCID: PMC236653  PMID: 8107251
25.  Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray 
Virology Journal  2006;3:43.
The Epstein-Barr virus (EBV) is associated with lymphoid malignancies, including Burkitt's lymphoma (BL), and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines.
To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2), and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2), and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions.
Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.
PMCID: PMC1533810  PMID: 16756670

Results 1-25 (983565)