PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (792946)

Clipboard (0)
None

Related Articles

1.  Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.) 
This study compared the response of common bean (Phaseolus vulgaris L.) to arbuscular mycorrhizal fungi (AMF) and rhizobia strain inoculation. Two common bean genotypes i.e. CocoT and Flamingo varying in their effectiveness for nitrogen fixation were inoculated with Glomus intraradices and Rhizobium tropici CIAT899, and grown for 50 days in soil–sand substrate in glasshouse conditions. Inoculation of common bean plants with the AM fungi resulted in a significant increase in nodulation compared to plants without inoculation. The combined inoculation of AM fungi and rhizobia significantly increased various plant growth parameters compared to simple inoculated plants. In addition, the combined inoculation of AM fungi and rhizobia resulted in significantly higher nitrogen and phosphorus accumulation in the shoots of common bean plants and improved phosphorus use efficiency compared with their controls, which were not dually inoculated. It is concluded that inoculation with rhizobia and arbuscular mycorrhizal fungi could improve the efficiency in phosphorus use for symbiotic nitrogen fixation especially under phosphorus deficiency.
doi:10.1016/j.sjbs.2011.11.003
PMCID: PMC3730892  PMID: 23961175
Arbuscular mycorrhizal fungi; Glomus intraradices; Nitrogen fixation; Phaseolus vulgaris; Phosphorus; Rhizobia; Symbiosis
2.  Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia 
BMC Plant Biology  2009;9:73.
Background
Like other species of the Phaseoleae tribe, common bean (Phaseolus vulgaris L.) has the potential to establish symbiosis with rhizobia and to fix the atmospheric dinitrogen (N2) for its N nutrition. Common bean has also the potential to establish symbiosis with arbuscular mycorrhizal fungi (AMF) that improves the uptake of low mobile nutrients such as phosphorus, from the soil. Both rhizobial and mycorrhizal symbioses can act synergistically in benefits on plant.
Results
The tripartite symbiosis of common bean with rhizobia and arbuscular mycorrhizal fungi (AMF) was assessed in hydroaeroponic culture with common bean (Phaseolus vulgaris L.), by comparing the effects of three fungi spp. on growth, nodulation and mycorrhization of the roots under sufficient versus deficient P supplies, after transfer from initial sand culture. Although Glomus intraradices Schenck & Smith colonized intensely the roots of common bean in both sand and hydroaeroponic cultures, Gigaspora rosea Nicolson & Schenck only established well under sand culture conditions, and no root-colonization was found with Acaulospora mellea Spain & Schenck under either culture conditions. Interestingly, mycorrhization by Glomus was also obtained by contact with mycorrhized Stylosanthes guianensis (Aubl.) sw in sand culture under deficient P before transfer into hydroaeroponic culture. The effect of bean genotype on both rhizobial and mycorrhizal symbioses with Glomus was subsequently assessed with the common bean recombinant inbreed line 7, 28, 83, 115 and 147, and the cultivar Flamingo. Significant differences among colonization and nodulation of the roots and growth among genotypes were found.
Conclusion
The hydroaeroponic culture is a valuable tool for further scrutinizing the physiological interactions and nutrient partitioning within the tripartite symbiosis.
doi:10.1186/1471-2229-9-73
PMCID: PMC2713235  PMID: 19534785
3.  Root Interactions in a Maize/Soybean Intercropping System Control Soybean Soil-Borne Disease, Red Crown Rot 
PLoS ONE  2014;9(5):e95031.
Background
Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control.
Principal Findings
In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro.
Conclusions
To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.
doi:10.1371/journal.pone.0095031
PMCID: PMC4014482  PMID: 24810161
4.  Diversity of Arbuscular Mycorrhizal Fungus Populations in Heavy-Metal-Contaminated Soils 
High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. We conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils.
PMCID: PMC91085  PMID: 9925606
5.  Enhancement of the efficacy of a carbamate nematicide against the potato cyst nematode, Globodera pallida, through mycorrhization in commercial potato fields 
Journal of Nematology  2010;42(1):22-32.
Two experiments were conducted over 2 years in commercial potato fields in Shropshire, UK, to evaluate the compatibility of the nematicide aldicarb with commercial inocula of arbuscular mycorrhizal fungi (AMF) in the control of the potato cyst nematode Globodera pallida. The AMF used were Vaminoc (mixed-AMF inoculum), Glomus intraradices (BioRize BB-E) and G. mosseae (isolate BEG 12). In the absence of AMF, the in-soil hatch of G. pallida increased 30% (P < 0.01) from wk-2 to wk-4 after planting. Inoculation of physiologically-aged potato (cv. Golden Wonder) tubers with AMF eliminated this delay in G. pallida hatch by stimulating a mean increase of 32% (P < 0.01) in hatch within 2 wk after planting. In the aldicarb-treated plots in Experiment 1, G. pallida multiplication rate was 38% lower (P < 0.05) in roots of AMF-inoculated than noninoculated plants, but in Experiment 2, this effect was slightly lower (P = 0.07). In these plots, the single AMF inocula showed also a weak trend (P = 0.10) towards greater tuber yields relative to their noninoculated counterparts. Mycorrhization therefore appears to enhance the efficacy of carbamate nematicides against G. pallida and consequently more research is proposed to validate these findings and fully explore the potential of this model.
PMCID: PMC3380507  PMID: 22736833
integrated pest management; potato cyst nematode; Globodera pallida; arbuscular mycorrhizal fungi; Glomus spp.; interaction; aldicarb; hatch; multiplication; Solanum tuberosum
6.  Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe 
The impact of land use intensity on the diversity of arbuscular mycorrhizal fungi (AMF) was investigated at eight sites in the “three-country corner” of France, Germany, and Switzerland. Three sites were low-input, species-rich grasslands. Two sites represented low- to moderate-input farming with a 7-year crop rotation, and three sites represented high-input continuous maize monocropping. Representative soil samples were taken, and the AMF spores present were morphologically identified and counted. The same soil samples also served as inocula for “AMF trap cultures” with Plantago lanceolata, Trifolium pratense, and Lolium perenne. These trap cultures were established in pots in a greenhouse, and AMF root colonization and spore formation were monitored over 8 months. For the field samples, the numbers of AMF spores and species were highest in the grasslands, lower in the low- and moderate-input arable lands, and lowest in the lands with intensive continuous maize monocropping. Some AMF species occurred at all sites (“generalists”); most of them were prevalent in the intensively managed arable lands. Many other species, particularly those forming sporocarps, appeared to be specialists for grasslands. Only a few species were specialized on the arable lands with crop rotation, and only one species was restricted to the high-input maize sites. In the trap culture experiment, the rate of root colonization by AMF was highest with inocula from the permanent grasslands and lowest with those from the high-input monocropping sites. In contrast, AMF spore formation was slowest with the former inocula and fastest with the latter inocula. In conclusion, the increased land use intensity was correlated with a decrease in AMF species richness and with a preferential selection of species that colonized roots slowly but formed spores rapidly.
doi:10.1128/AEM.69.5.2816-2824.2003
PMCID: PMC154529  PMID: 12732553
7.  Meta-Analysis of Interactions between Arbuscular Mycorrhizal Fungi and Biotic Stressors of Plants 
The Scientific World Journal  2014;2014:746506.
Naturally, simultaneous interactions occurred among plants, herbivores, and soil biota, that is, arbuscular mycorrhizal fungi (AMF), nematodes, and fungal pathogens. These multiple interactions play fundamental roles in driving process, structure, and functioning of ecosystems. In this study, we conducted a meta-analysis with 144 papers to investigate the interactions between AMF and plant biotic stressors and their effects on plant growth performance. We found that AMF enhanced plant tolerance to herbivores, nematodes, and fungal pathogens. We also found reciprocal inhibition between AMF and nematodes as well as fungal pathogens, but unidirectional inhibition for AMF on herbivores. Negative effects of AMF on biotic stressors of plants depended on herbivore feeding sites and actioning modes of fungal pathogens. More performance was reduced in root-feeding than in shoot-feeding herbivores and in rotting- than in wilt-fungal pathogens. However, no difference was found for AMF negative effects between migratory and sedentary nematodes. In return, nematodes and fungal pathogens generated more reduction of root colonization in Non-Glomeraceae than in Glomeraceae. Our results suggested that AMF positive effects on plants might be indirectly mediated by competitive inhibition with biotic stressors of plants. These positive and negative interactions make potential contributions to maintaining ecosystem stability and functioning.
doi:10.1155/2014/746506
PMCID: PMC3914602  PMID: 24558327
8.  Effects of Inoculum Additions in the Presence of a Preestablished Arbuscular Mycorrhizal Fungal Community 
Applied and Environmental Microbiology  2013;79(20):6507-6515.
Communities of arbuscular mycorrhizal fungi (AMF) are crucial for promoting plant productivity in most terrestrial systems, including anthropogenically managed ecosystems. Application of AMF inocula has therefore become a widespread practice. It is, however, pertinent to understand the mechanisms that govern AMF community composition and their performance in order to design successful manipulations. Here we assess whether the composition and plant growth-promotional effects of a synthetic AMF community can be altered by inoculum additions of the isolates forming the community. This was determined by following the effects of three AMF isolates, each inoculated in two propagule densities into a preestablished AMF community. Fungal abundance in roots and plant growth were evaluated in three sequential harvests. We found a transient positive response in AMF abundance to the intraspecific inoculation only in the competitively weakest isolate. The other two isolates responded negatively to intra- and interspecific inoculations, and in some cases plant growth was also reduced. Our results suggest that increasing the AMF density may lead to increased competition among fungi and a trade-off with their ability to promote plant productivity. This is a key ecological aspect to consider when introducing AMF into soils.
doi:10.1128/AEM.02135-13
PMCID: PMC3811198  PMID: 23956395
9.  Diversity of Arbuscular Mycorrhizal Fungi and Their Roles in Ecosystems 
Mycobiology  2013;41(3):121-125.
Arbuscular mycorrhizal fungi (AMF) have mutualistic relationships with more than 80% of terrestrial plant species. This symbiotic relationship is ancient and would have had important roles in establishment of plants on land. Despite their abundance and wide range of relationship with plant species, AMF have shown low species diversity. However, molecular studies have suggested that diversity of these fungi may be much higher, and genetic variation of AMF is very high within a species and even within a single spore. Despite low diversity and lack of host specificity, various functions have been associated with plant growth responses to arbuscular mycorrhizal fungal colonization. In addition, different community composition of AMF affects plants differently, and plays a potential role in ecosystem variability and productivity. AMF have high functional diversity because different combinations of host plants and AMF have different effects on the various aspects of symbiosis. Consequently, recent studies have focused on the different functions of AMF according to their genetic resource and their roles in ecosystem functioning. This review summarizes taxonomic, genetic, and functional diversities of AMF and their roles in natural ecosystems.
doi:10.5941/MYCO.2013.41.3.121
PMCID: PMC3817225  PMID: 24198665
Arbuscular mycorrhizas; Ecosystem; Functional diversity; Genetic diversity; Taxonomic diversity
10.  Assessment of arbuscular mycorrhizal fungi on the phytoremediation potential of Ipomoea aquatica on cadmium uptake 
3 Biotech  2012;2(3):193-198.
The phytoremedial potential of Ipomoea aquatica and role of arbuscular mycorrhizal fungi (AMF) during Cadmium uptake was studied under two different soils i.e., soil inoculated with and without AMF. The plants were treated with different concentrations of Cd(NO)3 starting from 0, 5, 10, 25, 50, and 100 ppm in three replicate design in soil with and without AMF inoculation. Results showed that AMF enhanced accumulation of cadmium in plant tissues at all concentrations. Plants in AMF exhibited tolerance for Cd up to 100 mg/l and accumulated 88.07% in its tissues with no visual symptoms of toxicity, whereas those in non-AMF showed marked growth reduction at the same concentration with a metal accumulation of 73.2%. A significant variation of antioxidant enzymes under different environments evaluated the defense pathways of plants during uptake of Cd. Physiological changes and nutrient uptake showed that plants inoculated in AMF were more unwavering during stress conditions. The study established that phytoremedial potential of I. aquatica depends on rhizospheric conditions which enhanced Cd uptake. Finally, it was established that AMF was able to maintain an efficient symbiosis with I. aquatica in soil moderately contaminated by Cd, viable due to relation between fungus and plant.
doi:10.1007/s13205-012-0046-8
PMCID: PMC3433885
Phytoremediation; Cadmium; AMF; Ipomoea aquatica; Antioxidant enzymes
11.  Morpho-Typing and Molecular Diversity of Arbuscular Mycorrhizal Fungi in Sub-Tropical Soils of Coimbatore Region, Tamil Nadu, India 
Indian Journal of Microbiology  2011;52(2):145-152.
The diversity potential of arbuscular mycorrhizal fungi (AMF) in three different tropical soils of southern part of India was assessed by traditional morpho-typing of AMF-spores and by culture-independent nested-PCR of internal transcribed spacer region of ribosomal genes. The population diversity of AMF in soil was strongly correlated with available P2O5 in soil. Among the three different soils, black-cotton soil had more diversified AMF species than alluvial and red sandy soils. Pooled data of morpho-typing and sequence-driven analysis revealed that Glomus, Gigaspora, Scutellospora and Acaulospora are the AMF genera present in these soils. The diversity of AMF in soil differs with the mycorrhiza colonizing the plant roots.
doi:10.1007/s12088-011-0206-2
PMCID: PMC3386459  PMID: 23729874
Arbuscular mycorrhizal fungi; Diversity; Internal transcribed spacer; Morpho-typing; Nested-PCR
12.  Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes 
The Scientific World Journal  2014;2014:956141.
The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress.
doi:10.1155/2014/956141
PMCID: PMC4032736  PMID: 24895680
13.  Effects of Organic Farming on Communities of Arbuscular Mycorrhizal Fungi 
Mycobiology  2008;36(1):19-23.
Red pepper (Capsicum annum L.) roots and soils representing different agricultural management practices such as conventional (CON), no-chemical (NOC), and organic farming systems (ORG) were collected from 32 farm field sites in Kyunggi, Korea to investigate the effects of these agricultural practices on arbuscular mycorrhizal (AM) symbiosis. ORG inoculum significantly increased plant growth compared to inoculum from CON and NOC. A community analysis of AM fungi (AMF) using morphological features of spores revealed that AMF spore abundance and species diversity were significantly higher in ORG than in CON. Additionally, a community analysis of AMF colonizing roots using a molecular technique revealed higher AMF diversity in ORG than in CON. These results suggest that agricultural practices significantly influence AM fungal community structure and mycorrhizal inoculum potential.
doi:10.4489/MYCO.2008.36.1.019
PMCID: PMC3755246  PMID: 23997602
Arbuscular mycorrhizas; Organic farming; RFLP; Species diversity
14.  Influence of Habitat and Climate Variables on Arbuscular Mycorrhizal Fungus Community Distribution, as Revealed by a Case Study of Facultative Plant Epiphytism under Semiarid Conditions 
Applied and Environmental Microbiology  2013;79(23):7203-7209.
In semiarid Mediterranean ecosystems, epiphytic plant species are practically absent, and only some species of palm trees can support epiphytes growing in their lower crown area, such as Phoenix dactylifera L. (date palm). In this study, we focused on Sonchus tenerrimus L. plants growing as facultative epiphytes in P. dactylifera and its terrestrial forms growing in adjacent soils. Our aim was to determine the possible presence of arbuscular mycorrhizal fungi (AMF) in these peculiar habitats and to relate AMF communities with climatic variations. We investigated the AMF community composition of epiphytic and terrestrial S. tenerrimus plants along a temperature and precipitation gradient across 12 localities. Epiphytic roots were colonized by AMF, as determined by microscopic observation; all of the epiphytic and terrestrial samples analyzed showed AMF sequences from taxa belonging to the phylum Glomeromycota, which were grouped in 30 AMF operational taxonomic units. The AMF community composition was clearly different between epiphytic and terrestrial root samples, and this could be attributable to dispersal constraints and/or the contrasting environmental and ecophysiological conditions prevailing in each habitat. Across sites, the richness and diversity of terrestrial AMF communities was positively correlated with rainfall amount during the most recent growing season. In contrast, there was no significant correlation between climate variables and AMF richness and diversity for epiphytic AMF communities, which suggests that the composition of AMF communities in epiphytic habitats appears to be largely determined by the availability and dispersion of fungal propagules from adjacent terrestrial habitats.
doi:10.1128/AEM.02466-13
PMCID: PMC3837746  PMID: 24038687
15.  Isolate Identity Determines Plant Tolerance to Pathogen Attack in Assembled Mycorrhizal Communities 
PLoS ONE  2013;8(4):e61329.
Arbuscular mycorrhizal fungi (AMF) are widespread soil microorganisms that associate mutualistically with plant hosts. AMF receive photosynthates from the host in return for various benefits. One of such benefits is in the form of enhanced pathogen tolerance. However, this aspect of the symbiosis has been understudied compared to effects on plant growth and its ability to acquire nutrients. While it is known that increased AMF species richness positively correlates with plant productivity, the relationship between AMF diversity and host responses to pathogen attack remains obscure. The objective of this study was to test whether AMF isolates can differentially attenuate the deleterious effects of a root pathogen on plant growth, whether the richest assemblage of AMF isolates provides the most tolerance against the pathogen, and whether AMF-induced changes to root architecture serve as a mechanism for improved plant disease tolerance. In a growth chamber study, we exposed the plant oxeye daisy (Leucanthemum vulgare) to all combinations of three AMF isolates and to the plant root pathogen Rhizoctonia solani. We found that the pathogen caused an 81% reduction in shoot and a 70% reduction in root biomass. AMF significantly reduced the highly deleterious effect of the pathogen. Mycorrhizal plants infected with the pathogen produced 91% more dry shoot biomass and 72% more dry root biomass relative to plants solely infected with R. solani. AMF isolate identity was a better predictor of AMF-mediated host tolerance to the pathogen than AMF richness. However, the enhanced tolerance response did not result from AMF-mediated changes to root architecture. Our data indicate that AMF communities can play a major role in alleviating host pathogen attack but this depends primarily on the capacity of individual AMF isolates to provide this benefit.
doi:10.1371/journal.pone.0061329
PMCID: PMC3631226  PMID: 23620744
16.  Short-term temporal variation in sporulation dynamics of arbuscular mycorrhizal (AM) fungi and physico-chemical edaphic properties of wheat rhizosphere 
In this study, we investigated the pattern of short-term temporal variation in the arbuscular mycorrhizal (AM) fungi and physico-chemical edaphic properties of some wheat growing areas of the Bundelkhand region, Central India. Rhizospheric soil samples were collected every month from December 2007 to May 2008 from four wheat growing sites around Jhansi (Bundelkhand region). AM fungal root colonization, sporulation and physico-chemical edaphic properties during this period were determined and compared to evaluate the dynamics of response of wheat towards the AMF along crop maturation. Maximum AMF root colonization recorded was 54.3% indicating that AMF, particularly in low phosphorus (P) soils, can be important even in case of less responsive crop like wheat. In the two out of four sites studied, the AMF spore density increased with the increase in soil temperature. Absence of this type of pattern in remaining two sites indicated that site-specific environmental and agricultural conditions may affect the degree of wheat response to AMF. It also suggested that AMF communities inhabiting agroecosystems may exhibit considerable temporal sporulation patterns. The maximum AMF colonization was observed during February–March 2008, whereas maximum AMF sporulation was noticed during March–April 2008. Statistically significant negative correlation of AMF spore density with pH, organic carbon (OC) and available P was observed in the one of the sites studied. Overall assessment of the data indicated that season and location significantly affected the interaction of AM fungi with winter wheat necessitating the further need to understand the ecology of AMF populations with reference to specific host species under different micro-climatic conditions of Bundelkhand region.
doi:10.1016/j.sjbs.2010.12.012
PMCID: PMC3730808  PMID: 23961131
Arbuscular mycorrhizal fungi; Sporulation dynamics; Edaphic properties; Temporal variation; Wheat; Rhizosphere
17.  Arbuscular mycorrhizal fungi alter plant allometry and biomass–density relationships 
Annals of Botany  2010;107(3):407-413.
Background and Aims
Plant biomass–density relationships during self-thinning are determined mainly by allometry. Both allometry and biomass–density relationship have been shown to vary with abiotic conditions, but the effects of biotic interactions have not been investigated. Arbuscular mycorrhizal fungi (AMF) can promote plant growth and affect plant form. Here experiments were carried out to test whether AMF affect plant allometry and the self-thinning trajectory.
Methods
Two experiments were conducted on Medicago sativa L., a leguminous species known to be highly dependent on mycorrhiza. Two mycorrhizal levels were obtained by applying benomyl (low AMF) or not (high AMF). Experiment 1 investigated the effects of AMF on plant growth in the absence of competition. Experiment 2 was a factorial design with two mycorrhizal levels and two plant densities (6000 and 17 500 seeds m−2). Shoot biomass, root biomass and canopy radius were measured 30, 60, 90 and 120 d after sowing. The allometric relationships among these aspects of size were estimated by standardized major axis regression on log-transformed data.
Key Results
Shoot biomass in the absence of competition was lower under low AMF treatment. In self-thinning populations, the slope of the log (mean shoot biomass) vs. log density relationship was significantly steeper for the high AMF treatment (slope = –1·480) than for the low AMF treatment (–1·133). The canopy radius–biomass allometric exponents were not significantly affected by AMF level, but the root–shoot allometric exponent was higher in the low AMF treatment. With a high level of AMF, the biomass–density exponent can be predicted from the above-ground allometric model of self-thinning, while this was not the case when AMF were reduced by fungicide.
Conclusions
AMF affected the importance of below-ground relative to above-ground interactions and changed root vs. shoot allocation. This changed allometric allocation of biomass and altered the self-thinning trajectory.
doi:10.1093/aob/mcq249
PMCID: PMC3043928  PMID: 21169608
Arbuscular mycorrhizal fungi; biomass–density relationship; canopy radius–biomass allometry; root–shoot biomass allometry; Medicago sativa; self-thinning
18.  Assessment of Natural Mycorrhizal Potential in a Desertified Semiarid Ecosystem 
A survey of the natural mycorrhizal potential has been carried out in a representative area of a desertified semiarid ecosystem in the southeast of Spain. Many indigenous plants from the field site were mycorrhizal, including the dominant Anthyllis cytisoides, which had high levels of colonization by arbuscular mycorrhizal fungi (AMF). Low numbers of AMF spores were present in the soil, although a range of species, including Scutellospora calospora, Glomus coronatum, Glomus constrictum, and several Acaulospora species, was represented. Soil infectivities, as determined by a soil dilution method, were similar for most plants tested but were significantly lower for Anthyllis cytisoides. Nevertheless, when a less disruptive method to determine soil infectivity was used, the importance of the mycelial network in maintaining the infectivity of soil under perennial shrubs, such as Anthyllis cytisoides, was highlighted. Seasonal variations in the mycorrhizal infectivity showed that it was higher towards the end of the summer period than in midwinter. In screening trials in a greenhouse, the indigenous AMF did not significantly improve the growth of plants compared with that of noninoculated controls. Augmentation of the soil with an inoculum of Glomus intraradices resulted in improved growth of Anthyllis cytisoides in both sterile and nonsterile conditions, in contrast to results obtained following inoculation with Glomus mosseae or another Glomus sp. Our findings suggest that the indigenous inoculum levels of AMF are inadequate to support an extensive revegetation program in the absence of an additional mycorrhizal inoculum.
PMCID: PMC1388798  PMID: 16535273
19.  Triple inoculation with Bradyrhizobium, Glomus and Paenibacillus on cowpea (Vigna unguiculata [L.] walp.) development 
Brazilian Journal of Microbiology  2011;42(3):919-926.
The use of microorganisms to improve the availability of nutrients to plants is of great importance to agriculture. This study aimed to evaluate the effect of triple inoculation of cowpea with arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB) and rhizobia to maximize biological nitrogen fixation (BNF) and promote plant growth. The experiment was conducted in a greenhouse using cowpea plants (Vigna unguiculata L. Walp cv. IPA 206). The treatments included inoculation with strains of Bradyrhizobium sp. (BR 3267 and EI – 6) individually and as a mixture, an absolute control (AC) and mineral nitrogen control (NC), all combined with the presence or absence of native AMF (Glomus etunicatum) and PGPB (Paenibacillus brasilensis - 24) in a 5x2x2 factorial design. All treatments were replicated three times. Contrasts were performed to study the treatment of variables. Inoculation with Bradyrhizobium sp. (BR 3267 and EI – 6) and G. etunicatum favored nitrogen acquisition and phosphorus availability for the cowpea plants. Inoculation with P. brasilensis – 24 increased colonization by Bradyrhizobium sp. and G. etunicatum and promoted cowpea growth, while the nitrogen from symbiosis was sufficient to supply the plants nutritional needs.
doi:10.1590/S1517-838220110003000010
PMCID: PMC3768755  PMID: 24031707
arbuscular mycorrhiza; biological nitrogen fixation; PGPB; rhizobia
20.  Inoculation of tomato seedlings with Trichoderma Harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings 
Brazilian Journal of Microbiology  2011;42(2):508-513.
A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P≥ 0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.
doi:10.1590/S1517-838220110002000015
PMCID: PMC3769820  PMID: 24031662
Arbuscular mycorrhizal Fungi (AMF); Trichoderma harzianum (P52); Disease severity
21.  Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi 
Mycorrhiza  2011;22(2):149-156.
Hypericum perforatum L. (St. John’s-wort, Hypericaceae) is a valuable medicinal plant species cultivated for pharmaceutical purposes. Although the chemical composition and pharmacological activities of H. perforatum have been well studied, no data are available concerning the influence of arbuscular mycorrhizal fungi (AMF) on this important herb. A laboratory experiment was therefore conducted in order to test three AMF inocula on H. perforatum with a view to show whether AMF could influence plant vitality (biomass and photosynthetic activity) and the production of the most valuable secondary metabolites, namely anthraquinone derivatives (hypericin and pseudohypericin) as well as the prenylated phloroglucinol—hyperforin. The following treatments were prepared: (1) control—sterile soil without AMF inoculation, (2) Rhizophagus intraradices (syn. Glomus intraradices), (3) Funneliformis mosseae (syn. Glomus mosseae), and (4) an AMF Mix which contained: Funneliformis constrictum (syn. Glomus constrictum), Funneliformis geosporum (syn. Glomus geosporum), F. mosseae, and R. intraradices. The application of R. intraradices inoculum resulted in the highest mycorrhizal colonization, whereas the lowest values of mycorrhizal parameters were detected in the AMF Mix. There were no statistically significant differences in H. perforatum shoot mass in any of the treatments. However, we found AMF species specificity in the stimulation of H. perforatum photosynthetic activity and the production of secondary metabolites. Inoculation with the AMF Mix resulted in higher photosynthetic performance index (PItotal) values in comparison to all the other treatments. The plants inoculated with R. intraradices and the AMF Mix were characterized by a higher concentration of hypericin and pseudohypericin in the shoots. However, no differences in the content of these metabolites were detected after the application of F. mosseae. In the case of hyperforin, no significant differences were found between the control plants and those inoculated with any of the AMF applied. The enhanced content of anthraquinone derivatives and, at the same time, better plant vitality suggest that the improved production of these metabolites was a result of the positive effect of the applied AMF strains on H. perforatum. This could be due to improved mineral nutrition or to AMF-induced changes in the phytohormonal balance. Our results are promising from the biotechnological point of view, i.e. the future inoculation of H. perforatum with AMF in order to improve the quality of medicinal plant raw material obtained from cultivation.
doi:10.1007/s00572-011-0391-1
PMCID: PMC3261393  PMID: 21626142
AMF species specificity; Anthraquinone derivatives; Arbuscular mycorrhiza; Hyperforin; Photosynthetic performance index; St. John’s-wort
22.  A Common Garden Test of Host-Symbiont Specificity Supports a Dominant Role for Soil Type in Determining AMF Assemblage Structure in Collinsia sparsiflora 
PLoS ONE  2013;8(2):e55507.
Specialization in plant host-symbiont-soil interactions may help mediate plant adaptation to edaphic stress. Our previous field study showed ecological evidence for host-symbiont specificity between serpentine and non-serpentine adapted ecotypes of Collinsia sparsiflora and arbuscular mycorrrhizal fungi (AMF). To test for adapted plant ecotype-AMF specificity between C. sparsiflora ecotypes and field AMF taxa, we conducted an AMF common garden greenhouse experiment. We grew C. sparsiflora ecotypes individually in a common pool of serpentine and non-serpentine AMF then identified the root AMF by amplifying rDNA, cloning, and sequencing and compared common garden AMF associates to serpentine and non-serpentine AMF controls. Mixing of serpentine and non-serpentine AMF soil inoculum resulted in an intermediate soil classified as non-serpentine soil type. Within this common garden both host ecotypes associated with AMF assemblages that resembled those seen in a non-serpentine soil. ANOSIM analysis and MDS ordination showed that common garden AMF assemblages differed significantly from those in the serpentine-only controls (R = 0.643, P<0.001), but were similar the non-serpentine-only control AMF assemblages (R = 0.081, P<0.31). There was no evidence of adapted host ecotype-AMF specificity. Instead soil type accounted for most of the variation AM fungi association patterns, and some differences between field and greenhouse behavior of individual AM fungi were found.
doi:10.1371/journal.pone.0055507
PMCID: PMC3564749  PMID: 23393588
23.  The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale 
The ISME Journal  2012;7(3):498-508.
Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.
doi:10.1038/ismej.2012.127
PMCID: PMC3578569  PMID: 23096401
arbuscular mycorrhizal fungi; biogeography; diversity; host preference; land use; soil type
24.  Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system 
Oecologia  2009;160(2):267-277.
The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids.
doi:10.1007/s00442-009-1294-0
PMCID: PMC2757589  PMID: 19219458
Aphidius rhopalosiphi; Insect herbivory; Multitrophic interactions; Parasitoid performance; Rhopalosiphum padi
25.  Grassland invaders and their mycorrhizal symbionts: a study across climate and invasion gradients 
Ecology and Evolution  2014;4(6):794-805.
Controlled experiments show that arbuscular mycorrhizal fungi (AMF) can increase competitiveness of exotic plants, potentially increasing invasion success. We surveyed AMF abundance and community composition in Centaurea stoebe and Potentilla recta invasions in the western USA to assess whether patterns were consistent with mycorrhizal-mediated invasions. We asked whether (1) AMF abundance and community composition differ between native and exotic forbs, (2) associations between native plants and AMF shift with invading exotic plants, and (3) AMF abundance and/or community composition differ in areas where exotic plants are highly invasive and in areas where they are not. We collected soil and roots from invaded and native forb communities along invasion gradients and in regions with different invasion densities. We used AMF root colonization as a measure of AMF abundance and characterized AMF communities in roots using 454-sequencing of the LSU-rDNA region. All plants were highly colonized (>60%), but exotic forbs tended to be more colonized than natives (P < 0.001). We identified 30 AMF operational taxonomic units (OTUs) across sites, and community composition was best predicted by abiotic factors (soil texture, pH). Two OTUs in the genera Glomus and Rhizophagus dominated in most communities, and their dominance increased with invasion density (r = 0.57, P = 0.010), while overall OTU richness decreased with invasion density (r = −0.61, P = 0.006). Samples along P. recta invasion gradients revealed small and reciprocal shifts in AMF communities with >45% fungal OTUs shared between neighboring native and P. recta plants. Overall, we observed significant, but modest, differences in AMF colonization and communities between co-occurring exotic and native forbs and among exotic forbs across regions that differ in invasion pressure. While experimental manipulations are required to assess functional consequences, the observed patterns are not consistent with those expected from strong mycorrhizal-mediated invasions.
doi:10.1002/ece3.917
PMCID: PMC3967904  PMID: 24683461
454-sequencing; arbuscular mycorrhizal fungi; Centaurea stoebe; community structure; plant invasion; plant–soil interactions; Potentilla recta

Results 1-25 (792946)