PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (517845)

Clipboard (0)
None

Related Articles

1.  Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers 
Summary
A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This “monolayer copy” of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiOx. The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].
doi:10.3762/bjnano.3.71
PMCID: PMC3458608  PMID: 23019558
breath figure; nanopatterned template; polymer blend lithography (PBL); self-assembled monolayer (SAM); self assembly; spin coating; vapor phase
2.  Multi-technique Characterization of Self-assembled Carboxylic Acid Terminated Alkanethiol Monolayers on Nanoparticle and Flat Gold Surfaces 
Gold nanoparticles (AuNPs) with 14, 25 and 40nm diameters were functionalized with different chain length (C6, C8, C11 and C16) carboxylic acid terminated alkanethiol self-assembled monolayers (COOH-SAMs). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to examine the changes in surface chemistry as both AuNP diameter and SAM chain length were varied. COOH-SAMs on flat gold surfaces were also examined and compared to the COOH-SAM on AuNP results. For a given surface, as the COOH-SAM chain length increased the XPS C/Au atomic ratio increased due to an increased number of carbon atoms per molecule in the overlayer and an increased attenuation of the Au substrate signal. For the C16 COOH-SAMs, as the size of AuNPs decreased the XPS C/Au atomic ratio and the apparent SAM thickness increased due to the increased curvature of the smaller AuNPs. The C16 COOH-SAMs on the flat Au had the lowest XPS C/Au atomic ratio and apparent SAM thickness of any C16 COOH-SAM covered Au surface. The effective take-off angles of the COOH-SAMs were also calculated by comparing the apparent thickness of COOH-SAMs with literature values. The effective take-off angle for C16 COOH-SAM on 14nm, 25nm and 40nm diameter AuNPs and flat Au were found to be 57°, 53°, 51° and 39°, respectively, for data acquired in a mode that collects a wide range of photoelectron take-off angles. The effective take-off angle for C16 COOH-SAM on 14nm AuNP and flat Au decreased to 52° and 0°, respectively, for data acquired in a mode that collects a narrow range of photoelectron take-off angles. The ToF-SIMS results showed similar changes in surface chemistry with COOH-SAM chain length and AuNP size. For example, the ratio of the sum of the C1–4HxOy positive ion intensities to the sum of the Au-containing positive ions intensities increased with decreasing AuNP size and increasing COOH-SAM chain length. Fourier transform IR spectroscopy in the attenuated total reflectance mode (FTIR-ATR) was used to characterize the crystallinity of the COOH-SAMs. The CH2 stretching frequencies decreased with increasing COOH-SAM chain length on flat Au. The C16 COOH-SAM on the 14nm AuNPs exhibited a crystalline-like CH2 stretching frequency. The size, size distribution, shapes and solution stability of AuNPs were investigated with transmission electron microscopy (TEM) and UV/VIS spectroscopy. As the average diameter of the AuNPs decreased the size distribution became narrower and the shape became more spherical.
doi:10.1021/jp201213g
PMCID: PMC3096993  PMID: 21603069
3.  Selective Binding, Self-Assembly and Nanopatterning of the Creutz-Taube Ion on Surfaces 
The surface attachment properties of the Creutz-Taube ion, i.e., [(NH3)5Ru(pyrazine)Ru(NH3)5]5+, on both hydrophilic and hydrophobic types of surfaces were investigated using X-ray photoelectron spectroscopy (XPS). The results indicated that the Creutz-Taube ions only bound to hydrophilic surfaces, such as SiO2 and –OH terminated organic SAMs on gold substrates. No attachment of the ions on hydrophobic surfaces such as –CH3 terminated organic SAMs and poly(methylmethacrylate) (PMMA) thin films covered gold or SiO2 substrates was observed. Further ellipsometric, atomic force microscopy (AFM) and time-dependent XPS studies suggested that the attached cations could form an inorganic analog of the self-assembled monolayer on SiO2 substrate with a “lying-down” orientation. The strong electrostatic interaction between the highly charged cations and the anionic SiO2 surface was believed to account for these observations. Based on its selective binding property, patterning of wide (∼200 nm) and narrow (∼35 nm) lines of the Creutz-Taube ions on SiO2 surface were demonstrated through PMMA electron resist masks written by electron beam lithography (EBL).
doi:10.3390/ijms10020533
PMCID: PMC2660660  PMID: 19333420
Creutz-Taube ions; Surface; Hydrophilic; Hydrophobic; XPS; AFM; Self-assembled Monolayers; E-beam lithography; PMMA; Nanopatterning
4.  Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate 
Copper films were grown on (3-Mercaptopropyl)trimethoxysilane (MPTMS), (3-Aminopropyl)triethoxysilane (APTES) and 6-(3-(triethoxysilyl)propylamino)-1,3,5- triazine-2,4-dithiol monosodium (TES) self-assembled monolayers (SAMs) modified acrylonitrile-butadiene-styrene (ABS) substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111) preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.
doi:10.3390/ijms15046412
PMCID: PMC4013637  PMID: 24739812
ABS resin; SAMs; electroless copper film; heterocyclic silane
5.  Fabrication of Interdigitated Micropatterns of Self-Assembled Polymer Nanofilms Containing Cell-adhesive Materials 
Micropatterns of different biomaterials with micro- and nanoscale features and defined spatial arrangement on a single substrate are useful tools for studying cellular-level interactions, and recent reports have highlighted the strong influence of scaffold compliance in determining cell behavior. In this paper, a simple yet versatile and precise patterning technique for the fabrication of interdigitated micropatterns of nanocomposite multilayer coatings on a single substrate is demonstrated through a combination of lithography and layer-by-layer (LbL) assembly processes, termed as Polymer Surface Micromachining (PSM). The first nanofilm pattern is constructed using lithography, followed by LbL multilayer assembly and lift-off, and the process is repeated with optical alignment to obtain interdigitated patterns on the same substrate. Thus, the method is analogous to surface micromachining, except that the deposition materials are polymers and biological materials that are used to produce multilayer nanocomposite structures. A key feature of the multilayers is the capability to tune properties such as stiffness by appropriate selection of materials, deposition conditions, and post-deposition treatments. Two- and four-component systems on glass coverslips are presented to demonstrate the versatility of the approach to construct precisely-defined, homogeneous nanofilm patterns. In addition, an example of a complex system used as a testbed for in vitro cell adhesion and growth is provided: micropatterns of poly(sodium 4-styrenesulfonate)/poly-L-lysine hydrobromide (PSS/PLL) and secreted phospholipase A2/poly(ethyleneimine) (PEI/sPLA2) multilayers. The interdigitated square nanofilm array patterns were obtained on a single coverslip with poly(diallyldimethyl ammonium chloride) (PDDA) as a cell-repellent background. Cell culture experiments show that cortical neurons respond and bind specifically to the sPLA2 micropatterns in competition with PLL micropatterns. The fabrication and the initial biological results on the nanofilm micropatterns support the usefulness of the technique for use in studies aimed at elucidating important biological structure-function relationships, but the applicability of the fabrication method is much broader and may impact electronics, photonics, and chemical microsystems.
doi:10.1021/la0525473
PMCID: PMC2536648  PMID: 16519477
6.  Electrochemical Characterization of Globotriose-Containing Self-Assembled Monolayers on Nanoporous Gold and their Binding of Soybean Agglutinin 
Carbohydrate research  2012;373:9-17.
Self-assembled monolayers (SAMs) of α-D-Gal-(1→4)-β-D-Gal-(1→4)-β-D-Glc-mercaptooctane (globotriose, Gb3-C8-SH) were prepared both as single-component SAMs and as mixed SAMs with either octanethiol (OCT) or 8-mercapto-3,6-dioxaoctanol (HO-PEG2-SH), on flat gold and on nanoporous gold (NPG) electrodes. The binding of soybean agglutinin (SBA) to the globotriose (Gb3) unit in the SAMs was then studied using electrochemical impedance spectroscopy (EIS), which is a label free method found to be quite sensitive to SAM composition and to the differences in SAM structure on NPG versus on flat Au. The affinity of SBA to the mixed SAM of HO-PEG2-SH and Gb3-C8-SH on NPG is found to be greater on NPG than on flat gold, and indicates a potential advantage for NPG as a substrate. The SAMs of HO-PEG2-SH were found to resist protein adsorption on either NPG or flat gold. The non-specific adsorption of SBA to OCT SAMs on flat Au was observed in EIS by the increase in charge transfer resistance; whereas, the increase seen on the NPG surface was smaller, and suggests that EIS measurements on NPG are less affected by non-specific protein adsorption. Atomic force microscopy (AFM) images of the SBA binding to mixed SAM of HO-PEG2-SH and Gb3-C8-SH on NPG showed a greater number of proteins on top of the OCT containing SAMs.
doi:10.1016/j.carres.2012.09.021
PMCID: PMC3615452  PMID: 23545324
7.  The Electronic Structure of Mixed Self-Assembled Monolayers 
ACS Nano  2010;4(11):6735-6746.
The electronic structure of mixed self-assembled monolayers (SAMs) on Au(111) surfaces is modeled using slab-type density-functional theory calculations. The studied molecules have a dipolar character induced by polar and electron donating or accepting tail-group substituents. The resulting electronic structure of mixed layers is found to differ qualitatively from a simple superposition of those of the respective pure layers. Specifically, the positions of the frontier electronic states are shifted relative to the metal Fermi level, with the sign and magnitude of that shift depending on the dipole moment of the molecules and the mixing ratio in the film. This appears counterintuitive considering previous investigations, in which it has been shown that, for densely packed layers, tail-group substituents have no impact on the interfacial energy-level alignment. The seeming contradiction can be lifted by considering the local electrostatic interactions within the films in both mixed and homogeneous monolayers. Beyond that, we show that mixed SAMs provide an efficient tool for continuously tuning substrate work functions over a range that far exceeds that accessible by merely changing the coverage of homogeneous layers, with the net effect depending linearly on the mixing ratio in agreement with recent experimental findings.
doi:10.1021/nn102360d
PMCID: PMC3011841  PMID: 21047121
self-assembled monolayer; metal−organic interface; quantum-mechanical modeling; band-structure calculation; mixed monolayer; heterogeneous surfaces; intermolecular interactions
8.  Supramolecular Layer-by-Layer Assembly of 3D Multicomponent Nanostructures via Multivalent Molecular Recognition 
The supramolecular layer-by-layer assembly of 3D multicomponent nanostructures of nanoparticles is demonstrated. Nanoimprint lithography (NIL) was used as the patterning tool for making patterned β-cyclodextrin (CD) self-assembled monolayers (SAMs) and for the confinement of nanoparticles on the substrate. A densely packed and multilayered nanoparticle structure was created by alternating assembly steps of complementary guest- (Fc-SiO2, 60 nm) and host-functionalized (CD-Au, 3 nm) nanoparticles. The effects induced by the order of the nanoparticle assembly steps, going from large to small and from small to large nanoparticles by using Fc-SiO2, CD-Au, and CD-SiO2 (350 nm) nanoparticles, were compared. AFM height profiles revealed that the specific supramolecular assembly of nanoparticles was self-limited, i.e. one nanoparticle layer per assembly step, allowing the control over the thickness of the supramolecular hybrid nanostructure by choosing the size of the nanoparticles, irrespective of the core material of the nanoparticles. The roughness of structure, observed by AFM imaging of the top layer, was directly influenced by the size and packing of the underlying nanoparticle layers.
PMCID: PMC2635691  PMID: 19325764
Supramolecular Chemistry; Layer-by-Layer Assembly; Nanoparticles; Nanoimprint lithography
9.  Nanoscale clustering of carbohydrate thiols in mixed SAMs on gold 
Langmuir  2012;28(17):6950-6959.
Self-assembled monolayers (SAMs) bearing pendant carbohydrate functionality are frequently employed to tailor glycan-specific bioactivity onto gold substrates. The resulting glycoSAMs are valuable for interrogating glycan-mediated biological interactions via surface analytical techniques, microarrays, and label-free biosensors. GlycoSAM composition can be readily modified during assembly using mixed solutions containing thiolated species, including carbohydrates, oligo(ethylene glycol) (OEG) and other inert moieties. This intrinsic tunability of the self-assembled system is frequently used to optimize bioavailability and anti-biofouling properties of the resulting SAM. However, until now, our nanoscale understanding of the behavior of these mixed glycoSAMs has lacked detail. In this study, we examined the time-dependent clustering of mixed sugar+OEG glycoSAMs on ultraflat gold substrates. Composition and surface morphologic changes in the monolayers were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. We provide evidence that the observed clustering is consistent with a phase separation process in which surface-bound glycans self-associate to form dense glycoclusters within the monolayer. These observations have significant implications for the construction of mixed glycoSAMs for use in biosensing and glycomics applications.
doi:10.1021/la300444h
PMCID: PMC3350752  PMID: 22435511
Atomic force microscopy; carbohydrates; glycoSAM; phase separation; XPS
10.  Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance 
A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH2)12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm2 V−1 s−1. It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm2 V−1 s−1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.
doi:10.1039/C2TC00378C
PMCID: PMC3786186  PMID: 24086795
11.  Automated scanning probe lithography with n-alkanethiol self assembled monolayers on Au(111): Application for teaching undergraduate laboratories 
Journal of Laboratory Automation  2011;16(2):112-125.
Controllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol molecules from solution. Advancements in AFM automation enable rapid protocols for nanolithography, which can be accomplished within the tight time restraints of undergraduate laboratories. Example experiments with scanning probe lithography (SPL) will be described in this report that were accomplished by undergraduate students during laboratory course activities and research internships in the chemistry department of Louisiana State University. Students were introduced to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry.
doi:10.1016/j.jala.2010.06.003
PMCID: PMC3072817  PMID: 21483651
12.  Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting 
Summary
Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE). The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy.
doi:10.3762/bjnano.4.71
PMCID: PMC3817682  PMID: 24205458
atomic force microscopy (AFM); metal-organic frameworks; nanografting; nanoshaving; SURMOF
13.  Effect of functional end groups of silane self assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function 
Bioactive glass (BG) can directly bond to living bone without fibrous tissue encapsulation. Key mechanistic steps of BG’s activity are attributed to calcium phosphate formation, surface hydroxylation and fibronectin (FN) adsorption. In the present study, self-assembled monolayers (SAMs) of alkanesilanes with different surface chemistry (OH, NH2, and COOH) were used as a model system to mimic BG’s surface activity. Calcium phosphate (Ca-P) was formed on SAMs by immersion in a solution which simulates the electrolyte content of physiological fluids. FN adsorption kinetics and monolayer coverage was determined on SAMs with or without Ca-P coating. The surface roughness was also examined on these substrates before and after FN adsorption. The effects of FN-adsorbed, Ca-P coated SAMs on the function of MC3T3-E1 were evaluated by cell growth, expression of alkaline phosphatase activity, and actin cytoskeleton formation. We demonstrate that, although the FN monolayer coverage and the rms roughness are similar on −OH and −COOH terminated SAMs with or without Ca-P coating, higher levels of ALP activity, more actin cytoskeleton formation and more cell growth are obtained on −OH and −COOH terminated SAMs with Ca-P coating. In addition, although the FN monolayer coverage is higher on Ca-P coated −NH2 terminated SAMs and SiOx surfaces, higher levels of ALP activity and more cell growth are obtained on Ca-P coated −OH and −COOH terminated SAMs. Thus with same Ca-P coatings, different surface functional groups have different effects on the function of osteoblastic cells. These findings represent new insights into the mechanism of bioactivity of BG and, thereby, may lead to designing superior constructs for bone grafting.
doi:10.1002/term.131
PMCID: PMC2610238  PMID: 19012271
self assembled monolayers; calcium phosphate; protein adsorption; cell attachment; proliferation; alkaline phosphatase activity
14.  Instability of Self-Assembled Monolayers (SAM) as a Model Material System for Macrophage/FBGC Cellular Behavior 
Novel self-assembled monolayers (SAMs) designed to present homogenous surface chemistries were utilized to further investigate the material surface chemistry dependent macrophage and foreign body giant cell (FBGC) behaviors including macrophage adhesion, fusion, and apoptosis. Contact angle analysis revealed instabilities in the –CH3 and –COOH terminate SAM surfaces upon incubation in serum-free media at 37oC or under dry, room temperatureconditions. Further analysis indicated that the –CH3 terminated SAM surface degraded rapidly within 2 hours and loss of sufficient SAM units to be comparable to the gold (Au) control surface within 24 hours of incubation in serum-free media (SFM) at 37oC. After 5days of incubation in SFM at 37oC, the contact angles for the –COOH terminated SAMsurfaces increased markedly. AFM analysis confirmed the desorption of –CH3 terminated SAM molecules from the surface with increased roughness and marked appearance of peaks andvalleys within 2 hours. A decrease in the thickness of the –COOH terminated SAM surface also suggests molecular desorption over time. No significant changes in contact angle or AFM analyses were observed on the –OH terminated SAM surfaces. Cellular adhesion decreased morerapidly on the Au control and –CH3 terminated SAM surfaces in comparison to the other surfaces. However by day 10, cellular adhesion, fusion, and apoptosis were comparable on all SAM surfaces and the Au control . These studies suggest that SAM surfaces may not be suitable for long-term studies where material dependent properties are investigated.
doi:10.1002/jbm.a.31660
PMCID: PMC4017672  PMID: 18412136
self-assembled monolayers; instability; macrophage; foreign body giant cell; contact angles
15.  Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing 
ACS nano  2011;5(8):6244-6253.
Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing.
doi:10.1021/nn202013v
PMCID: PMC3160512  PMID: 21770414
Template stripping; plasmonics; surface plasmon resonance; nanohole array; atomic; layer deposition; microfluidics; biosensing; nanoimprint lithography; supported lipid bilayer
16.  Substrate-mediated effects in photothermal patterning of alkanethiol self-assembled monolayers with microfocused continuous-wave lasers 
Summary
In recent years, self-assembled monolayers (SAMs) have been demonstrated to provide promising new approaches to nonlinear laser processing. Most notably, because of their ultrathin nature, indirect excitation mechanisms can be exploited in order to fabricate subwavelength structures. In photothermal processing, for example, microfocused lasers are used to locally heat the substrate surface and initiate desorption or decomposition of the coating. Because of the strongly temperature-dependent desorption kinetics, the overall process is highly nonlinear in the applied laser power. For this reason, subwavelength patterning is feasible employing ordinary continuous-wave lasers. The lateral resolution, generally, depends on both the type of the organic monolayer and the nature of the substrate. In previous studies we reported on photothermal patterning of distinct types of SAMs on Si supports. In this contribution, a systematic study on the impact of the substrate is presented. Alkanethiol SAMs on Au-coated glass and silicon substrates were patterned by using a microfocused laser beam at a wavelength of 532 nm. Temperature calculations and thermokinetic simulations were carried out in order to clarify the processes that determine the performance of the patterning technique. Because of the strongly temperature-dependent thermal conductivity of Si, surface-temperature profiles on Au/Si substrates are very narrow ensuring a particularly high lateral resolution. At a 1/e spot diameter of 2 µm, fabrication of subwavelength structures with diameters of 300–400 nm is feasible. Rapid heat dissipation, though, requires high laser powers. In contrast, patterning of SAMs on Au/glass substrates is strongly affected by the largely distinct heat conduction within the Au film and in the glass support. This results in broad surface temperature profiles. Hence, minimum structure sizes are larger when compared with respective values on Au/Si substrates. The required laser powers, though, are more than one order of magnitude lower. Also, the laser power needed for patterning decreases with decreasing Au layer thickness. These results demonstrate the impact of the substrate on the overall patterning process and provide new perspectives in photothermal laser patterning of ultrathin organic coatings.
doi:10.3762/bjnano.3.8
PMCID: PMC3304314  PMID: 22428098
femtosecond lasers; nonlinear laser processing; self-assembled monolayers; subwavelength patterning; ultrathin resists
17.  Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces 
Analytical chemistry  2011;83(17):6704-6712.
Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) software and x-ray photoelectron spectroscopy (XPS) experimental measurements. XPS measurements of C16 COOH SAMs on flat gold surfaces were made at 9 different photoelectron emission angles (5° to 85° in 10° increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. Based on the glancing-angle results, it was found that inclusion of a hydrocarbon contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1Å/CH2 group, an RSA of 1.05, and a 1.5Å CH2-contamination overlayer (total film thickness = 21.5Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat-surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs indicated a slightly thinner overlayer with parameters of 0.9Å/CH2 group in the SAM, a RSA of 1.06 RSA and a 1.5Å CH2-contamination overlayer (total film thickness = 18.5Å). The three angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests that the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.
doi:10.1021/ac201175a
PMCID: PMC3165144  PMID: 21744862
18.  The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces 
Summary
A metal–organic framework (MOF) material, [Zn2(adc)2(dabco)] (adc = anthracene-9,10-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]­octane), the fluorescence of which depends on the loading of its nanopores, was synthesized in two forms: as free-flowing nanocrystals with different shapes and as surface-attached MOFs (SURMOFs). For the latter, we used self-assembled monolayers (SAMs) bearing functional groups, such as carboxylate and pyridyl groups, capable of coordinating to the constituents of the MOF. It could be demonstrated that this directed coordination also orients the nanocrystals deposited at the surface. Using two different patterning methods, i.e., microcontact printing and electron-beam lithography, the lateral distribution of the functional groups could be determined in such a way that the highly localized deposition of the SURMOF films became possible.
doi:10.3762/bjnano.3.66
PMCID: PMC3458603  PMID: 23019553
electron-beam lithography; irradiation-promoted exchange reaction; microcontact printing; radiation-induced nanostructure; self-assembled monolayer; surface-attached metal–organic framework
19.  Nanoscale patterning of a self-assembled monolayer by modification of the molecule–substrate bond 
Summary
The intercalation of Cu at the interface of a self-assembled monolayer (SAM) and a Au(111)/mica substrate by underpotential deposition (UPD) is studied as a means of high resolution patterning. A SAM of 2-(4'-methylbiphenyl-4-yl)ethanethiol (BP2) prepared in a structural phase that renders the Au substrate completely passive against Cu-UPD, is patterned by modification with the tip of a scanning tunneling microscope. The tip-induced defects act as nucleation sites for Cu-UPD. The lateral diffusion of the metal at the SAM–substrate interface and, thus, the pattern dimensions are controlled by the deposition time. Patterning down to the sub-20 nm range is demonstrated. The difference in strength between the S–Au and S–Cu bond is harnessed to develop the latent Cu-UPD image into a patterned binary SAM. Demonstrated by the exchange of BP2 by adamantanethiol (AdSH) this is accomplished by a sequence of reductive desorption of BP2 in Cu free areas followed by adsorption of AdSH. The appearance of Au adatom islands upon the thiol exchange suggests that the interfacial structures of BP2 and AdSH SAMs are different.
doi:10.3762/bjnano.5.28
PMCID: PMC3999799  PMID: 24778947
copper; electrodeposition; gold adatoms; nanolithography; negative resist
20.  Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold 
Electrochimica acta  2013;90:10.1016/j.electacta.2012.11.116.
Electroreductive desorption of a highly ordered self-assembled monolayer (SAM) formed by the araliphatic thiol (4-(4-(4-pyridyl)phenyl)phenyl)methanethiol leads to a concurrent rapid hydrogen evolution reaction (HER). The desorption process and resulting interfacial structure were investigated by voltammetric techniques, in situ spectroscopic ellipsometry, and in situ vibrational sum–frequency–generation (SFG) spectroscopy. Voltammetric experiments on SAM-modified electrodes exhibit extraordinarily high peak currents, which di er between Au(111) and polycrystalline Au substrates. Association of reductive desorption with HER is shown to be the origin of the observed excess cathodic charges. The studied SAM preserves its two–dimensional order near Au surface throughout a fast voltammetric scan even when the vertex potential is set several hundred millivolt beyond the desorption potential. A model is developed for the explanation of the observed rapid HER involving ordering and pre–orientation of water present in the nanometer–sized reaction volume between desorbed SAM and the Au electrode, by the structurally extremely stable monolayer, leading to the observed catalysis of the HER.
doi:10.1016/j.electacta.2012.11.116
PMCID: PMC3825286  PMID: 24235778
Reductive SAM desorption; Hydrogen evolution; Catalysis; Sum frequency generation spectroscopy; Spectroscopic ellipsometry
21.  Stability of Phosphonic Self Assembled Monolayers (SAMs) on Cobalt Chromium (Co-Cr) Alloy under Oxidative conditions 
Applied surface science  2011;257(13):5605-5612.
Cobalt Chromium (Co-Cr) alloys has been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Contact Angle Measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration
doi:10.1016/j.apsusc.2011.01.055
PMCID: PMC3097514  PMID: 21603056
surface modification; self assembled monolayers (SAMs); phosphonic acids; cobalt chromium alloy
22.  Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100) 
Organophosphonic acid self-assembled monolayers (SAMs) on oxide surfaces have recently seen increased use in electrical and biological sensor applications. The reliability and reproducibility of these sensors require good molecular organization in these SAMs. In this regard, packing, order and alignment in the SAMs is important, as it influences the electron transport measurements. In this study, we examine the order of hydroxyl- and methyl- terminated phosphonate films deposited onto silicon oxide surfaces by the tethering by aggregation and growth method using complementary, state-of-art surface characterization tools. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy and in situ sum frequency generation (SFG) spectroscopy are used to study the order of the phosphonate SAMs in vacuum and under aqueous conditions, respectively. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry results show that these samples form chemically intact monolayer phosphonate films. NEXAFS and SFG spectroscopy showed that molecular order exists in the octadecylphosphonic acid and 11-hydroxyundecylphosphonic acid SAMs. The chain tilt angles in these SAMs were approximately 37° and 45°, respectively.
doi:10.1021/la1021438
PMCID: PMC2939309  PMID: 20735054
Phosphonic acid; T-BAG method; NEXAFS; SFG; ToF-SIMS; XPS; surface analysis; order; SAM
23.  Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control 
Nanoscale Research Letters  2011;6(1):112.
The study of surface morphology of Au deposited on mica is crucial for the fabrication of flat Au films for applications in biological, electronic, and optical devices. The understanding of the growth mechanisms of Au on mica allows to tune the process parameters to obtain ultra-flat film as suitable platform for anchoring self-assembling monolayers, molecules, nanotubes, and nanoparticles. Furthermore, atomically flat Au substrates are ideal for imaging adsorbate layers using scanning probe microscopy techniques. The control of these mechanisms is a prerequisite for control of the film nano- and micro-structure to obtain materials with desired morphological properties. We report on an atomic force microscopy (AFM) study of the morphology evolution of Au film deposited on mica by room-temperature sputtering as a function of subsequent annealing processes. Starting from an Au continuous film on the mica substrate, the AFM technique allowed us to observe nucleation and growth of Au clusters when annealing process is performed in the 573-773 K temperature range and 900-3600 s time range. The evolution of the clusters size was quantified allowing us to evaluate the growth exponent 〈z〉 = 1.88 ± 0.06. Furthermore, we observed that the late stage of cluster growth is accompanied by the formation of circular depletion zones around the largest clusters. From the quantification of the evolution of the size of these zones, the Au surface diffusion coefficient was evaluated in D(T) = [(7.42 × 10−13) ± (5.94 × 10−14) m2/s]exp(−(0.33±0.04) eVkT). These quantitative data and their correlation with existing theoretical models elucidate the kinetic growth mechanisms of the sputtered Au on mica. As a consequence we acquired a methodology to control the morphological characteristics of the Au film simply controlling the annealing temperature and time.
doi:10.1186/1556-276X-6-112
PMCID: PMC3211157  PMID: 24576328
24.  Selective Filling of Nanowells in Nanowell Arrays Fabricated Using Polystyrene Nanosphere Lithography with Cytochrome P450 Enzymes 
Nanotechnology  2012;23(38):385101.
This work describes an original and simple technique for protein immobilization into nanowells, fabricated using nanopatterned-array fabrication methods, while ensuring the protein retains the normal biological activity. Nanosphere-lithography was used to fabricate a nanowell array with nanowells that were 100 nm in diameter and a periodicity of 500 nm. The base of the nanowells was gold and the surrounding material was silicon dioxide. The different surface chemistries of these materials were used to attach two different self-assembled monolayers (SAM) with different affinities for the protein used here, cytochrome P450 (P450). The nanowell SAM, a methyl terminated thiol, had high affinity for the P450. The surrounding SAM, a polyethylene glycol silane, displayed very little affinity toward the P450 isozyme CYP2C9, as demonstrated by x-ray photoelectron spectroscopy and surface plasmon resonance. The regularity of the nanopatterned array was examined by scanning electron microscopy and atomic force microscopy. P450-mediated metabolism experiments of known substrates demonstrated that the nanowell bound P450 enzyme exceeded its normal activity, as compared to P450 solutions, when bound to the methyl terminated self-assembled monolayer. The nanopatterned array chips bearing P450 display long term stability and give reproducible results making them potentially useful for high throughput screening assays or as nanoelectrode arrays.
doi:10.1088/0957-4484/23/38/385101
PMCID: PMC3465080  PMID: 22947619
Nanowell array; Self-assembled monolayer; cytochrome P450
25.  Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy† 
Nanoscale  2011;3(8):3395-3407.
Nanoporous gold (NPG), made by dealloying low carat gold alloys, is a relatively new nanomaterial finding application in catalysis, sensing, and as a support for biomolecules. NPG has attracted considerable interest due to its open bicontinuous structure, high surface-to-volume ratio, tunable porosity, chemical stability and biocompatibility. NPG also has the attractive feature of being able to be modified by self-assembled monolayers. Here we use scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize a highly efficient approach for protein immobilization on NPG using N-hydroxysuccinimide (NHS) ester functionalized self-assembled monolayers on NPG with pore sizes in the range of tens of nanometres. Comparison of coupling under static versus flow conditions suggests that BSA (Bovine Serum Albumin) and IgG (Immunoglobulin G) can only be immobilized onto the interior surfaces of free standing NPG monoliths with good coverage under flow conditions. AFM is used to examine protein coverage on both the exterior and interior of protein modified NPG. Access to the interior surface of NPG for AFM imaging is achieved using a special procedure for cleaving NPG. AFM is also used to examine BSA immobilized on rough gold surfaces as a comparative study. In principle, the general approach described should be applicable to many enzymes, proteins and protein complexes since both pore sizes and functional groups present on the NPG surfaces are controllable.
doi:10.1039/c1nr10427f
PMCID: PMC3168530  PMID: 21750834

Results 1-25 (517845)