Search tips
Search criteria

Results 1-25 (1278083)

Clipboard (0)

Related Articles

1.  Vav2 Activates Rac1, Cdc42, and RhoA Downstream from Growth Factor Receptors but Not β1 Integrins 
Molecular and Cellular Biology  2000;20(19):7160-7169.
The Rho family of GTPases plays a major role in the organization of the actin cytoskeleton. These G proteins are activated by guanine nucleotide exchange factors that stimulate the exchange of bound GDP for GTP. In their GTP-bound state, these G proteins interact with downstream effectors. Vav2 is an exchange factor for Rho family GTPases. It is a ubiquitously expressed homologue of Vav1, and like Vav1, it has previously been shown to be activated by tyrosine phosphorylation. Because Vav1 becomes tyrosine phosphorylated and activated following integrin engagement in hematopoietic cells, we investigated the tyrosine phosphorylation of Vav2 in response to integrin-mediated adhesion in fibroblasts and epithelial cells. However, no tyrosine phosphorylation of Vav2 was detected in response to integrin engagement. In contrast, treating cells with either epidermal growth factor or platelet-derived growth factor stimulated tyrosine phosphorylation of Vav2. We have examined the effects of overexpressing either wild-type or amino-terminally truncated (constitutively active) forms of Vav2 as fusion proteins with green fluorescent protein. Overexpression of either wild-type or constitutively active Vav2 resulted in prominent membrane ruffles and enhanced stress fibers. These cells revealed elevated rates of cell migration that were inhibited by expression of dominant negative forms of Rac1 and Cdc42. Using a binding assay to measure the activity of Rac1, Cdc42, and RhoA, we found that overexpression of Vav2 resulted in increased activity of each of these G proteins. Expression of a carboxy-terminal fragment of Vav2 decreased the elevation of Rac1 activity induced by epidermal growth factor, consistent with Vav2 mediating activation of Rac1 downstream from growth factor receptors.
PMCID: PMC86269  PMID: 10982832
2.  Vav1/2/3-null Mice Define an Essential Role for Vav Family Proteins in Lymphocyte Development and Activation but a Differential Requirement in MAPK Signaling in T and B Cells 
The Journal of Experimental Medicine  2003;198(10):1595-1608.
The Vav family of Rho guanine nucleotide exchange factors is thought to orchestrate signaling events downstream of lymphocyte antigen receptors. Elucidation of Vav function has been obscured thus far by the expression of three highly related family members. We generated mice lacking all Vav family proteins and show that Vav-null mice produce no functional T or B cells and completely fail to mount both T-dependent and T-independent humoral responses. Whereas T cell development is blocked at an early stage in the thymus, immature B lineage cells accumulate in the periphery but arrest at a late “transitional” stage. Mechanistically, we show that the Vav family is crucial for both TCR and B cell receptor (BCR)–induced Ca2+ signaling and, surprisingly, is only required for mitogen-activated protein kinase (MAPK) activation in developing and mature T cells but not in B cells. Thus, the abundance of immature B cells generated in Vav-null mice may be due to intact Ras/MAPK signaling in this lineage. Although the expression of Vav1 alone is sufficient for normal lymphocyte development, our data also reveal lineage-specific roles for Vav2 and Vav3, with the first demonstration that Vav3 plays a critical compensatory function in T cells. Together, we define an essential role for the entire Vav protein family in lymphocyte development and activation and establish the limits of functional redundancy both within this family and between Vav and other Rho–guanine nucleotide exchange factors.
PMCID: PMC2194126  PMID: 14623913
thymocyte; antigen receptor; signal transduction; Ca++; mitogen-activated protein kinase
3.  Role of vav1 in the Lipopolysaccharide-Mediated Upregulation of Inducible Nitric Oxide Synthase Production and Nuclear Factor for Interleukin-6 Expression Activity in Murine Macrophages 
vav1 has been shown to play a key role in lymphocyte development and activation, but its potential importance in macrophage activation has received little attention. We have previously reported that exposure of macrophages to bacterial lipopolysaccharide (LPS) leads to increased activity of hck and other src-related tyrosine kinases and to the prompt phosphorylation of vav1 on tyrosine. In this study, we tested the role of vav1 in macrophage responses to LPS, focusing on the upregulation of nuclear factor for interleukin-6 expression (NF-IL-6) activity and inducible nitric oxide synthase (iNOS) protein accumulation in RAW-TT10 murine macrophages. We established a series of stable cell lines expressing three mutant forms of vav1 in a tetracycline-regulatable fashion: (i) a form producing a truncated protein, vavC; (ii) a form containing a point mutation in the regulatory tyrosine residue, vavYF174; and (iii) a form with an in-frame deletion of 6 amino acids required for the guanidine nucleotide exchange factor (GEF) activity of vav1 for rac family GTPases, vavGEFmt. Expression of the truncated mutant (but not the other two mutants) has been reported to interfere with T-cell activation. In contrast, we now demonstrate that expression of any of the three mutant forms of vav1 in RAW-TT10 cells consistently inhibited LPS-mediated increases in iNOS protein accumulation and NF-IL-6 activity. These data provide direct evidence for a role for vav1 in LPS-mediated macrophage activation and iNOS production and suggest that vav1 functions in part via activation of NF-IL-6. Furthermore, these findings indicate that the GEF activity of vav1 is required for its ability to mediate macrophage activation by LPS.
PMCID: PMC404562  PMID: 15138177
4.  Paxillin kinase linker (PKL) regulates Vav2 signaling during cell spreading and migration 
Molecular Biology of the Cell  2013;24(12):1882-1894.
Rho GTPases play an important role in cell migration. Here the activity of the Rho GTPase GEF Vav2 is shown to be regulated by a phosphorylation-dependent interaction with PKL (GIT2). PKL is required for Vav2 activation, and, in turn, Vav2 regulates the localization of PKL and β-PIX to focal adhesions and to the leading edge of migrating cells.
The Rho family of GTPases plays an important role in coordinating dynamic changes in the cell migration machinery after integrin engagement with the extracellular matrix. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and negatively regulated by GTPase-activating proteins (GAPs). However, the mechanisms by which GEFs and GAPs are spatially and temporally regulated are poorly understood. Here the activity of the proto-oncogene Vav2, a GEF for Rac1, RhoA, and Cdc42, is shown to be regulated by a phosphorylation-dependent interaction with the ArfGAP PKL (GIT2). PKL is required for Vav2 activation downstream of integrin engagement and epidermal growth factor (EGF) stimulation. In turn, Vav2 regulates the subsequent redistribution of PKL and the Rac1 GEF β-PIX to focal adhesions after EGF stimulation, suggesting a feedforward signaling loop that coordinates PKL-dependent Vav2 activation and PKL localization. Of interest, Vav2 is required for the efficient localization of PKL and β-PIX to the leading edge of migrating cells, and knockdown of Vav2 results in a decrease in directional persistence and polarization in migrating cells, suggesting a coordination between PKL/Vav2 signaling and PKL/β-PIX signaling during cell migration.
PMCID: PMC3681694  PMID: 23615439
5.  An active form of Vav1 induces migration of mammary epithelial cells by stimulating secretion of an epidermal growth factor receptor ligand 
Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity.
We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation.
Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1.
PMCID: PMC1524963  PMID: 16709244
6.  Human Vav1 Expression in Hematopoietic and Cancer Cell Lines Is Regulated by c-Myb and by CpG Methylation 
PLoS ONE  2012;7(1):e29939.
Vav1 is a signal transducer protein that functions as a guanine nucleotide exchange factor for the Rho/Rac GTPases in the hematopoietic system where it is exclusively expressed. Recently, Vav1 was shown to be involved in several human malignancies including neuroblastoma, lung cancer, and pancreatic ductal adenocarcinoma (PDA). Although some factors that affect vav1 expression are known, neither the physiological nor pathological regulation of vav1 expression is completely understood. We demonstrate herein that mutations in putative transcription factor binding sites at the vav1 promoter affect its transcription in cells of different histological origin. Among these sites is a consensus site for c-Myb, a hematopoietic-specific transcription factor that is also found in Vav1-expressing lung cancer cell lines. Depletion of c-Myb using siRNA led to a dramatic reduction in vav1 expression in these cells. Consistent with this, co-transfection of c-Myb activated transcription of a vav1 promoter-luciferase reporter gene construct in lung cancer cells devoid of Vav1 expression. Together, these results indicate that c-Myb is involved in vav1 expression in lung cancer cells. We also explored the methylation status of the vav1 promoter. Bisulfite sequencing revealed that the vav1 promoter was completely unmethylated in human lymphocytes, but methylated to various degrees in tissues that do not normally express vav1. The vav1 promoter does not contain CpG islands in proximity to the transcription start site; however, we demonstrated that methylation of a CpG dinucleotide at a consensus Sp1 binding site in the vav1 promoter interferes with protein binding in vitro. Our data identify two regulatory mechanisms for vav1 expression: binding of c-Myb and CpG methylation of 5′ regulatory sequences. Mutation of other putative transcription factor binding sites suggests that additional factors regulate vav1 expression as well.
PMCID: PMC3256210  PMID: 22253833
7.  The Rho Exchange Factors Vav2 and Vav3 Favor Skin Tumor Initiation and Promotion by Engaging Extracellular Signaling Loops 
PLoS Biology  2013;11(7):e1001615.
Rho GEFs Vav2 and Vav3 regulate pro-tumorigenic autocrine/paracrine signals in keratinocytes and are dispensable for skin homeostasis.
The catalytic activity of GDP/GTP exchange factors (GEFs) is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment.
Author Summary
GDP/GTP exchange factors (GEFs) involved in Rho GTPase activation have been traditionally considered as potential anticancer drug targets. However, little is known about the best GEFs to inhibit in different tumor types, the pro-tumorigenic programs that they regulate, and the collateral effects that inactivation may induce in healthy tissues. Here, we investigate this issue in HRas-dependent skin tumors using genetic techniques. Despite the large number of Rho GEFs present in both normal and tumoral epidermis, we demonstrate that the co-expression of the exchange factors Vav2 and Vav3 is critical for the development of this tumor type. We also identify a previously unknown Vav-dependent autocrine/paracrine program that favors keratinocyte survival/proliferation and the formation of an inflammatory state during the initiation and promotion phases of this tumor. Finally, our results indicate that inactivation of Vav proteins is innocuous for the homeostasis of normal epidermis. Taken together, these results imply that Vav protein-based therapies may be of interest for skin tumor prevention and/or treatment.
PMCID: PMC3720258  PMID: 23935450
8.  Structural Basis of Guanine Nucleotide Exchange Mediated by the T-cell Essential Vav1 
Journal of molecular biology  2008;380(5):828-843.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of RhoGTPases. The structure of the Vav1-DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav-1 cysteine rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav-1 DH domain for its intimate association with the Switch-II region of Rac1 that is critical for the displacement of the guanine nucleotide. Further, a mutational analysis confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1’s ability to contact a range of RhoGTPases using a novel protein-protein interaction network.
PMCID: PMC2620086  PMID: 18589439
9.  Biological and Regulatory Properties of Vav-3, a New Member of the Vav Family of Oncoproteins 
Molecular and Cellular Biology  1999;19(11):7870-7885.
We report here the identification and characterization of a novel Vav family member, Vav-3. Signaling experiments demonstrate that Vav-3 participates in pathways activated by protein tyrosine kinases. Vav-3 promotes the exchange of nucleotides on RhoA, on RhoG and, to a lesser extent, on Rac-1. During this reaction, Vav-3 binds physically to the nucleotide-free states of those GTPases. These functions are stimulated by tyrosine phosphorylation in wild-type Vav-3 and become constitutively activated upon deletion of the entire calponin-homology region. Expression of truncated versions of Vav-3 leads to drastic actin relocalization and to the induction of stress fibers, lamellipodia, and membrane ruffles. Moreover, expression of Vav-3 alters cytokinesis, resulting in the formation of binucleated cells. All of these responses need only the expression of the central region of Vav-3 encompassing the Dbl homology (DH), pleckstrin homology (PH), and zinc finger (ZF) domains but do not require the presence of the C-terminal SH3-SH2-SH3 regions. Studies conducted with Vav-3 proteins containing loss-of-function mutations in the DH, PH, and ZF regions indicate that only the DH and ZF regions are essential for Vav-3 biological activity. Finally, we show that one of the functions of the Vav-3 ZF region is to work coordinately with the catalytic DH region to promote both the binding to GTP-hydrolases and their GDP-GTP nucleotide exchange. These results highlight the role of Vav-3 in signaling and cytoskeletal pathways and identify a novel functional cross-talk between the DH and ZF domains of Vav proteins that is imperative for the binding to, and activation of, Rho GTP-binding proteins.
PMCID: PMC84867  PMID: 10523675
10.  Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras. 
Molecular and Cellular Biology  1994;14(10):6848-6857.
Vav and Dbl are members of a novel class of oncogene proteins that share significant sequence identity in a approximately 250-amino-acid domain, designated the Dbl homology domain. Although Dbl functions as a guanine nucleotide exchange factor (GEF) and activator of Rho family proteins, recent evidence has demonstrated that Vav functions as a GEF for Ras proteins. Thus, transformation by Vav and Dbl may be a consequence of constitutive activation of Ras and Rho proteins, respectively. To address this possibility, we have compared the transforming activities of Vav and Dbl with that of the Ras GEF, GRF/CDC25. As expected, GRF-transformed cells exhibited the same reduction in actin stress fibers and focal adhesions as Ras-transformed cells. In contrast, Vav- and Dbl-transformed cells showed the same well-developed stress fibers and focal adhesions observed in normal or RhoA(63L)-transformed NIH 3T3 cells. Furthermore, neither Vav- or Dbl-transformed cells exhibited the elevated levels of Ras-GTP (60%) observed with GRF-transformed cells. Finally, GRF, but not Vav or Dbl, induced transcriptional activation from Ras-responsive DNA elements (ets/AP-1, fos promoter, and kappa B). However, like Ras- and GRF-transformed cells, both Vav- and Dbl-transformed cells exhibited constitutively activated mitogen-activated protein kinases (MAPKs) (primarily p42MAPK/ERK2). Since kinase-deficient forms of p42MAPK/ERK2 and p44MAPK/ERK1 inhibited Dbl transformation, MAPK activation may be an important component of its transforming activity. Taken together, our observations indicate that Vav and Dbl transformation is not a consequence of Ras activation and instead may involve the constitutive activation of MAPKs.
PMCID: PMC359215  PMID: 7935402
11.  Vav guanine nucleotide exchange factors regulate atherosclerotic lesion development in mice 
Arteriosclerosis, thrombosis, and vascular biology  2013;33(9):10.1161/ATVBAHA.113.301414.
Atherosclerosis requires migration of monocytes to the arterial intima with subsequent differentiation into foam cells. We showed previously that the scavenger receptor CD36 contributes to activation of Vav family guanine nucleotide exchange factors (Vavs) in aortae from hyperlipidemic apoe null mice, and that oxidatively modified LDL (oxLDL) induced CD36-dependent activation of macrophage Vavs in vitro. We also discovered that CD36-dependent uptake of oxLDL and foam cell formation were reduced in Vav-deficient macrophages. We now tested the hypothesis that Vavs play a role in atherosclerotic lesion development.
Approach and Results
We showed that apoe/vav1 double null mice fed a western diet had significant reduction in total aortic lesion area (by en face analysis) compared with apoe null mice with no significant differences in body weight or plasma lipid profiles. Histologic analysis of aortic sinus lesions showed fewer macrophages and foam cells in double null mice compared to apoe null, indicating impaired foam cell generation and/or homing of macrophages to atherosclerotic lesions. An intravital video microscopy-based adhesion assay with fluorescent (Qtracker655)-labeled monocytes showed reduced adhesion of vav1 null monocytes to hyperlipidemic carotid arteries compared to WT monocytes. Furthermore, fewer fluorescently labeled vav1 null monocytes accumulated in aortic sinus lesions in hyperlipidemic apoe null mice. We also found that activation of RhoGTPase Rac and MAP kinase c-Jun N-terminal kinase-2 (JNK2) by CD36-specific oxidized phospholipids was dependent on Vavs.
These results for the first time link Vavs to atherosclerotic lesion development and suggest that Vavs act as critical molecular links coupling hyperlipidemia with pro-atherogenic monocyte/macrophage responses.
PMCID: PMC3864095  PMID: 23825362
12.  Phylogenetic conservation of the regulatory and functional properties of the Vav oncoprotein family 
Experimental cell research  2005;308(2):364-380.
Vav proteins are phosphorylation-dependent GDP/GTP exchange factors for Rho/Rac GTPases. Despite intense characterization of mammalian Vav proteins both biochemically and genetically, there is little information regarding the conservation of their biological properties in lower organisms. To approach this issue, we have performed a characterization of the regulatory, catalytic, and functional properties of the single Vav family member of Drosophila melanogaster. These analyses have shown that the intramolecular mechanisms controlling the enzyme activity of mammalian Vav proteins are already present in Drosophila, suggesting that such properties have been set up before the divergence between protostomes and deuterostomes during evolution. We also show that Drosophila and mammalian Vav proteins have similar catalytic specificities. As a consequence, Drosophila Vav can trigger oncogenic transformation, morphological change, and enhanced cell motility in mammalian cells. Gain-of-function studies using transgenic flies support the implication of this protein in cytoskeletal-dependent processes such as embryonic dorsal closure, myoblast fusion, tracheal development, and the migration/guidance of different cell types. These results highlight the important roles of Vav proteins in the signal transduction pathways regulating cytoskeletal dynamics. Moreover, they indicate that the foundations for the regulatory and enzymatic activities of this protein family have been set up very early during evolution.
PMCID: PMC1447607  PMID: 15950967
Vav oncoproteins; Rho/Rac GTPases; GDP/GTP exchange factors; Cell migration; Development; Cytoskeleton; Drosophila
13.  Vav3-deficient Mice Exhibit a Transient Delay in Cerebellar Development 
Molecular Biology of the Cell  2010;21(6):1125-1139.
Vav proteins are phosphorylation-dependent Rho/Rac exchange factors that have usually been associated with immune- and cardiovascular-related functions. In this paper, Quevedo et al. demonstrate that Vav3 plays important, although transient, pleiotropic roles during the postnatal development of the cerebellum.
Vav3 is a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases that has been involved in functions related to the hematopoietic system, bone formation, cardiovascular regulation, angiogenesis, and axon guidance. We report here that Vav3 is expressed at high levels in Purkinje and granule cells, suggesting additional roles for this protein in the cerebellum. Consistent with this hypothesis, we demonstrate using Vav3-deficient mice that this protein contributes to Purkinje cell dendritogenesis, the survival of granule cells of the internal granular layer, the timely migration of granule cells of the external granular layer, and to the formation of the cerebellar intercrural fissure. With the exception of the latter defect, the dysfunctions found in Vav3−/− mice only occur at well-defined postnatal developmental stages and disappear, or become ameliorated, in older animals. Vav2-deficient mice do not show any of those defects. Using primary neuronal cultures, we show that Vav3 is important for dendrite branching, but not for primary dendritogenesis, in Purkinje and granule cells. Vav3 function in the cerebellum is functionally relevant, because Vav3−/− mice show marked motor coordination and gaiting deficiencies in the postnatal period. These results indicate that Vav3 function contributes to the timely developmental progression of the cerebellum.
PMCID: PMC2836963  PMID: 20089829
14.  Vav3 Is Involved in GABAergic Axon Guidance Events Important for the Proper Function of Brainstem Neurons Controlling Cardiovascular, Respiratory, and Renal Parameters 
Molecular Biology of the Cell  2010;21(23):4251-4263.
Vav3 is a phosphorylation GDP/GTP exchange factor for Rho/Rac GTPases. Recently, it has been described that Vav3 knockout mice develop hypertension and sympathoexcitation. In this work, we report the neurological cause of this phenotype.
Vav3 is a phosphorylation-dependent activator of Rho/Rac GTPases that has been implicated in hematopoietic, bone, cerebellar, and cardiovascular roles. Consistent with the latter function, Vav3-deficient mice develop hypertension, tachycardia, and renocardiovascular dysfunctions. The cause of those defects remains unknown as yet. Here, we show that Vav3 is expressed in GABAegic neurons of the ventrolateral medulla (VLM), a brainstem area that modulates respiratory rates and, via sympathetic efferents, a large number of physiological circuits controlling blood pressure. On Vav3 loss, GABAergic cells of the caudal VLM cannot innervate properly their postsynaptic targets in the rostral VLM, leading to reduced GABAergic transmission between these two areas. This results in an abnormal regulation of catecholamine blood levels and in improper control of blood pressure and respiration rates to GABAergic signals. By contrast, the reaction of the rostral VLM to excitatory signals is not impaired. Consistent with those observations, we also demonstrate that Vav3 plays important roles in axon branching and growth cone morphology in primary GABAergic cells. Our study discloses an essential and nonredundant role for this Vav family member in axon guidance events in brainstem neurons that control blood pressure and respiratory rates.
PMCID: PMC2993752  PMID: 20926682
15.  Remedial Strategies in Structural Proteomics: Expression, Purification and Crystallization of the Vav1/Rac1 Complex 
The signal transduction pathway involving the Vav1 guanine nucleotide exchange factor (GEF) and the Rac1 GTPase plays several key roles in the immune response mediated by the T cell receptor. Vav1 is also a unique member of the GEF family in that it contains a cysteine-rich domain (CRD) that is critical for Rac1 binding and maximal guanine nucleotide exchange activity, and thus may provide a unique protein-protein interface compared to other GEF/GTPase pairs. Here we have applied a number of remedial structural proteomics strategies, such as construct and expression optimization, surface mutagenesis, limited proteolysis, and protein formulation to successfully express, purify, and crystallize the Vav1-DH-PH-CRD/Rac1 complex in an active conformation. We have also systematically characterized various Vav1 domains in a GEF assay, and Rac1 in vitro binding experiments. In the context of Vav1-DH-PH-CRD, the zinc finger motif of the CRD is required for the expression of stable Vav1, as well as for activity in both a GEF assay and in vitro formation of a Vav1/Rac1 complex suitable for biophysical and structural characterization. Our data also indicate that the isolated CRD maintains a low level of specific binding to Rac1, appears to be folded based on 1D-NMR analysis and coordinates two zinc ions based on ICP-MS analysis. The protein reagents generated here are essential tools for the determination of a three dimensional Vav1/Rac1 complex crystal structure and possibly for the identification of inhibitors of the Vav1/Rac1 protein-protein interaction with potential to inhibit lymphocyte activation.
PMCID: PMC1892187  PMID: 17275330
16.  Vav2 is required for cell spreading 
The Journal of Cell Biology  2001;154(1):177-186.
Vav2 is a widely expressed Rho family guanine nucleotide exchange factor highly homologous to Vav1 and Vav3. Activated versions of Vav2 are transforming, but the normal function of Vav2 and how it is regulated are not known. We investigated the pathways that regulate Vav2 exchange activity in vivo and characterized its function. Overexpression of Vav2 activates Rac as assessed by both direct measurement of Rac-GTP and cell morphology. Vav2 also catalyzes exchange for RhoA, but does not cause morphologic changes indicative of RhoA activation. Vav2 nucleotide exchange is Src-dependent in vivo, since the coexpression of Vav2 and dominant negative Src, or treatment with the Src inhibitor PP2, blocks both Vav2-dependent Rac activation and lamellipodia formation. A mutation in the pleckstrin homology (PH) domain eliminates exchange activity and this construct does not induce lamellipodia, indicating the PH domain is necessary to catalyze nucleotide exchange. To further investigate the function of Vav2, we mutated the dbl homology (DH) domain and asked whether this mutant would function as a dominant negative to block Rac-dependent events. Studies using this mutant indicate that Vav2 is not necessary for platelet-derived growth factor– or epidermal growth factor–dependent activation of Rac. The Vav2 DH mutant did act as a dominant negative to inhibit spreading of NIH3T3 cells on fibronectin, specifically by blocking lamellipodia formation. These findings indicate that in fibroblasts Vav2 is necessary for integrin, but not growth factor–dependent activation of Rac leading to lamellipodia.
PMCID: PMC2196856  PMID: 11448999
Vav; Rac; spreading; integrins; growth factors
17.  Vav3 Mediates Receptor Protein Tyrosine Kinase Signaling, Regulates GTPase Activity, Modulates Cell Morphology, and Induces Cell Transformation 
Molecular and Cellular Biology  2000;20(24):9212-9224.
A recently reported new member of the Vav family proteins, Vav3 has been identified as a Ros receptor protein tyrosine kinase (RPTK) interacting protein by yeast two-hybrid screening. Northern analysis shows that Vav3 has a broad tissue expression profile that is distinct from those of Vav and Vav2. Two species of Vav3 transcripts, 3.4 and 5.4 kb, were detected with a differential expression pattern in various tissues. Transient expression of Vav in 293T and NIH 3T3 cells demonstrated that ligand stimulation of several RPTKs (epidermal growth factor receptor [EGFR], Ros, insulin receptor [IR], and insulin-like growth factor I receptor [IGFR]) led to tyrosine phosphorylation of Vav3 and its association with the receptors as well as their downstream signaling molecules, including Shc, Grb2, phospholipase C (PLC-γ), and phosphatidylinositol 3 kinase. In vitro binding assays using glutathione S-transferase-fusion polypeptides containing the GTPase-binding domains of Rok-α, Pak, or Ack revealed that overexpression of Vav3 in NIH 3T3 cells resulted in the activation of Rac-1 and Cdc42 whereas a deletion mutant lacking the N-terminal calponin homology and acidic region domains activated RhoA and Rac-1 but lost the ability to activate Cdc42. Vav3 induced marked membrane ruffles and microspikes in NIH 3T3 cells, while the N-terminal truncation mutants of Vav3 significantly enhanced membrane ruffle formation but had a reduced ability to induce microspikes. Activation of IR further enhanced the ability of Vav3 to induce membrane ruffles, but IGFR activation specifically promoted Vav3-mediated microspike formation. N-terminal truncation of Vav3 activated its transforming potential, as measured by focus-formation assays. We conclude that Vav3 mediates RPTK signaling and regulates GTPase activity, its native and mutant forms are able to modulate cell morphology, and it has the potential to induce cell transformation.
PMCID: PMC102179  PMID: 11094073
18.  VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2 
Experimental cell research  2007;313(15):3285-3297.
Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the Rho family of small GTPases. As a member of this family, Rac1 promotes VEGF-induced endothelial cell migration by stimulating the formation of lamellipodia and membrane ruffles. To form these membrane protrusions, Rac1 is activated by guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP. The goal of this study was to identify the GEF responsible for activating Rac1 in response to VEGF stimulation. We have found that VEGF stimulates biphasic activation of Rac1 and for these studies we focused on the peak of activation that occurs at 30 min. Inhibition of VEGFR-2 signaling blocks VEGF-induced Rac1 activation. Using a Rac1 nucleotide-free mutant (G15ARac1), which has a high affinity for binding activated GEFs, we show that the Rac GEF Vav2 associates with G15ARac1 after VEGF stimulation. Additionally, we show that depleting endothelial cells of endogenous Vav2 with siRNA prevents VEGF-induced Rac1 activation. Moreover, Vav2 is tyrosine phosphorylated upon VEGF treatment, which temporally correlates with Rac1 activation and requires VEGFR-2 signaling and Src kinase activity. Finally, we show that depressing Vav2 expression by siRNA impairs VEGF-induced endothelial cell migration. Taken together, our results provide evidence that Vav2 acts downstream of VEGF to activate Rac1.
PMCID: PMC2034315  PMID: 17686471
VEGF; Vav2; Rac; cell migration; angiogenesis
19.  Vav GEFs are required for β2 integrin-dependent functions of neutrophils 
The Journal of Cell Biology  2004;166(2):273-282.
Integrin regulation of neutrophils is essential for appropriate adhesion and transmigration into tissues. Vav proteins are Rho family guanine nucleotide exchange factors that become tyrosine phosphorylated in response to adhesion. Using Vav1/Vav3-deficient neutrophils (Vav1/3ko), we show that Vav proteins are required for multiple β2 integrin-dependent functions, including sustained adhesion, spreading, and complement-mediated phagocytosis. These defects are not attributable to a lack of initial β2 activation as Vav1/3ko neutrophils undergo chemoattractant-induced arrest on intercellular adhesion molecule-1 under flow. Accordingly, in vivo, Vav1/3ko leukocytes arrest on venular endothelium yet are unable to sustain adherence. Thus, Vav proteins are specifically required for stable adhesion. β2-induced activation of Cdc42, Rac1, and RhoA is defective in Vav1/3ko neutrophils, and phosphorylation of Pyk2, paxillin, and Akt is also significantly reduced. In contrast, Vav proteins are largely dispensable for G protein-coupled receptor–induced signaling events and chemotaxis. Thus, Vav proteins play an essential role coupling β2 to Rho GTPases and regulating multiple integrin-induced events important in leukocyte adhesion and phagocytosis.
PMCID: PMC2172310  PMID: 15249579
integrins; cell adhesion; Rho GTPases; chemotaxis; phagocytosis
20.  Activation of Ras in vitro and in intact fibroblasts by the Vav guanine nucleotide exchange protein. 
Molecular and Cellular Biology  1994;14(2):906-913.
We recently identified Vav, the product of the vav proto-oncogene, as a guanine nucleotide exchange factor (GEF) for Ras. Vav is enzymatically activated by lymphocyte antigen receptor-coupled protein tyrosine kinases or independently by diglycerides. To further evaluate the physiological role of Vav, we assessed its GDP-GTP exchange activity against several Ras-related proteins in vitro and determined whether Vav activation in transfected NIH 3T3 fibroblasts correlates with the activity status of Ras and mitogen-activated protein (MAP) kinases. In vitro translated purified Vav activated by phorbol myristate acetate (PMA) or phosphorylation with recombinant p56lck displayed GEF activity against Ras but not against recombinant RacI, RacII, Ral, or RhoA proteins. Expression of vav or proto-vav in stably transfected NIH 3T3 cells led to a approximately 10-fold increase in basal or PMA-stimulated Ras exchange activity, respectively, in total-cell lysates and Vav immunoprecipitates. Elevated GEF activity was paralleled in each case by a significant increase in the proportion of active, GTP-bound Ras. PMA had a minimal effect on the low Ras. GTP level in untransfected control fibroblasts but increased it from 20 to 37% in proto-vav-transfected cells. vav-transfected cells displayed a constitutively elevated Ras. GTP level (35%), which was not increased further by PMA treatment. MAP kinases, known downstream intermediates in Ras-dependent signaling pathways, similarly exhibited increased basal or PMA-stimulated activity in Vav-expressing cells by comparison with normal NIH 3T3 cells. These results demonstrate a physiologic interaction between Vav and its target, Ras, leading to MAP kinase activation.
PMCID: PMC358445  PMID: 8289830
21.  Loss of Vav2 Proto-Oncogene Causes Tachycardia and Cardiovascular Disease in Mice 
Molecular Biology of the Cell  2007;18(3):943-952.
The Vav family is a group of signal transduction molecules that activate Rho/Rac GTPases during cell signaling. Experiments using knockout mice have indicated that the three Vav proteins present in mammals (Vav1, Vav2, and Vav3) are essential for proper signaling responses in hematopoietic cells. However, Vav2 and Vav3 are also highly expressed in nonhematopoietic tissues, suggesting that they may have additional functions outside blood cells. Here, we report that this is the case for Vav2, because the disruption of its locus in mice causes tachycardia, hypertension, and defects in the heart, arterial walls, and kidneys. We also provide physiological and pharmacological evidence demonstrating that the hypertensive condition of Vav2-deficient mice is due to a chronic stimulation of the renin/angiotensin II and sympathetic nervous systems. Together, these results indicate that Vav2 plays crucial roles in the maintenance of cardiovascular homeostasis in mice.
PMCID: PMC1805112  PMID: 17202406
22.  Essential Role of Vav Family Guanine Nucleotide Exchange Factors in EphA Receptor-Mediated Angiogenesis 
Molecular and Cellular Biology  2006;26(13):4830-4842.
Angiogenesis, the process by which new blood vessels are formed from preexisting vasculature, is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Prior studies from our laboratory demonstrate that the EphA2 receptor tyrosine kinase is a key regulator of angiogenesis in vivo. The EphA receptor-mediated angiogenic response is dependent on activation of Rho family GTPase Rac1 and is regulated by phosphatidylinositol 3-kinase. Here we report the identification of Vav2 and Vav3 as guanine nucleotide exchange factors (GEFs) that link the EphA2 receptor to Rho family GTPase activation and angiogenesis. Ephrin-A1 stimulation recruits the binding of Vav proteins to the activated EphA2 receptor. The induced association of EphA receptor and Vav proteins modulates the activity of Vav GEFs, leading to activation of Rac1 GTPase. Overexpression of either Vav2 or Vav3 in primary microvascular endothelial cells promotes Rac1 activation, cell migration, and assembly in response to ephrin-A1 stimulation. Conversely, loss of Vav2 and Vav3 GEFs inhibits Rac1 activation and ephrin-A1-induced angiogenic responses both in vitro and in vivo. In addition, embryonic fibroblasts derived from Vav2−/− Vav3−/− mice fail to spread on an ephrin-A1-coated surface and exhibit a significant decrease in the formation of ephrin-A1-induced lamellipodia and filopodia. These findings suggest that Vav GEFs serve as a molecular link between EphA2 receptors and the actin cytoskeleton and provide an important mechanism for EphA2-mediated angiogenesis.
PMCID: PMC1489141  PMID: 16782872
23.  Tyrosine Phosphorylation Mediates Both Activation and Downmodulation of the Biological Activity of Vav 
Molecular and Cellular Biology  2000;20(5):1678-1691.
Vav works as a GDP/GTP exchange factor for Rac GTPases, thereby facilitating the transition of these proteins from the inactive (GDP-bound) into the active (GTP-bound) state. The stimulation of Vav exchange activity during cell signaling is mediated by tyrosine phosphorylation. To understand the roles of phosphorylation in the regulation of Vav activity, we have initiated the characterization of the residues of Vav that are phosphorylated during signal transduction. Here we show that a Y-to-F mutation in one of these residues, Y174, leads to the oncogenic activation of Vav and to the enhancement of other Vav-mediated signals such as those for cytoskeletal reorganization, JNK activation, and stimulation of the nuclear factor of activated T cells. The effect induced by the Y174F mutation is further accentuated by mutations in residue Y142 or Y160. The Y174F mutation has no effect on the exchange activity of Vav in vitro but results in higher levels of phosphorylation in vivo. Using a phosphospecific antibody, we found that Y174 is phosphorylated following stimulation of mitogenic and antigenic receptors. This phosphorylation event is conserved in Vav-2 and Vav-3, the other two members of the Vav family. These results identify a previously unknown mechanism for the oncogenic activation of Vav and suggest that the activity of this exchange factor is modulated by two antagonistic phosphorylation events, one involved in Vav activation and a second one implicated in Vav inactivation.
PMCID: PMC85351  PMID: 10669745
24.  The Rho Family Guanine Nucleotide Exchange Factor Vav-2 Regulates the Development of Cell-Mediated Cytotoxicity 
Previous pharmacologic and genetic studies have demonstrated a critical role for the low molecular weight GTP-binding protein RhoA in the regulation of cell-mediated killing by cytotoxic lymphocytes. However, a specific Rho family guanine nucleotide exchange factor (GEF) that activates this critical regulator of cellular cytotoxicity has not been identified. In this study, we provide evidence that the Rho family GEF, Vav-2, is present in cytotoxic lymphocytes, and becomes tyrosine phosphorylated after the cross-linking of activating receptors on cytotoxic lymphocytes and during the generation of cell-mediated killing. In addition, we show that overexpression of Vav-2 in cytotoxic lymphocytes enhances cellular cytotoxicity, and this enhancement requires a functional Dbl homology and Src homology 2 domain. Interestingly, the pleckstrin homology domain of Vav-2 was found to be required for enhancement of killing through some, but not all activating receptors on cytotoxic lymphocytes. Lastly, although Vav and Vav-2 share significant structural homology, only Vav is able to enhance nuclear factor of activated T cells–activator protein 1–mediated gene transcription downstream of the T cell receptor. These data demonstrate that Vav-2, a Rho family GEF, differs from Vav in the control of certain lymphocyte functions and participates in the control of cell-mediated killing by cytotoxic lymphocytes.
PMCID: PMC2193212  PMID: 10934226
natural killer cell; cytotoxic T cell; Vav-2; RhoA; signal transduction
25.  Vav Family Proteins Couple to Diverse Cell Surface Receptors 
Molecular and Cellular Biology  2000;20(17):6364-6373.
Vav proteins are guanine nucleotide exchange factors for Rho family GTPases which activate pathways leading to actin cytoskeletal rearrangements and transcriptional alterations. Vav proteins contain several protein binding domains which can link cell surface receptors to downstream signaling proteins. Vav1 is expressed exclusively in hematopoietic cells and tyrosine phosphorylated in response to activation of multiple cell surface receptors. However, it is not known whether the recently identified isoforms Vav2 and Vav3, which are broadly expressed, can couple with similar classes of receptors, nor is it known whether all Vav isoforms possess identical functional activities. We expressed Vav1, Vav2, and Vav3 at equivalent levels to directly compare the responses of the Vav proteins to receptor activation. Although each Vav isoform was tyrosine phosphorylated upon activation of representative receptor tyrosine kinases, integrin, and lymphocyte antigen receptors, we found unique aspects of Vav protein coupling in each receptor pathway. Each Vav protein coprecipitated with activated epidermal growth factor and platelet-derived growth factor (PDGF) receptors, and multiple phosphorylated tyrosine residues on the PDGF receptor were able to mediate Vav2 tyrosine phosphorylation. Integrin-induced tyrosine phosphorylation of Vav proteins was not detected in nonhematopoietic cells unless the protein tyrosine kinase Syk was also expressed, suggesting that integrin activation of Vav proteins may be restricted to cell types that express particular tyrosine kinases. In addition, we found that Vav1, but not Vav2 or Vav3, can efficiently cooperate with T-cell receptor signaling to enhance NFAT-dependent transcription, while Vav1 and Vav3, but not Vav2, can enhance NFκB-dependent transcription. Thus, although each Vav isoform can respond to similar cell surface receptors, there are isoform-specific differences in their activation of downstream signaling pathways.
PMCID: PMC86111  PMID: 10938113

Results 1-25 (1278083)