PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1063515)

Clipboard (0)
None

Related Articles

1.  DAMP-mediated autophagy contributes to drug resistance 
Autophagy  2011;7(1):112-114.
Damage-associated molecular pattern molecules (DAMPs) are cellularly derived molecules that can initiate and perpetuate immune responses following trauma, ischemia and other types of tissue damage in the absence of pathogenic infection. High mobility group box 1 (HMGB1) is a prototypical DAMP and is associated with the hallmarks of cancer. Recently we found that HMGB1 release after chemotherapy treatment is a critical regulator of autophagy and a potential drug target for therapeutic interventions in leukemia. Overexpression of HMGB1 by gene transfection rendered leukemia cells resistant to cell death; whereas depletion or inhibition of HMGB1 and autophagy by RNA interference or pharmacological inhibitors increased the sensitivity of leukemia cells to chemotherapeutic drugs. HMGB1 release sustains autophagy as assessed by microtubule-associated protein 1 light chain 3 (LC3) lipidation, redistribution of LC3 into cytoplasmic puncta, degradation of p62 and accumulation of autophagosomes and autolysosomes. Moreover, these data suggest a role for HMGB1 in the regulation of autophagy through the PI3KC3-MEKERK pathway, supporting the notion that HMGB1-induced autophagy promotes tumor resistance to chemotherapy.
doi:10.4161/auto.7.1.14005
PMCID: PMC3039734  PMID: 21068541
DAMP; autophagy; HMGB1; chemotherapy resistance; leukemia; PI3KC3; ERK
2.  HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma 
Molecular Cancer  2014;13:165.
Background
Docetaxel resistance remains a major obstacle in the treatment of non-small cell lung cancer (NSCLC). High-mobility group box 1 (HMGB1) has been shown to promote autophagy protection in response to antitumor therapy, but the exact molecular mechanism underlying HMGB1-mediated autophagy has not been clearly defined.
Methods
Lung adenocarcinoma (LAD) cells were transfected with pcDNA3.1-HMGB1 or HMGB1 shRNA, followed by docetaxel treatment. Cell viability and proliferation were tested by MTT assay and colony formation assay, respectively. Annexin V flow cytometric analysis and western blot analysis of activated caspase3 and cleaved PARP were used to evaluate apoptosis, while immunofluorescence microscopy and transmission electron microscopy were applied to assess autophagy activity. The formation of the Beclin-1-PI3K-III complex was examined by immunoprecipitation analysis. NOD/SCID mice were inoculated with docetaxel-resistant SPC-A1/DTX cells transfected with control or HMGB1 shRNA.
Results
HMGB1 translocated from the nucleus to the cytoplasm in LAD cells exposed to docetaxel and acted as a positive regulator of autophagy, which inhibited apoptosis and increased drug resistance. Suppression of HMGB1 restored the sensitivity of LAD cells to docetaxel both in vivo and in vitro. Mechanistic investigation revealed that HMGB1 promoted the formation of the Beclin-1-PI3K-III complex through activating the mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating autophagosome formation.
Conclusions
Our results demonstrated that HMGB1-regulated autophagy is a significant contributor to docetaxel resistance in LAD cells. Suppression of HMGB1 or limiting HMGB1 cytosolic translocation diminished autophagic protection in response to docetaxel in LAD cells.
doi:10.1186/1476-4598-13-165
PMCID: PMC4125709  PMID: 24996221
Autophagy; High-mobility group box 1; Chemoresistance; Lung adenocarcinoma
3.  HMGB1 Release and Redox Regulates Autophagy and Apoptosis in Cancer Cells 
Oncogene  2010;29(38):5299-5310.
The functional relationship and cross-regulation between autophagy and apoptosis is complex. Here we show that high-mobility group box 1 protein (HMGB1) is a redox-sensitive regulator of the balance between autophagy and apoptosis. In cancer cells, anti-cancer agents enhanced autophagy and apoptosis as well as HMGB1 release. HMGB1 release may be a pro-survival signal for residual cells following various cytotoxic cancer treatments. Diminished HMGB1 by shRNA transfection or inhibition of HMGB1 release by ethyl pyruvate or other small molecules led to predominantly apoptosis and decreased autophagy in stressed cancer cells. In this setting, reducible HMGB1 binds to the receptor for advanced glycation end products (RAGE) but not Toll-like receptor 4 (TLR4), induces Beclin1-dependent autophagy, and promotes tumor resistance to alkylators (melphalan), tubulin disrupting agents (paclitaxel), DNA crosslinkers (ultraviolet light) and DNA-intercalators (oxaliplatin or adriamycin). Oxidized HMGB1 conversely increases the cytotoxicity of these agents and induces apoptosis mediated by the caspase-9/-3 intrinsic pathway. HMGB1 release as well as its redox state thus link autophagy and apoptosis, representing a suitable target when coupled with conventional tumor treatments.
doi:10.1038/onc.2010.261
PMCID: PMC2945431  PMID: 20622903
4.  Stepwise Release of Biologically Active HMGB1 during HSV-2 Infection 
PLoS ONE  2011;6(1):e16145.
Background
High mobility group box 1 protein (HMGB1) is a major endogenous danger signal that triggers inflammation and immunity during septic and aseptic stresses. HMGB1 recently emerged as a key soluble factor in the pathogenesis of various infectious diseases, but nothing is known of its behaviour during herpesvirus infection. We therefore investigated the dynamics and biological effects of HMGB1 during HSV-2 infection of epithelial HEC-1 cells.
Methodology/Principal Findings
Despite a transcriptional shutdown of HMGB1 gene expression during infection, the intracellular pool of HMGB1 protein remained unaffected, indicating its remarkable stability. However, the dynamics of HMGB1 was deeply modified in infected cells. Whereas viral multiplication was concomitant with apoptosis and HMGB1 retention on chromatin, a subsequent release of HMGB1 was observed in response to HSV-2 mediated necrosis. Importantly, extracellular HMGB1 was biologically active. Indeed, HMGB1-containing supernatants from HSV-2 infected cells induced the migration of fibroblasts from murine or human origin, and reactivated HIV-1 from latently infected T lymphocytes. These effects were specifically linked to HMGB1 since they were blocked by glycyrrhizin or by a neutralizing anti-HMGB1 antibody, and were mediated through TLR2 and the receptor for Advanced Glycation End-products (RAGE). Finally, we show that genital HSV-2 active infections also promote HMGB1 release in vivo, strengthening the clinical relevance of our experimental data.
Conclusions
These observations target HMGB1 as an important actor during HSV-2 genital infection, notably in the setting of HSV-HIV co-infection.
doi:10.1371/journal.pone.0016145
PMCID: PMC3023802  PMID: 21283827
5.  Cancer-associated fibroblasts induce high mobility group box 1 and contribute to resistance to doxorubicin in breast cancer cells 
BMC Cancer  2014;14(1):955.
Background
Cancer-associated fibroblasts and high mobility group box 1 (HMGB1) protein have been suggested to mediate cancer progression and chemotherapy resistance. The role of such fibroblasts in HMGB1 production in breast cancer is unclear. This study aimed to investigate the effects of cancer-associated fibroblasts on HMGB1 expression in breast cancer cells and its role in chemotherapeutic response.
Methods
Breast cancer-associated fibroblasts (BCFs) and non-tumor-associated fibroblasts (NTFs) were isolated from human breast cancers or adjacent normal tissues and established as primary cultures in vitro. After confirmation of the activated status of these fibroblasts, conditioned-media (CM) were collected and applied to MDA-MB-231 human triple negative breast cancer cells. The levels of intracellular and extracellular HMGB1 were measured by real-time PCR and/or Western blot. The response of BCF-CM-pre-treated cancer cells to doxorubicin (Dox) was compared with those pre-treated with NTF-CM or control cultures. The effect of an HMGB1 neutralizing antibody on Dox resistance induced by extracellular HMGB1 from non-viable Dox-treated cancer cells or recombinant HMGB1 was also investigated.
Results
Immunocytochemical analysis revealed that BCFs and NTFs were alpha-smooth muscle actin (ASMA) positive and cytokeratin 19 (CK19) negative cells: a phenotype consistent with that of activated fibroblasts. We confirmed that the CM from BCFs (but not NTFs), could significantly induce breast cancer cell migration. Intracellular HMGB1 expression was induced in BCF-CM-treated breast cancer cells and also in Dox-treated cells. Extracellular HMGB1 was strongly expressed in the CM after Dox-induced MDA-MB-231 cell death and was higher in cells pre-treated with BCF-CM than NTF-CM. Pre-treatment of breast cancer cells with BCF-CM induced a degree of resistance to Dox in accordance with the increased level of secreted HMGB1. Recombinant HMGB1 was shown to increase Dox resistance and this was associated with evidence of autophagy. Anti-HMGB1 neutralizing antibody significantly reduced the effect of extracellular HMGB1 released from dying cancer cells or of recombinant HMGB1 on Dox resistance.
Conclusions
These findings highlight the potential of stromal fibroblasts to contribute to chemoresistance in breast cancer cells in part through fibroblast-induced HMGB1 production.
doi:10.1186/1471-2407-14-955
PMCID: PMC4301465  PMID: 25512109
Breast cancer; Cancer-associated fibroblast; HMGB1; Chemoresistance
6.  Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c‐IAP2 protein in human colon carcinomas 
Gut  2006;55(2):234-242.
Background
High mobility group box 1 (HMGB1) is a non‐histone chromosomal protein implicated in a variety of biologically important processes, including transcription, DNA repair, V(D)J recombination, differentiation, and development. Overexpression of HMGB1 inhibits apoptosis, arguing that the molecule may act as an antiapoptotic oncoprotein. Indeed, increased expression of HMGB1 has been reported for several different tumour types. In this study, we analysed human colon carcinoma for HMGB1 as well as for c‐IAP2 expression levels. c‐IAP2 is an antiapoptotic protein which may be upregulated as a consequence of nuclear factor κB (NFκB) activation via HMGB1.
Methods
A comparative genomic hybridisation (CGH) database comprising 1645 cases from different human tumour types was screened to detect cytogenetic changes at the HMGB1 locus. Immunohistochemical staining of human colon tissue microarrays and tumour biopsies, as well as western blot analysis of tumour lysates, were performed to detect elevated HMGB1 and c‐IAP2 expression in colon carcinomas. The antiapoptotic potential of HMGB1 was analysed by measuring caspase activities, and luciferase reporter assays and quantitative polymerase chain reaction analysis were employed to confirm NFκB activation and c‐IAP2 mRNA upregulation on HMGB1 overexpression.
Results
According to CGH analysis, the genomic locus containing the HMGB1 gene was overrepresented in one third (35/96) of colon cancers. Correspondingly, HMGB1 protein levels were significantly elevated in 90% of the 60 colon carcinomas tested compared with corresponding normal tissues evaluable from the same patients. HMGB1 increased NFκB activity and led to co‐overexpression of the antiapoptotic NFκB target gene product c‐IAP2 in vitro. Furthermore, increased HMGB1 levels correlated with enhanced amounts of c‐IAP2 in colon tumours analysed by us. Finally, we demonstrated that HMGB1 overexpression suppressed caspase‐9 and caspase‐3 activity, suggesting that HMGB1 interferes with the apoptotic machinery at the level of apoptosomal caspase‐9 activation.
Conclusions
We identified in vitro a molecular pathway triggered by HMGB1 to inhibit apoptosis via c‐IAP2 induction. Our data indicate a strong correlation between upregulation of the apoptosis repressing HMGB1 and c‐IAP2 proteins in the pathogenesis of colon carcinoma.
doi:10.1136/gut.2004.062729
PMCID: PMC1856519  PMID: 16118352
apoptosis inhibitors; nuclear factor κB; colorectal cancer; high mobility group box 1 protein; c‐IAP2
7.  Release of Neuronal HMGB1 by Ethanol through Decreased HDAC Activity Activates Brain Neuroimmune Signaling 
PLoS ONE  2014;9(2):e87915.
Neuroimmune gene induction is involved in many brain pathologies including addiction. Although increased expression of proinflammatory cytokines has been found in ethanol-treated mouse brain and rat brain slice cultures as well as in post-mortem human alcoholic brain, the mechanisms remain elusive. High-mobility group box 1 (HMGB1) protein is a nuclear protein that has endogenous cytokine-like activity. We previously found increased HMGB1 in post-mortem alcoholic human brain as well as in ethanol treated mice and rat brain slice cultures. The present study investigated the mechanisms for ethanol-induced release of HMGB1 and neuroimmune activation in a model of rat hippocampal-entorhinal cortex (HEC) brain slice cultures. Ethanol exposure triggered dose-dependent HMGB1 release, predominantly from neuronal cells. Inhibitors of histone deacetylases (HDACs) promoted nucleocytoplasmic mobilization of HDAC1/4 and HMGB1 resulting in increased total HMGB1 and acetylated HMGB1 release. Similarly, ethanol treatment was found to induce the translocation of HDAC1/4 and HMGB1 proteins from nuclear to cytosolic fractions. Furthermore, ethanol treatment reduced HDAC1/4 mRNA and increased acetylated HMGB1 release into the media. These results suggest decreased HDAC activity may be critical in regulating acetylated HMGB1 release from neurons in response to ethanol. Ethanol and HMGB1 treatment increased mRNA expression of proinflammatory cytokines TNFα and IL-1β as well as toll-like receptor 4 (TLR4). Targeting HMGB1 or microglial TLR4 by using siRNAs to HMGB1 and TLR4, HMGB1 neutralizing antibody, HMGB1 inhibitor glycyrrhizin and TLR4 antagonist as well as inhibitor of microglial activation all blocked ethanol-induced expression of proinflammatory cytokines TNFα and IL-1β. These results support the hypothesis that ethanol alters HDACs that regulate HMGB1 release and that danger signal HMGB1 as endogenous ligand for TLR4 mediates ethanol-induced brain neuroimmune signaling through activation of microglial TLR4. These findings provide new therapeutic targets for brain neuroimmune activation and alcoholism.
doi:10.1371/journal.pone.0087915
PMCID: PMC3925099  PMID: 24551070
8.  Direct molecular interactions between HMGB1 and TP53 in colorectal cancer 
Autophagy  2012;8(5):846-848.
Tumorigenesis and the efficacy of cancer therapeutics are both defined by the balance between autophagy and apoptosis. High-mobility group box 1 (HMGB1) is a DNA chaperone and extracellular damage-associated molecular pattern molecule (DAMP) with pro-autophagic activity. TP53/p53 plays a transcription-dependent and -independent role in the regulation of apoptosis, autophagy, metabolism, cell cycle progression, and many other processes. Both HMGB1 and TP53 are tightly linked with the development of cancer, associated with many of the hallmarks defining the altered biology of cancer. We have demonstrated that TP53-HMGB1 complexes regulate the balance between apoptosis and autophagy through regulation of the cytosolic localization of the reciprocal binding partner, whereby increased cytosolic HMGB1 enhances autophagy and increased cytosolic TP53 enhances apoptosis in colon cancer cells. We found that HMGB1-mediated autophagy promotes cell survival in TP53-dependent processes, and that TP53 inhibits autophagy through negative regulation of HMGB1-BECN1 complexes. Nuclear localization of TP53 and HMGB1 in tumors from patients with colon adenocarcinoma had a positive trend with survival time from diagnosis. Thus, HMGB1 and TP53 are critical in the crossregulation of apoptosis and autophagy and central to colon cancer biology.
doi:10.4161/auto.19891
PMCID: PMC3378423  PMID: 22647615
Apoptosis; autophagy; colorectal cancer; HMGB1; TP53
9.  Complementary Induction of Immunogenic Cell Death by Oncolytic Parvovirus H-1PV and Gemcitabine in Pancreatic Cancer 
Journal of Virology  2014;88(10):5263-5276.
ABSTRACT
Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells; n = 4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0 ± 0.5 times (58% ± 9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1β (IL-1β) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments.
IMPORTANCE The current therapeutic concepts targeting aggressive malignancies require an induction of immunogenic cell death characterized by exposure of calreticulin (CRT) as well as release of ATP and HMGB1 from dying cells. In pancreatic tumor cells (PDAC cells) infected with the oncolytic parvovirus H-1PV, only HMGB1 was released by all infected cells, whether nondying, necrotic, or succumbing to one of the programmed death pathways, including contraproductive apoptosis. Our data suggest that active secretion of HMGB1 from PDAC cells is a sentinel reaction emerging during early stages of the viral life cycle, irrespective of cell death, that is compatible with and complements cytotoxic regimens. Consistent induction of HMGB1 secretion raised the possibility that this reaction might be a general “alarming” phenomenon characteristic of H-1PV's interaction with the host cell; release of IL-1β points to the possible involvement of a danger-sensing inflammasome platform. Both provide a basis for further virus-oriented studies.
doi:10.1128/JVI.03688-13
PMCID: PMC4019131  PMID: 24574398
10.  Life after death: targeting high mobility group box 1 in emergent cancer therapies 
High mobility group box 1 (HMGB1), an evolutionarily highly conserved and abundant nuclear protein also has roles within the cytoplasm and as an extracellular damage-associated molecular pattern (DAMP) molecule. Extracellular HMGB1 is the prototypic endogenous ‘danger signal’ that triggers inflammation and immunity. Recent findings suggest that posttranslational modifications dictate the cellular localization and secretion of HMGB1. HMGB1 is actively secreted from immune cells and stressed cancer cells, or passively released from necrotic cells. During cancer development or administration of therapeutic agents including chemotherapy, radiation, epigenetic drugs, oncolytic viruses, or immunotherapy, the released HMGB1 may either promote or limit cancer growth, depending on the state of progression and vascularization of the tumor. Extracellular HMGB1 enhances autophagy and promotes persistence of surviving cancer cells following initial activation. When oxidized, it chronically suppresses the immune system to promote cancer growth and progression, thereby enhancing resistance to cancer therapeutics. In its reduced form, it can facilitate and elicit innate and adaptive anti-tumor immunity, recruiting and activating immune cells, in conjunction with cytotoxic agents, particularly in early transplantable tumor models. We hypothesize that HMGB1 also functions as an epigenetic modifier, mainly through regulation of NF-kB-dependent signaling pathways, to modulate the behavior of surviving cancer cells as well as the immune cells found within the tumor microenvironment. This has significant implications for developing novel cancer therapeutics.
PMCID: PMC3555201  PMID: 23359863
Cancer; HMGB1; NF-kB signaling; activation; innate immunity; dendritic cells; CD8+ T cells; epigenetic pathways
11.  Knockdown of HMGB1 improves apoptosis and suppresses proliferation and invasion of glioma cells 
Background
The purposes of this study were to explore the effects of high mobility group protein box 1 (HMGB1) gene on the growth, proliferation, apoptosis, invasion, and metastasis of glioma cells, with an attempt to provide potential therapeutic targets for the treatment of glioma.
Methods
The expressions of HMGB1 in glioma cells (U251, U-87MG and LN-18) and one control cell line (SVG p12) were detected by real time PCR and Western blotting, respectively. Then, the effects of HMGB1 on the biological behaviors of glioma cells were detected: the expression of HMGB1 in human glioma cell lines U251 and U-87MG were suppressed using RNAi technique, then the influences of HMGB1 on the viability, cycle, apoptosis, and invasion abilities of U251 and U-87MG cells were analyzed using in a Transwell invasion chamber. Also, the effects of HMGB1 on the expressions of cyclin D1, Bax, Bcl-2, and MMP 9 were detected.
Results
As shown by real-time PCR and Western blotting, the expression of HMGB1 significantly increased in glioma cells (U251, U-87MG, and LN-18) in comparison with the control cell line (SVG p12); the vitality, proliferation and invasive capabilities of U251 and U-87MG cells in the HMGB1 siRNA-transfected group were significantly lower than those in the blank control group and negative control (NC) siRNA group (P<0.05) but showed no significant difference between the blank control group and NC siRNA group. The percentage of apoptotic U251 and U-87MG cells was significantly higher in the HMGB1 siRNA-transfected group than in the blank control group and NC siRNA group (P<0.05) but was similar between the latter two groups. The HMGB1 siRNA-transfected group had significantly lower expression levels of Cyclin D1, Bcl-2, and MMP-9 protein in U251 and U-87MG cells and significantly higher expression of Bax protein than in the blank control group and NC siRNA group (P<0.05); the expression profiles of cyclin D1, Bax, Bcl-2, and MMP 9 showed no significant change in both blank control group and NC siRNA group.
Conclusions
HMGB1 gene may promote the proliferation and migration of glioma cells and suppress its effects of apoptosis. Inhibition of the expression of HMGB1 gene can suppress the proliferation and migration of glioma cells and promote their apoptosis. Our observations provided a new target for intervention and treatment of glioma.
doi:10.3978/j.issn.1000-9604.2014.12.05
PMCID: PMC4279198  PMID: 25561763
High mobility group protein box 1 (HMGB1); glioma; proliferation; apoptosis; invasion; siRNA
12.  HMGB in Mollusk Crassostrea ariakensis Gould: Structure, Pro-Inflammatory Cytokine Function Characterization and Anti-Infection Role of Its Antibody 
PLoS ONE  2012;7(11):e50789.
Background
Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO). Prevention and control of this disease is a priority for the development of oyster aquaculture. It has been proven that mammalian HMGB (high mobility group box) can be released extracellularly and acts as an important pro-inflammatory cytokine and late mediator of inflammatory reactions. In vertebrates, HMGB’s antibody (anti-HMGB) has been shown to confer significant protection against certain local and systemic inflammatory diseases. Therefore, we investigated the functions of Ca-HMGB (oyster HMGB) and anti-CaHMGB (Ca-HMGB’s antibody) in oyster RLO/LPS (RLO or LPS)-induced disease or inflammation.
Methodology/Principal Findings
Sequencing analysis revealed Ca-HMGB shares conserved structures with mammalians. Tissue-specific expression indicates that Ca-HMGB has higher relative expression in hemocytes. Significant continuous up-regulation of Ca-HMGB was detected when the hemocytes were stimulated with RLO/LPS. Recombinant Ca-HMGB protein significantly up-regulated the expression levels of some cytokines. Indirect immunofluorescence study revealed that Ca-HMGB localized both in the hemocyte nucleus and cytoplasm before RLO challenge, but mainly in the cytoplasm 12 h after challenge. Western blot analysis demonstrated Ca-HMGB was released extracellularly 4–12 h after RLO challenge. Anti-CaHMGB was added to the RLO/LPS-challenged hemocyte monolayer and real-time RT-PCR showed that administration of anti-CaHMGB dramatically reduced the rate of RLO/LPS-induced up-regulation of LITAF at 4–12 h after treatment. Flow cytometry analysis indicated that administration of anti-CaHMGB reduced RLO/LPS-induced hemocyte apoptosis and necrosis rates.
Conclusions/Significance
Ca-HMGB can be released extracellularly and its subcellular localization varies when stimulated with RLO. Ca-HMGB is involved in oyster immune reactions and functions as a pro-inflammatory cytokine. Anti-CaHMGB can significantly suppress RLO/LPS-induced inflammatory responses and hemocyte necrosis and apoptosis, suggesting that Ca-HMGB is a potential target to prevent and control RLO/LPS-induced disease or inflammation.
doi:10.1371/journal.pone.0050789
PMCID: PMC3510179  PMID: 23209826
13.  Chaperone-like Activity of High-Mobility Group Box 1 Protein and Its Role in Reducing the Formation of Polyglutamine Aggregates 
High-mobility group box 1 protein (HMGB1), which mainly exists in the nucleus, has recently been shown to function as a sentinel molecule for viral nucleic acid sensing and an autophagy regulator in the cytoplasm. In this study, we studied the chaperone-like activity of HMGB1 and found that HMGB1 inhibited the chemically induced aggregation of insulin and lysozyme, as well as the heat-induced aggregation of citrate synthase. HMGB1 also restored the heat-induced suppression of cytoplasmic luciferase activity as a reporter protein in hamster lung fibroblast O23 cells with expression of HMGB1. Next, we demonstrated that HMGB1 inhibited the formation of aggregates and toxicity caused by expanded polyglutamine (polyQ), one of the main causes of Huntington disease. HMGB1 directly interacted with polyQ on immunofluorescence and coimmunoprecipitation assay, whereas the overexpression of HMGB1 or exogenous administration of recombinant HMGB1 protein remarkably reduced polyQ aggregates in SHSY5Y cells and hmgb1−/− mouse embryonic fibroblasts upon filter trap and immunofluorescence assay. Finally, overexpressed HMGB1 proteins in mouse embryonic primary striatal neurons also bound to polyQ and decreased the formation of polyQ aggregates. To this end, we have demonstrated that HMGB1 exhibits chaperone-like activity and a possible therapeutic candidate in polyQ disease.
doi:10.4049/jimmunol.1202472
PMCID: PMC3566580  PMID: 23303669
14.  Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis 
Introduction
High mobility group box chromosomal protein 1 (HMGB1) is a nuclear protein that acts as a pro-inflammatory mediator following extracellular release. The protein is aberrantly expressed extracellularly in the settings of clinical and experimental synovitis. Therapy based on HMGB1 antagonists has shown encouraging results in experimental arthritis and warrants further scientific exploration using independent methods. In the present study we asked whether nuclear sequestration of HMGB1 preventing HMGB1 release would be beneficial for synovitis treatment.
Methods
Oxaliplatin-based therapy was evaluated in collagen type II-induced arthritis in DBA/1 mice by clinical scoring and immunostaining of articular tissue. Oxaliplatin is an antineoplastic platinum-based compound that generates DNA adducts which tightly bind HMGB1. Secretion and intracellular location of HMGB1 were assessed by a novel HMGB1-specific ELISPOT assay and immunofluorescent staining.
Results
Intraperitoneal injections of oxaliplatin in early collagen type II-induced arthritis trapped HMGB1 with a distinct biphasic response pattern. Oxaliplatin therapy showed beneficial results for approximately 1 week. Microscopic evaluation of synovitis during this period showed strong nuclear HMGB1 staining in the oxaliplatin treated animals with much lower quantities of extracellular HMGB1 when compared to control treated animals. Furthermore, cellular infiltration, as well as cartilage and bone damage, were all reduced in the oxaliplatin treated group. A dramatic and as yet unexplained clinical relapse occurred later in the oxaliplatin exposed animals, which coincided with a massive synovial tissue expression of extracellular HMGB1 in all treated animals. This rebound-like reaction was also accompanied by a significantly increased incidence of arthritis in the oxaliplatin treated group. These results indicate a distinct temporal and spatial relationship between the clinical course of disease and the cellular localization of HMGB1. Beneficial effects were noted when extracellular HMGB1 expression was low, while severe inflammation coincided with substantial extracellular synovial HMGB1 expression.
Conclusion
Therapeutic compounds like oxaliplatin and gold salts share a capacity to inhibit nuclear HMGB1 release and to ameliorate the course of synovial inflammation. These observations support the hypothesis that HMGB1 plays an important functional role in the pathogenesis of arthritis and may represent a novel target molecule for therapy.
doi:10.1186/ar2347
PMCID: PMC2374449  PMID: 18179697
15.  High mobility group-box 3 overexpression is associated with poor prognosis of resected gastric adenocarcinoma 
AIM: To elucidate high mobility group-box 3 (HMGB3) protein expression in gastric adenocarcinoma, its potential prognostic relevance, and possible mechanism of action.
METHODS: Ninety-two patients with gastric adenocarcinomas surgically removed entered the study. HMGB3 expression was determined by immunohistochemistry through a tissue microarray procedure. The clinicopathologic characteristics of all patients were recorded, and regular follow-up was made for all patients. The inter-relationship of HMGB3 expression with histological and clinical factors was analyzed using nonparametric tests. Survival analysis was carried out by Kaplan-Meier (log-rank) and multivariate Cox (Forward LR) analyses between the group with overexpression of HMGB3 and the group with low or no HMGB3 expression to determine the prognosis value of HMGB3 expression on overall survival. Further, HMGB3 expression was knocked down by small hairpin RNAs (shRNAs) in the human gastric cancer cell line BGC823 to observe its influence on cell biological characteristics. The MTT method was utilized to detect gastric cancer cell proliferation changes, and cell cycle distribution was analyzed by flow cytometry.
RESULTS: Among 92 patients with gastric adenocarcinomas surgically removed in this study, high HMGB3 protein expression was detected in the gastric adenocarcinoma tissues vs peritumoral tissues (P < 0.001). Further correlation analysis with patients’ clinical and histology variables revealed that HMGB3 overexpression was obviously associated with extensive wall penetration (P = 0.005), a positive nodal status (P = 0.004), and advanced tumor-node-metastasis (TNM) stage (P = 0.001). But there was no correlation between HMGB3 overexpression and the age and gender of the patient, tumor localization or histologic grade. Statistical Kaplan-Meier survival analysis disclosed significant differences in overall survival between the HMGB3 overexpression group and the HMGB3 no or low expression group (P = 0.006). The expected overall survival time was 31.00 ± 3.773 mo (95%CI = 23.605-38.395) for patients with HMGB3 overexpression and 49.074 ± 3.648 mo (95%CI = 41.925-57.311) for patients with HMGB3 no and low-level expression. Additionally, older age (P = 0.040), extensive wall penetration (P = 0.008), positive lymph node metastasis (P = 0.005), and advanced TNM tumor stage (P = 0.007) showed negative correlation with overall survival. Multivariate Cox regression analysis indicated that HMGB3 overexpression was an independent variable with respect to age, gender, histologic grade, extent of wall penetration, lymph nodal metastasis, and TNM stage for patients with resectable gastric adenocarcinomas with poor prognosis (hazard ratio = 2.791, 95%CI = 1.233-6.319, P = 0.019). In the gene function study, after HMGB3 was knocked down in the gastric cell line BGC823 by shRNA, the cell proliferation rate was reduced at 24 h, 48 h and 72 h. Compared to BGC823 shRNA-negative control (NC) cells, the cell proliferation rate in cells that had HMGB3 shRNA transfected was significantly decreased (P < 0.01). Finally, cell cycle analysis by FACS showed that BGC823 cells that had HMGB3 knocked down were blocked in G1/G0 phase. The percentage of cells in G1/G0 phase in BGC823 cells with shRNA-NC and with shRNA-HMGB3 was 46.84% ± 1.7%, and 73.03% ± 3.51% respectively (P = 0.001), whereas G2/M cells percentage decreased from 26.51% ± 0.83% to 17.8% ± 2.26%.
CONCLUSION: HMGB3 is likely to be a useful prognostic marker involved in gastric cancer disease onset and progression by regulating the cell cycle.
doi:10.3748/wjg.v18.i48.7319
PMCID: PMC3544037  PMID: 23326140
High mobility group-box 3; Gastric adenocarcinoma; Prognosis; Cell proliferation; Cell cycle
16.  CK2 Phosphorylation of Schistosoma mansoni HMGB1 Protein Regulates Its Cellular Traffic and Secretion but Not Its DNA Transactions 
PLoS ONE  2011;6(8):e23572.
Background
The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space.
Principal Findings
We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated.
Conclusions
We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.
doi:10.1371/journal.pone.0023572
PMCID: PMC3160966  PMID: 21887276
17.  Identification and Characterization of the Lamprey High-Mobility Group Box 1 Gene 
PLoS ONE  2012;7(4):e35755.
High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. We identified a homolog of HMGB1 in the Japanese lamprey (Lampetra japonica). The Lampetra japonica HMGB1 gene (Lj-HMGB1) has over 70% sequence identity with its homologs in jawed vertebrates. Despite the reasonably high sequence identity with other HMGB1 proteins, Lj-HMGB1 did not group together with these proteins in a phylogenetic analysis. We examined Lj-HMGB1 expression in lymphocyte-like cells, and the kidneys, heart, gills, and intestines of lampreys before and after the animals were challenged with lipopolysaccharide (LPS) and concanavalin A (ConA). Lj-HMGB1 was initially expressed at a higher level in the heart, but after treatment with LPS and ConA only the gills demonstrated a significant up-regulation of expression. The recombinant Lj-HMGB1 (rLj-HMGB1) protein bound double-stranded DNA and induced the proliferation of human adenocarcinoma cells to a similar extent as human HMGB1. We further revealed that Lj-HMGB1 was able to induce the production of tumor necrosis factor-α (TNF-α), a pro-inflammatory mediator, in activated human acute monocytic leukemia cells. These results suggest that lampreys use HMGB1 to activate their innate immunity for the purpose of pathogen defense.
doi:10.1371/journal.pone.0035755
PMCID: PMC3338530  PMID: 22563397
18.  HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway 
Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.
doi:10.1111/jcmm.12399
PMCID: PMC4224563  PMID: 25210949
high glucose; cardiomyocyte; apoptosis; diabetes; HMGB1; Ets-1
19.  Endogenous HMGB1 regulates autophagy 
The Journal of Cell Biology  2010;190(5):881-892.
HMGB1 displaces Bcl-2 from Beclin1 to induce and sustain autophagy in response to cell stress.
Autophagy clears long-lived proteins and dysfunctional organelles and generates substrates for adenosine triphosphate production during periods of starvation and other types of cellular stress. Here we show that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage-associated molecular pattern molecule, is a critical regulator of autophagy. Stimuli that enhance reactive oxygen species promote cytosolic translocation of HMGB1 and thereby enhance autophagic flux. HMGB1 directly interacts with the autophagy protein Beclin1 displacing Bcl-2. Mutation of cysteine 106 (C106), but not the vicinal C23 and C45, of HMGB1 promotes cytosolic localization and sustained autophagy. Pharmacological inhibition of HMGB1 cytoplasmic translocation by agents such as ethyl pyruvate limits starvation-induced autophagy. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin1 and sustaining autophagy. Thus, endogenous HMGB1 is a critical pro-autophagic protein that enhances cell survival and limits programmed apoptotic cell death.
doi:10.1083/jcb.200911078
PMCID: PMC2935581  PMID: 20819940
20.  Systemic TNF blockade does not modulate synovial expression of the pro-inflammatory mediator HMGB1 in rheumatoid arthritis patients – a prospective clinical study 
Introduction
High-mobility group box chromosomal protein 1 (HMGB1) has recently been identified as an endogenous mediator of arthritis. TNF and IL-1β, pivotal cytokines in arthritis pathogenesis, both have the ability to induce the release of HMGB1 from myeloid and dendritic cells. It was, therefore, decided to investigate whether treatment based on TNF blockade in rheumatoid arthritis (RA) affects the expression of synovial HMGB1.
Methods
Repeated arthroscopy-guided sampling of synovial tissue was performed in nine patients with RA before and nine weeks after initiation of anti-TNF mAb (infliximab) therapy. Synovial biopsy specimens were analysed for HMGB1 protein by immunohistochemical staining and for HMGB1 mRNA expression by real-time reverse transcriptase PCR (RT-PCR). Statistical evaluations were based on Wilcoxon's signed rank tests or Spearman rank sum tests.
Results
Aberrant, extranuclear HMGB1 and constitutive nuclear HMGB1 expression, with histological signs of inflammation, were evident in all biopsies obtained before infliximab therapy. Signs of inflammation were still evident in the second biopsies obtained nine weeks after initiation of infliximab therapy. The cytoplasmic and extracellular expression of HMGB1 decreased in five patients, remained unchanged in one patient and increased in three patients, making the overall change in HMGB1 protein expression not significant. No correlation between the clinical response, as measured by disease activity score calculated for 28 joints (DAS28) or the American College of Rheumatology response criteria (ACR 20, 50, and 70), and the direction of change of HMGB1 expression in individual patients could be discerned. In addition, infliximab therapy did not alter HMGB1 mRNA synthesis.
Conclusion
Pro-inflammatory HMGB1 expression during rheumatoid synovitis was not consistently influenced by TNF-blocking therapy with infliximab. This suggests that TNF is not the main inducer of extranuclear HMGB1 during synovitis and that HMGB1 may represent a TNF-independent molecule that could be considered as a possible target for future therapeutic intervention in RA.
doi:10.1186/ar2387
PMCID: PMC2452983  PMID: 18346273
21.  Role of High Mobility Group Box 1 (HMGB1) in SCA17 Pathogenesis 
PLoS ONE  2014;9(12):e115809.
Spinocerebellar ataxia type 17 (SCA17) involves the expression of a polyglutamine (polyQ) expanded TATA-binding protein (TBP), a general transcription initiation factor. TBP interacts with other protein factors, including high mobility group box 1 (HMGB1), to regulate gene expression. Previously, our proteomic analysis of soluble proteins prepared from mutant TBP (TBP/Q61) expressing cells revealed a reduced concentration of HMGB1. Here, we show that HMGB1 can be incorporated into mutant TBP aggregates, which leads to reduced soluble HMGB1 levels in TBP/Q61∼79 expressing cells. HMGB1 overexpression reduced mutant TBP aggregation. HMGB1 cDNA and siRNA co-transfection, as well as an HSPA5 immunoblot and luciferase reporter assay demonstrated the important role of HMGB1 in the regulation of HSPA5 transcription. In starvation-stressed TBP/Q36 and TBP/Q79 cells, increased reactive oxygen species generation accelerated the cytoplasmic translocation of HMGB1, which accompanied autophagy activation. However, TBP/Q79 cells displayed a decrease in autophagy activation as a result of the reduction in the cytoplasmic HMGB1 level. In neuronal SH-SY5Y cells with induced TBP/Q61∼79 expression, HMGB1 expression was reduced and accompanied by a significant reduction in the total outgrowth and branches in the TBP/Q61∼79 expressing cells compared with the non-induced cells. The decreased soluble HMGB1 and impaired starvation-induced autophagy in cells suggest that HMGB1 may be a critical modulator of polyQ disease pathology and may represent a target for drug development.
doi:10.1371/journal.pone.0115809
PMCID: PMC4280131  PMID: 25549101
22.  HMGB1 and Cord Blood: Its Role as Immuno-Adjuvant Factor in Innate Immunity 
PLoS ONE  2011;6(8):e23766.
In newborn the innate immune system provides essential protection during primary infections before the generation of an appropriate adaptive immune response that is initially not fully operative. Innate immune response is evoked and perpetuated by molecules derived from microorganisms or by the damage/death of host cells. These are collectively known as damage-associated molecular-pattern (DAMP) molecules. High-mobility group box 1 protein (HMGB1) or amphoterin, which previously was considered to be only a nuclear factor, has been recently identified as a DAMP molecule. When it is actively secreted by inflammatory cells or passively released from necrotic cells, HMGB1 mediates the response to infection, injury and inflammation, inducing dendritic cells maturation and T helper-1-cell responses. To characterize the role of HMGB1 in the innate and immature defense mechanisms in newborns, human cord blood (CB) mononuclear cells, in comparison to adult peripheral blood (PB) mononuclear cells, have been analyzed for its expression. By flow cytometry and western blot analysis, we observed that in CB and PB cells: i) HMGB1 is expressed on cell surface membranes of myeloid dendritic cell precursors, mostly, and lymphocytes (gamma/delta and CD4+ T cells) to a lesser extent; ii) different pro-inflammatory stimuli or molecules that mimic infection increased cell surface expression of HMGB1 as well as its secretion into extracellular environment; iii) the treatment with synthetic molecules such as aminobisphosphonates (ABs), identified to be γδ T cell antigens, triggered up-regulation of HMGB1 expression on mononuclear cells, as well γδ T lymphocytes, inducing its secretion. The modulation of its secretion and the HMGB1-mediated migration of monocytes indicated HMGB1 as regulator of immune response in an immature system, like CB, through engagement of γδ T lymphocytes and myeloid dendritic cell precursors, essential components of innate immunity. In addition, the increased HMGB1 expression/secretion triggered by ABs, previously characterized for their immuno-modulating and immune-adjuvant capabilities, indicated that immunomodulation might represent a new therapeutical approach for neonatal and adult pathologies.
doi:10.1371/journal.pone.0023766
PMCID: PMC3161821  PMID: 21915243
23.  High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis* 
Journal of autoimmunity  2013;43:32-43.
Multiple sclerosis (MS) is an autoimmune, demyelinating disease and as such, the gold standard of treatment is to selectively suppress the pathogenic autoimmune response without compromising the entire arm of the adaptive immune response. One target of this strategy lying upstream of the pathologic adaptive immune response is the local, innate immune signaling that initiates and drives autoimmunity and sterile injury. High-mobility group box 1 protein (HMGB1) is a ubiquitous nuclear protein that when released from necrotic cells, such as damaged oligodendrocytes in MS lesions, drives pro-inflammatory responses. Here we demonstrate that HMGB1 drives neuroinflammatory responses in experimental autoimmune encephalomyelitis (EAE), a murine model for MS, and that inhibition of HMGB1 signaling ameliorates disease. Specifically i.v. injection of an HMGB1 neutralizing antibody in the C57BL/6 model of chronic EAE or SJL/J model of relapsing-remitting EAE ameliorated clinical disease prophylactically or during ongoing disease, blocked T cell infiltration of the central nervous system, and inhibited systemic CD4+ T cell responses to myelin epitopes. Additionally, lymphocytes from EAE mice restimulated in vitro in the presence of recombinant HMGB1 exhibited increased proliferation and pro-inflammatory cytokine production, an effect that was blocked by anti-HMGB1 antibody. Similarly recombinant HMGB1 promoted proliferation and pro-inflammatory cytokine production of human PBMCs stimulated in vitro, and anti-HMGB1 antibody blocked this effect. These findings indicate that HMGB1 contributes to neuroinflammatory responses that drive EAE pathogenesis and that HMGB1 blockade may be a novel means to selectively disrupt the pro-inflammatory loop that drives MS autoimmunity.
doi:10.1016/j.jaut.2013.02.005
PMCID: PMC3672339  PMID: 23514872
HMGB1; innate immunity; neuroinflammation; autoimmune disease; EAE; tolerance
24.  Early release of high-mobility group box 1 (HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro 
Background
Translocation of high-mobility group box 1 (HMGB1) from nucleus could trigger inflammation. Extracellular HMGB1 up-regulates inflammatory response in sepsis as a late mediator. However, little was known about its role in subarachnoid hemorrhage-inducible inflammation, especially in the early stage. This study aims to identify whether HMGB1 translocation occurred early after SAH and also to clarify the potential role of HMGB1 in brain injury following SAH.
Methods
Sprague-Dawley (SD) rats were randomly divided into sham group and SAH groups at 2 h, 12 h and on day 1, day 2. SAH groups suffered experimental subarachnoid hemorrhage by injection of 0.3 ml autoblood into the pre-chiasmatic cistern. Rats injected by recombinant HMGB1(rHMGB1) solution were divided into four groups according to different time points. Cultured neurons were assigned into control group and four hemoglobin (Hb) incubated groups. Mixed glial cells were cultured and stimulated in medium from neurons incubated by Hb. HMGB1 expression is measured by western blot analysis, real-time polymerase chain reaction (PCR), immunohistochemistry and immunofluorescence. Downstream nuclear factor kappa B (NF-κB) subunit P65 and inflammatory factor Interleukin 1β (IL-1β) were measured by western blot and real-time PCR, respectively. Brain injury was evaluated by cleaved caspase-3 staining.
Results
Our results demonstrated HMGB1 translocation occurred as early as 2 h after experimental SAH with mRNA and protein level increased. Immunohistochemistry and immunofluorescence results indicated cytosolic HMGB1 was mainly located in neurons while translocated HMGB1 could also be found in some microglia. After subarachnoid injection of rHMGB1, NF-κB, downstream inflammatory response and cleaved caspase-3 were up-regulated in the cortex compared to the saline control group. In-vitro, after Hb incubation, HMGB1 was also rapidly released from neurons to medium. Incubation with medium from neurons up-regulated IL-1β in mixed glial cells. This effect could be inhibited by HMGB1 specific inhibitor glycyrrhizic acid (GA) treatment.
Conclusion
HMGB1 was released from neurons early after SAH onset and might trigger inflammation as an upstream inflammatory mediator. Extracellular HMGB1 contributed to the brain injury after SAH. These results might have important implications during the administration of specific HMGB1 antagonists early in order to prevent or reduce inflammatory response following SAH.
doi:10.1186/1742-2094-11-106
PMCID: PMC4107626  PMID: 24924349
HMGB1; SAH; Early brain injury
25.  High Mobility Group Box-1 Promotes the Proliferation and Migration of Hepatic Stellate Cells via TLR4-Dependent Signal Pathways of PI3K/Akt and JNK 
PLoS ONE  2013;8(5):e64373.
Background
The migration of hepatic stellate cells (HSCs) is essential to the hepatic fibrotic response, and recently High-mobility group box 1 (HMGB1) has been shown up-regulated during liver fibrosis. Nevertheless, whether HMGB1 can modulate the proliferation and migration of HSCs is poorly understood, as well as the involved intracellular signaling. In this study, we examined the effect of HMGB1 on proliferation, migration, pro-fibrotic function of HSCs and investigated whether toll-like family of receptor 4 (TLR4) dependent signal pathway is involved in the intracellular signaling regulation.
Methodology/Principal Findings
Modified transwell chamber system to mimic the space of Disse was used to evaluate the migration of human primary HSCs, and the protein expressions of related signal factors were evaluated by western blot. Cell proliferation was analyzed by MTT assay, the pro-fibrotic functions of HSCs by qRT-PCR and ELISA respectively. Recombinant human HMGB1 could significantly promote migration of HSCs under both haptotactic and chemotactic stimulation, especially the latter. Human TLR4 neutralizing antibody could markedly inhibit HMGB1-induced migration of HSCs. HMGB1 could enhance the phosphorylation of JNK and PI3K/Akt, and TLR4 neutralizing antibody inhibited HMGB1-enhanced phosphorylation of JNK and PI3K/Akt and activation of NF-κB. JNK inhibitor (SP600125) and PI3K inhibitor (LY 294002) significantly inhibited HMGB1-induced proliferation and migration of HSCs, and also reduced HMGB1-enhanced related collagen expressions and pro-fibrotic cytokines production.
Conclusions/Significance
HMGB1 could significantly enhance migration of HSCs in vitro, and TLR4-dependent JNK and PI3K/Akt signal pathways are involved in the HMGB1-induced proliferation, migration and pro-fibrotic effects of HSCs, which indicates HMGB1 might be an effective target to treat liver fibrosis.
doi:10.1371/journal.pone.0064373
PMCID: PMC3655989  PMID: 23696886

Results 1-25 (1063515)