PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (448201)

Clipboard (0)
None

Related Articles

1.  DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding 
Nucleic Acids Research  2013;42(4):2308-2319.
The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3′ protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3′–5′ polarity and, thereby acts as a molecular ‘wedge’ to initiate DNA strand displacement.
doi:10.1093/nar/gkt1217
PMCID: PMC3936751  PMID: 24293646
2.  Architectures of archaeal GINS complexes, essential DNA replication initiation factors 
BMC Biology  2011;9:28.
Background
In the early stage of eukaryotic DNA replication, the template DNA is unwound by the MCM helicase, which is activated by forming a complex with the Cdc45 and GINS proteins. The eukaryotic GINS forms a heterotetramer, comprising four types of subunits. On the other hand, the archaeal GINS appears to be either a tetramer formed by two types of subunits in a 2:2 ratio (α2β2) or a homotetramer of a single subunit (α4). Due to the low sequence similarity between the archaeal and eukaryotic GINS subunits, the atomic structures of the archaeal GINS complexes are attracting interest for comparisons of their subunit architectures and organization.
Results
We determined the crystal structure of the α2β2 GINS tetramer from Thermococcus kodakaraensis (TkoGINS), comprising Gins51 and Gins23, and compared it with the reported human GINS structures. The backbone structure of each subunit and the tetrameric assembly are similar to those of human GINS. However, the location of the C-terminal small domain of Gins51 is remarkably different between the archaeal and human GINS structures. In addition, TkoGINS exhibits different subunit contacts from those in human GINS, as a consequence of the different relative locations and orientations between the domains. Based on the GINS crystal structures, we built a homology model of the putative homotetrameric GINS from Thermoplasma acidophilum (TacGINS). Importantly, we propose that a long insertion loop allows the differential positioning of the C-terminal domains and, as a consequence, exclusively leads to the formation of an asymmetric homotetramer rather than a symmetrical one.
Conclusions
The DNA metabolizing proteins from archaea are similar to those from eukaryotes, and the archaeal multi-subunit complexes are occasionally simplified versions of the eukaryotic ones. The overall similarity in the architectures between the archaeal and eukaryotic GINS complexes suggests that the GINS function, directed through interactions with other protein components, is basically conserved. On the other hand, the different subunit contacts, including the locations and contributions of the C-terminal domains to the tetramer formation, imply the possibility that the archaeal and eukaryotic GINS complexes contribute to DNA unwinding reactions by significantly different mechanisms in terms of the atomic details.
doi:10.1186/1741-7007-9-28
PMCID: PMC3114041  PMID: 21527023
3.  A Thermostable Single-Strand DNase from Methanococcus jannaschii Related to the RecJ Recombination and Repair Exonuclease from Escherichia coli 
Journal of Bacteriology  2000;182(3):607-612.
The RecJ protein of Escherichia coli plays an important role in a number of DNA repair and recombination pathways. RecJ catalyzes processive degradation of single-stranded DNA in a 5′-to-3′ direction. Sequences highly related to those encoding RecJ can be found in most of the eubacterial genomes sequenced to date. From alignment of these sequences, seven conserved motifs are apparent. At least five of these motifs are shared among a large family of proteins in eubacteria, eukaryotes, and archaea, including the PPX1 polyphosphatase of yeast and Drosophila Prune. Archaeal genomes are particularly rich in such sequences, but it has not been clear whether any of the encoded proteins play a functional role similar to that of RecJ exonuclease. We have investigated three such proteins from Methanococcus jannaschii with the strongest overall sequence similarity to E. coli RecJ. Two of the genes, MJ0977 and MJ0831, partially complement a recJ mutant phenotype in E. coli. The expression of MJ0977 in E. coli resulted in high levels of a thermostable single-stranded DNase activity with properties similar to those of RecJ exonuclease. Despite overall weak sequence similarity between the MJ0977 product and RecJ, these nucleases are likely to have similar biological functions.
PMCID: PMC94321  PMID: 10633092
4.  Cdc45-MCM-GINS, a new power player for DNA replication 
Cell Division  2006;1:18.
The identity of the DNA helicase(s) involved in eukaryotic DNA replication is still a matter of debate, but the mini-chromosome maintenance (MCM) proteins are the chief candidate. Six conserved MCM proteins, Mcm2–7, are essential for the initiation and elongation stages of DNA replication, contain ATP binding pockets and can form a hexameric structure resembling that of known prokaryotic and viral helicases. However, biochemical proof of their presumed function has remained elusive. Several recent reports confirm that the MCM complex is part of the cellular machine responsible for the unwinding of DNA during S phase. In one of these reports, the helicase activity of Mcm2–7 is finally revealed, when they are purified in association with two partners: initiation factor Cdc45 and a four-subunit complex called GINS. The Cdc45-MCM-GINS complex could constitute the core of a larger macromolecular structure that has been termed the "replisome progression complex".
doi:10.1186/1747-1028-1-18
PMCID: PMC1564009  PMID: 16930479
5.  Thermococcus kodakarensis encodes three MCM homologs but only one is essential 
Nucleic Acids Research  2011;39(22):9671-9680.
The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea and eukaryotes. In eukaryotes, this complex is an assembly of six different but related polypeptides (MCM2-7) but, in most archaea, one MCM protein assembles to form a homohexameric complex. Atypically, the Thermococcus kodakarensis genome encodes three archaeal MCM homologs, here designated MCM1-3, although MCM1 and MCM2 are unusual in having long and unique N-terminal extensions. The results reported establish that MCM2 and MCM3 assemble into homohexamers and exhibit DNA binding, helicase and ATPase activities in vitro typical of archaeal MCMs. In contrast, MCM1 does not form homohexamers and although MCM1 binds DNA and has ATPase activity, it has only minimal helicase activity in vitro. Removal of the N-terminal extension had no detectable effects on MCM1 but increased the helicase activity of MCM2. A T. kodakarensis strain with the genes TK0096 (MCM1) and TK1361 (MCM2) deleted has been constructed that exhibits no detectable defects in growth or viability, but all attempts to delete TK1620 (MCM3) have been unsuccessful arguing that that MCM3 is essential and is likely the replicative helicase in T. kodakarensis. The origins and possible function(s) of the three MCM proteins are discussed.
doi:10.1093/nar/gkr624
PMCID: PMC3239210  PMID: 21821658
6.  MCM-GINS and MCM-MCM interactions in vivo visualised by bimolecular fluorescence complementation in fission yeast 
BMC Cell Biology  2009;10:12.
Background
Each of the three individual components of the CMG complex (Cdc45, MCM and GINS) is essential for chromosomal DNA replication in eukaryotic cells, both for the initiation of replication at origins and also for normal replication fork progression. The MCM complex is a DNA helicase that most likely functions as the catalytic core of the replicative helicase, unwinding the parental duplex DNA ahead of the moving replication fork, whereas Cdc45 and the GINS complex are believed to act as accessory factors for MCM.
Results
To investigate interactions between components of the CMG complex, we have used bimolecular fluorescence complementation (BiFC) in the fission yeast Schizosaccharomyces pombe for the first time, to analyse protein-protein interactions between GINS and MCM subunits expressed from their native chromosomal loci. We demonstrate interactions between GINS and MCM in the nuclei of exponentially-growing fission yeast cells and on chromatin in binucleate S-phase cells. In addition we present evidence of MCM-MCM interactions in diploid fission yeast cells. As with GINS-MCM interactions, MCM-MCM interactions also occur on chromatin in S-phase cells.
Conclusion
Bimolecular fluorescence complementation can be used in fission yeast to visualise interactions between two of the three components of the CMG complex, offering the prospect that this technique could in the future be used to allow studies on replication protein dynamics in living S. pombe cells.
doi:10.1186/1471-2121-10-12
PMCID: PMC2652428  PMID: 19228417
7.  Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties 
Nucleic Acids Research  2005;33(15):4940-4950.
The origin recognition complex, Cdc6 and the minichromosome maintenance (MCM) complex play essential roles in the initiation of eukaryotic DNA replication. Homologs of these proteins may play similar roles in archaeal replication initiation. While the interactions among the eukaryotic initiation proteins are well documented, the protein–protein interactions between the archaeal proteins have not yet been determined. Here, an extensive structural and functional analysis of the interactions between the Methanothermobacter thermautotrophicus MCM and the two Cdc6 proteins (Cdc6-1 and -2) identified in the organism is described. The main contact between Cdc6 and MCM occurs via the N-terminal portion of the MCM protein. It was found that Cdc6–MCM interaction, but not Cdc6–DNA binding, plays the predominant role in regulating MCM helicase activity. In addition, the data showed that the interactions with MCM modulate the autophosphorylation of Cdc6-1 and -2. The results also suggest that MCM and DNA may compete for Cdc6-1 protein binding. The implications of these observations for the initiation of archaeal DNA replication are discussed.
doi:10.1093/nar/gki807
PMCID: PMC1201339  PMID: 16150924
8.  Molecular architecture of the human GINS complex 
EMBO Reports  2007;8(7):678-684.
Chromosomal DNA replication is strictly regulated through a sequence of steps that involve many macromolecular protein complexes. One of these is the GINS complex, which is required for initiation and elongation phases in eukaryotic DNA replication. The GINS complex consists of four paralogous subunits. At the G1/S transition, GINS is recruited to the origins of replication where it assembles with cell-division cycle protein (Cdc)45 and the minichromosome maintenance mutant (MCM)2–7 to form the Cdc45/Mcm2–7/GINS (CMG) complex, the presumed replicative helicase. We isolated the human GINS complex and have shown that it can bind to DNA. By using single-particle electron microscopy and three-dimensional reconstruction, we obtained a medium-resolution volume of the human GINS complex, which shows a horseshoe shape. Analysis of the protein interactions using mass spectrometry and monoclonal antibody mapping shows the subunit organization within the GINS complex. The structure and DNA-binding data suggest how GINS could interact with DNA and also its possible role in the CMG helicase complex.
doi:10.1038/sj.embor.7401002
PMCID: PMC1905900  PMID: 17557111
DNA replication; electron microscopy; mass spectrometry; GINS; CMG helicase complex
9.  REC, Drosophila MCM8, Drives Formation of Meiotic Crossovers 
PLoS Genetics  2005;1(3):e40.
Crossovers ensure the accurate segregation of homologous chromosomes from one another during meiosis. Here, we describe the identity and function of the Drosophila melanogaster gene recombination defective (rec), which is required for most meiotic crossing over. We show that rec encodes a member of the mini-chromosome maintenance (MCM) protein family. Six MCM proteins (MCM2–7) are essential for DNA replication and are found in all eukaryotes. REC is the Drosophila ortholog of the recently identified seventh member of this family, MCM8. Our phylogenetic analysis reveals the existence of yet another family member, MCM9, and shows that MCM8 and MCM9 arose early in eukaryotic evolution, though one or both have been lost in multiple eukaryotic lineages. Drosophila has lost MCM9 but retained MCM8, represented by REC. We used genetic and molecular methods to study the function of REC in meiotic recombination. Epistasis experiments suggest that REC acts after the Rad51 ortholog SPN-A but before the endonuclease MEI-9. Although crossovers are reduced by 95% in rec mutants, the frequency of noncrossover gene conversion is significantly increased. Interestingly, gene conversion tracts in rec mutants are about half the length of tracts in wild-type flies. To account for these phenotypes, we propose that REC facilitates repair synthesis during meiotic recombination. In the absence of REC, synthesis does not proceed far enough to allow formation of an intermediate that can give rise to crossovers, and recombination proceeds via synthesis-dependent strand annealing to generate only noncrossover products.
Synopsis
Most of our cells have two copies of each chromosome. For sexual reproduction, these must separate from one another to produce sperm or eggs with one copy of each chromosome. This occurs during meiosis, when chromosomes pair and exchange DNA segments. This exchange— meiotic recombination—creates physical linkages between chromosome pairs and is also a source of genetic diversity. To learn more about the process of meiotic recombination, the authors characterized the gene recombination defective (rec) from the fruit fly Drosophila melanogaster. Molecular analysis revealed that rec is related to a large family of genes found in all animals, plants, and protists. These genes are thought to be important in DNA replication, but rec appears to have a novel function. The authors found that mutants lacking rec are unable to copy enough DNA during meiotic recombination to form linkages between chromosomes. This results in chromosomes segregating randomly during meiosis, so that most eggs have an incorrect number or composition of chromosomes.
doi:10.1371/journal.pgen.0010040
PMCID: PMC1231718  PMID: 16189551
10.  REC, Drosophila MCM8, Drives Formation of Meiotic Crossovers 
PLoS Genetics  2005;1(3):e40.
Crossovers ensure the accurate segregation of homologous chromosomes from one another during meiosis. Here, we describe the identity and function of the Drosophila melanogaster gene recombination defective (rec), which is required for most meiotic crossing over. We show that rec encodes a member of the mini-chromosome maintenance (MCM) protein family. Six MCM proteins (MCM2–7) are essential for DNA replication and are found in all eukaryotes. REC is the Drosophila ortholog of the recently identified seventh member of this family, MCM8. Our phylogenetic analysis reveals the existence of yet another family member, MCM9, and shows that MCM8 and MCM9 arose early in eukaryotic evolution, though one or both have been lost in multiple eukaryotic lineages. Drosophila has lost MCM9 but retained MCM8, represented by REC. We used genetic and molecular methods to study the function of REC in meiotic recombination. Epistasis experiments suggest that REC acts after the Rad51 ortholog SPN-A but before the endonuclease MEI-9. Although crossovers are reduced by 95% in rec mutants, the frequency of noncrossover gene conversion is significantly increased. Interestingly, gene conversion tracts in rec mutants are about half the length of tracts in wild-type flies. To account for these phenotypes, we propose that REC facilitates repair synthesis during meiotic recombination. In the absence of REC, synthesis does not proceed far enough to allow formation of an intermediate that can give rise to crossovers, and recombination proceeds via synthesis-dependent strand annealing to generate only noncrossover products.
Synopsis
Most of our cells have two copies of each chromosome. For sexual reproduction, these must separate from one another to produce sperm or eggs with one copy of each chromosome. This occurs during meiosis, when chromosomes pair and exchange DNA segments. This exchange— meiotic recombination—creates physical linkages between chromosome pairs and is also a source of genetic diversity. To learn more about the process of meiotic recombination, the authors characterized the gene recombination defective (rec) from the fruit fly Drosophila melanogaster. Molecular analysis revealed that rec is related to a large family of genes found in all animals, plants, and protists. These genes are thought to be important in DNA replication, but rec appears to have a novel function. The authors found that mutants lacking rec are unable to copy enough DNA during meiotic recombination to form linkages between chromosomes. This results in chromosomes segregating randomly during meiosis, so that most eggs have an incorrect number or composition of chromosomes.
doi:10.1371/journal.pgen.0010040
PMCID: PMC1231718  PMID: 16189551
11.  Specificity and Function of Archaeal DNA Replication Initiator Proteins 
Cell Reports  2013;3(2):485-496.
Summary
Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC) that recruits the replicative helicase MCM(2-7) via Cdc6 and Cdt1. We find that the three origins in the single chromosome of the archaeon Sulfolobus islandicus are specified by distinct initiation factors. While two origins are dependent on archaeal homologs of eukaryal Orc1 and Cdc6, the third origin is instead reliant on an archaeal Cdt1 homolog. We exploit the nonessential nature of the orc1-1 gene to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels the protein’s structure rather than that of the DNA template.
Graphical Abstract
Highlights
► The S. islandicus chromosome has three origins, each with its own initiator ► Two origins are Orc dependent, and one requires a Cdt1 homolog ► The ATP-bound form of Orc1 is proficient at MCM loading ► ATP binding remodels the protein structure, not that of the DNA template
Archaea of the genus Sulfolobus use three replication origins per chromosome. She, Bell, and colleagues show that the three origins in S. islandicus have distinct initiator proteins, making this chromosome a mosaic of replicons. The nonessential nature of the Orc1/Cdc6 genes permits combined in vitro and in vivo analyses of their function. These findings reveal that ATP binding, not hydrolysis, is required for Orc1 function and that ATP exerts its effect by remodeling the initiator protein, not the origin DNA.
doi:10.1016/j.celrep.2013.01.002
PMCID: PMC3607249  PMID: 23375370
12.  Insights into MCM functional mechanism: lessons learned from the archaeal MCM complex 
The helicase function of the Minichromosome Maintenance protein (MCM) is essential for genomic DNA replication in archaea and eukaryotes. There has been rapid progress in the studies of the structure and function of MCM proteins from different organisms, leading to better understanding of MCM helicase mechanism. Because there are a number of excellent reviews on this topic, we will use this review to summarize some of the recent progress, with particular focus on the structural aspects of MCM and their implications for helicase function. Given the hexameric and double hexameric architecture observed by X-ray crystallography and electron microscopy for the MCMs from archaeal and eukaryotic cells, we summarize and discuss possible unwinding modes by either a hexameric or a double hexameric helicase. Additionally, our recent crystal structure of a full length archaeal MCM has provided structural information on an intact, multi-domain MCM protein, which includes the salient features of four unusual β-hairpins from each monomer, and the side channels of a hexamer/double hexamer. These new structural data enable a closer examination of the structural basis of the unwinding mechanisms by MCM.
doi:10.3109/10409238.2010.484836
PMCID: PMC2953368  PMID: 20441442
DNA replication; replicative helicase; nucleic-acid motor; β-hairpin; AAA+ initiator protein
13.  The human GINS complex associates with Cdc45 and MCM and is essential for DNA replication 
Nucleic Acids Research  2009;37(7):2087-2095.
The GINS complex, originally discovered in Saccharomyces cerevisiae and Xenopus laevis, binds to DNA replication origins shortly before the onset of S phase and travels with the replication forks after initiation. In this study we present a detailed characterization of the human GINS (hGINS) homolog. Using new antibodies that allow the detection of endogenous hGINS in cells and tissues, we have examined its expression, abundance, subcellular localization and association with other DNA replication proteins. Expression of hGINS is restricted to actively proliferating cells. During the S phase, hGINS becomes part of a Cdc45–MCM–GINS (CMG) complex that is assembled on chromatin. Down-regulation of hGINS destabilizes CMG, causes a G1–S arrest and slows down ongoing DNA replication, effectively blocking cell proliferation. Our data support the notion that hGINS is an essential component of the human replisome.
doi:10.1093/nar/gkp065
PMCID: PMC2673421  PMID: 19223333
14.  RecJ exonuclease: substrates, products and interaction with SSB 
Nucleic Acids Research  2006;34(4):1084-1091.
The RecJ exonuclease from Escherichia coli degrades single-stranded DNA (ssDNA) in the 5′–3′ direction and participates in homologous recombination and mismatch repair. The experiments described here address RecJ's substrate requirements and reaction products. RecJ complexes on a variety of 5′ single-strand tailed substrates were analyzed by electrophoretic mobility shift in the absence of Mg2+ ion required for substrate degradation. RecJ required single-stranded tails of 7 nt or greater for robust binding; addition of Mg2+ confirmed that substrates with 5′ tails of 6 nt or less were poor substrates for RecJ exonuclease. RecJ is a processive exonuclease, degrading ∼1000 nt after a single binding event to single-strand DNA, and releases mononucleotide products. RecJ is capable of degrading a single-stranded tail up to a double-stranded junction, although products in such reactions were heterogeneous and RecJ showed a limited ability to penetrate the duplex region. RecJ exonuclease was equally potent on 5′ phosphorylated and unphosphorylated ends. Finally, DNA binding and nuclease activity of RecJ was specifically enhanced by the pre-addition of ssDNA-binding protein and we propose that this specific interaction may aid recruitment of RecJ.
doi:10.1093/nar/gkj503
PMCID: PMC1373692  PMID: 16488881
15.  Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding 
BMC Molecular Biology  2010;11:62.
Background
The mini-chromosome maintenance protein (MCM) complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7), the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM), six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM) structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket.
Results
In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp). We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity.
Conclusions
These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.
doi:10.1186/1471-2199-11-62
PMCID: PMC2933578  PMID: 20716382
16.  Drosophila Sld5 is essential for normal cell cycle progression and maintenance of genomic integrity 
Essential for the normal functioning of a cell is the maintenance of genomic integrity. Failure in this process is often catastrophic for the organism, leading to cell death or mis-proliferation. Central to genomic integrity is the faithful replication of DNA during S phase. The GINS complex has recently come to light as a critical player in DNA replication through stabilization of MCM2-7 and Cdc45 as a member of the CMG complex which is likely responsible for the processivity of helicase activity during S phase. The GINS complex is made up of 4 members in a 1:1:1:1 ratio: Psf1, Psf2, Psf3, And Sld5. Here we present the first analysis of the function of the Sld5 subunit in a multicellular organism. We show that Drosophila Sld5 interacts with Psf1, Psf2, and Mcm10 and that mutations in Sld5 lead to M and S phase delays with chromosomes exhibiting hallmarks of genomic instability.
doi:10.1016/j.bbrc.2010.08.033
PMCID: PMC2939264  PMID: 20709026
GINS; SLD5; CMG Complex; DNA Replication; Elongation
17.  Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus 
Nucleic Acids Research  2003;31(16):4888-4898.
The eukaryotic pre-replication complex is assembled at replication origins in a reaction called licensing. Licensing involves the interactions of a variety of proteins including the origin recognition complex (ORC), Cdc6 and the Mcm2-7 helicase, homologues of which are also found in archaea. The euryarchaeote Archaeoglobus fulgidus encodes two genes with homology to Orc/Cdc6 and a single Mcm homologue. The A.fulgidus Mcm protein and one Orc/Cdc6 homologue have been purified and investigated in vitro. The Mcm protein is an ATP-dependent, hexameric helicase that can unwind between 200 and 400 bp of duplex DNA. Deletion of 112 amino acids from the N-terminus of A.f Mcm produced a protein, which was still capable of forming a hexamer, was competent in DNA binding and was able to unwind at least 1 kb of duplex DNA. The purified Orc/Cdc6 homologue was also able to bind DNA. Both Mcm and Orc/Cdc6 show a preference for specific DNA structures, namely molecules containing a single stranded bubble that mimics early replication intermediates. Nuclease protection showed that the binding sites for Mcm and Orc/Cdc6 overlap. The Orc/Cdc6 protein bound more tightly to these substrates and was able to displace pre-bound Mcm hexamer.
PMCID: PMC169903  PMID: 12907732
18.  Ancient diversification of eukaryotic MCM DNA replication proteins 
Background
Yeast and animal cells require six mini-chromosome maintenance proteins (Mcm2-7) for pre-replication complex formation, DNA replication initiation and DNA synthesis. These six individual MCM proteins form distinct heterogeneous subunits within a hexamer which is believed to form the replicative helicase and which associates with the essential but non-homologous Mcm10 protein during DNA replication. In contrast Archaea generally only possess one MCM homologue which forms a homohexameric MCM helicase. In some eukaryotes Mcm8 and Mcm9 paralogues also appear to be involved in DNA replication although their exact roles are unclear.
Results
We used comparative genomics and phylogenetics to reconstruct the diversification of the eukaryotic Mcm2-9 gene family, demonstrating that Mcm2-9 were formed by seven gene duplication events before the last common ancestor of the eukaryotes. Mcm2-7 protein paralogues were present in all eukaryote genomes studied suggesting that no gene loss or functional replacements have been tolerated during the evolutionary diversification of eukaryotes. Mcm8 and 9 are widely distributed in eukaryotes and group together on the MCM phylogenetic tree to the exclusion of all other MCM paralogues suggesting co-ancestry. Mcm8 and Mcm9 are absent in some taxa, including Trichomonas and Giardia, and appear to have been secondarily lost in some fungi and some animals. The presence and absence of Mcm8 and 9 is concordant in all taxa sampled with the exception of Drosophila species. Mcm10 is present in most eukaryotes sampled but shows no concordant pattern of presence or absence with Mcm8 or 9.
Conclusion
A multifaceted and heterogeneous Mcm2-7 hexamer evolved during the early evolution of the eukaryote cell in parallel with numerous other acquisitions in cell complexity and prior to the diversification of extant eukaryotes. The conservation of all six paralogues throughout the eukaryotes suggests that each Mcm2-7 hexamer component has an exclusive functional role, either by a combination of unique lock and key interactions between MCM hexamer subunits and/or by a range of novel side interactions. Mcm8 and 9 evolved early in eukaryote cell evolution and their pattern of presence or absence suggests that they may have linked functions. Mcm8 is highly divergent in all Drosophila species and may not provide a good model for Mcm8 in other eukaryotes.
doi:10.1186/1471-2148-9-60
PMCID: PMC2667178  PMID: 19292915
19.  Mutational Analysis of the RecJ Exonuclease of Escherichia coli: Identification of Phosphoesterase Motifs 
Journal of Bacteriology  1999;181(19):6098-6102.
The recJ gene, identified in Escherichia coli, encodes a Mg+2-dependent 5′-to-3′ exonuclease with high specificity for single-strand DNA. Genetic and biochemical experiments implicate RecJ exonuclease in homologous recombination, base excision, and methyl-directed mismatch repair. Genes encoding proteins with strong similarities to RecJ have been found in every eubacterial genome sequenced to date, with the exception of Mycoplasma and Mycobacterium tuberculosis. Multiple genes encoding proteins similar to RecJ are found in some eubacteria, including Bacillus and Helicobacter, and in the archaea. Among this divergent set of sequences, seven conserved motifs emerge. We demonstrate here that amino acids within six of these motifs are essential for both the biochemical and genetic functions of E. coli RecJ. These motifs may define interactions with Mg2+ ions or substrate DNA. A large family of proteins more distantly related to RecJ is present in archaea, eubacteria, and eukaryotes, including a hypothetical protein in the MgPa adhesin operon of Mycoplasma, a domain of putative polyA polymerases in Synechocystis and Aquifex, PRUNE of Drosophila, and an exopolyphosphatase (PPX1) of Saccharomyces cereviseae. Because these six RecJ motifs are shared between exonucleases and exopolyphosphatases, they may constitute an ancient phosphoesterase domain now found in all kingdoms of life.
PMCID: PMC103638  PMID: 10498723
20.  A novel DNA nuclease is stimulated by association with the GINS complex 
Nucleic Acids Research  2011;39(14):6114-6123.
Chromosomal DNA replication requires the spatial and temporal coordination of the activities of several complexes that constitute the replisome. A previously uncharacterized protein, encoded by TK1252 in the archaeon Thermococcus kodakaraensis, was shown to stably interact with the archaeal GINS complex in vivo, a central component of the archaeal replisome. Here, we document that this protein (TK1252p) is a processive, single-strand DNA-specific exonuclease that degrades DNA in the 5′ → 3′ direction. TK1252p binds specifically to the GINS15 subunit of T. kodakaraensis GINS complex and this interaction stimulates the exonuclease activity in vitro. This novel archaeal nuclease, designated GINS-associated nuclease (GAN), also forms a complex in vivo with the euryarchaeal-specific DNA polymerase D. Roles for GAN in replisome assembly and DNA replication are discussed.
doi:10.1093/nar/gkr181
PMCID: PMC3152336  PMID: 21459845
21.  DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast 
Molecular Biology of the Cell  2012;23(16):3240-3253.
DNA Pol ε synthesizes the leading strands, following the CMG (Cdc45/Mcm2-7/GINS) helicase, although the N-terminal polymerase domain of the catalytic subunit, Cdc20 in fission yeast, is dispensable for viability. We show that the C-terminal domain of Cdc20 plays the noncatalytic essential roles in both the assembly and progression of CMG helicase.
DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.
doi:10.1091/mbc.E12-05-0339
PMCID: PMC3418317  PMID: 22718908
22.  Identification and Characterization of a Novel Component of the Human Minichromosome Maintenance Complex▿  
Molecular and Cellular Biology  2007;27(8):3044-3055.
Minichromosome maintenance (MCM) complex replicative helicase complexes play essential roles in DNA replication in all eukaryotes. Using a tandem affinity purification-tagging approach in human cells, we discovered a form of the MCM complex that contains a previously unstudied protein, MCM binding protein (MCM-BP). MCM-BP is conserved in multicellular eukaryotes and shares limited homology with MCM proteins. MCM-BP formed a complex with MCM3 to MCM7, which excluded MCM2; and, conversely, hexameric complexes of MCM2 to MCM7 lacked MCM-BP, indicating that MCM-BP can replace MCM2 in the MCM complex. MCM-BP-containing complexes exhibited increased stability under experimental conditions relative to those containing MCM2. MCM-BP also formed a complex with the MCM4/6/7 core helicase in vitro, but, unlike MCM2, did not inhibit this helicase activity. A proportion of MCM-BP bound to cellular chromatin in a cell cycle-dependent manner typical of MCM proteins, and, like other MCM subunits, preferentially associated with a cellular origin in G1 but not in S phase. In addition, down-regulation of MCM-BP decreased the association of MCM4 with chromatin, and the chromatin association of MCM-BP was at least partially dependent on MCM4 and cdc6. The results indicate that multicellular eukaryotes contain two types of hexameric MCM complexes with unique properties and functions.
doi:10.1128/MCB.02384-06
PMCID: PMC1899943  PMID: 17296731
23.  MCM2-7 Form Double Hexamers at Licensed Origins in Xenopus Egg Extract* 
The Journal of Biological Chemistry  2011;286(13):11855-11864.
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to license them for initiation in the upcoming S phase. After initiation, Mcm2-7 provide helicase activity to unwind DNA at the replication fork. Here we examine the structure of Mcm2-7 on chromatin in Xenopus egg extracts. We show that prior to replication initiation, Mcm2-7 is present at licensed replication origins in a complex with a molecular mass close to double that of the Mcm2-7 hexamer. This complex has approximately stoichiometric quantities of the 6 Mcm2-7 proteins and we conclude that it consists of a double heterohexamer. This provides a configuration potentially capable of initiating a pair of bidirectional replication forks in S phase. We also show that after initiation, Mcm2-7 associate with Cdc45 and GINS to form a relatively stable CMG (Cdc45-MCM-GINS) complex. The CMG proteins also associate less strongly with other replication proteins, consistent with the idea that a single CMG complex forms the core of the replisome.
doi:10.1074/jbc.M110.199521
PMCID: PMC3064236  PMID: 21282109
Cell Cycle; DNA Helicase; DNA-Protein Interaction; DNA Replication; Xenopus
24.  Biochemistry of homologous recombination in Escherichia coli. 
Microbiological Reviews  1994;58(3):401-465.
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Images
PMCID: PMC372975  PMID: 7968921
25.  RecQ4: the Second Replicative Helicase? 
Recent work has greatly contributed to the understanding of the biology and biochemistry of RecQ4. It plays an essential non-enzymatic role in the formation of the CMG complex, and thus replication initiation, by means of its Sld2 homologous domain. The helicase domain of RecQ4 has now been demonstrated to possess 3'-5' DNA helicase activity, like the other members of the RecQ family. The biological purpose of this activity is still unclear, but helicase-dead mutants are unable to restore viability in the absence of wildtype RecQ4. This indicates that RecQ4 performs a second role, which requires helicase activity and is implicated in replication and DNA repair. Thus, it is clear that two helicases, RecQ4 and Mcm2-7, are integral to replication. The nature of the simultaneous involvement of these two helicases remains to be determined, and possible models will be proposed.
doi:10.3109/10409231003786086
PMCID: PMC2874125  PMID: 20429771
DNA replication; RecQ helicase; Sld2; Rothmund-Thomson Syndrome; RAPADILINO; Baller-Gerold Syndrome

Results 1-25 (448201)