Search tips
Search criteria

Results 1-25 (750205)

Clipboard (0)

Related Articles

1.  Atomic structure of an archaeal GAN suggests its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication 
Nucleic Acids Research  2016;44(19):9505-9517.
In eukaryotic DNA replication initiation, hexameric MCM (mini-chromosome maintenance) unwinds the template double-stranded DNA to form the replication fork. MCM is activated by two proteins, Cdc45 and GINS, which constitute the ‘CMG’ unwindosome complex together with the MCM core. The archaeal DNA replication system is quite similar to that of eukaryotes, but only limited knowledge about the DNA unwinding mechanism is available, from a structural point of view. Here, we describe the crystal structure of an archaeal GAN (GINS-associated nuclease) from Thermococcus kodakaraensis, the homolog of eukaryotic Cdc45, in both the free form and the complex with the C-terminal domain of the cognate Gins51 subunit (Gins51C). This first archaeal GAN structure exhibits a unique, ‘hybrid’ structure between the bacterial RecJ and the eukaryotic Cdc45. GAN possesses the conserved DHH and DHH1 domains responsible for the exonuclease activity, and an inserted CID (CMG interacting domain)-like domain structurally comparable to that in Cdc45, suggesting its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. A structural comparison of the GAN–Gins51C complex with the GINS tetramer suggests that GINS uses the mobile Gins51C as a hook to bind GAN for CMG formation.
PMCID: PMC5100581  PMID: 27599844
2.  Structure of human Cdc45 and implications for CMG helicase function 
Nature Communications  2016;7:11638.
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication.
The cell cycle division protein Cdc45 is required for genome duplication in eukaryotes. Here, the authors determine the crystal structure of human Cdc45 and combine it with functional data to improve our understanding of its role in DNA replication.
PMCID: PMC4873980  PMID: 27189187
3.  Structural basis for DNA 5´-end resection by RecJ 
eLife  null;5:e14294.
The resection of DNA strand with a 5´ end at double-strand breaks is an essential step in recombinational DNA repair. RecJ, a member of DHH family proteins, is the only 5´ nuclease involved in the RecF recombination pathway. Here, we report the crystal structures of Deinococcus radiodurans RecJ in complex with deoxythymidine monophosphate (dTMP), ssDNA, the C-terminal region of single-stranded DNA-binding protein (SSB-Ct) and a mechanistic insight into the RecF pathway. A terminal 5´-phosphate-binding pocket above the active site determines the 5´-3´ polarity of the deoxy-exonuclease of RecJ; a helical gateway at the entrance to the active site admits ssDNA only; and the continuous stacking interactions between protein and nine nucleotides ensure the processive end resection. The active site of RecJ in the N-terminal domain contains two divalent cations that coordinate the nucleophilic water. The ssDNA makes a 180° turn at the scissile phosphate. The C-terminal domain of RecJ binds the SSB-Ct, which explains how RecJ and SSB work together to efficiently process broken DNA ends for homologous recombination.
eLife digest
DNA encodes information that cells need to create the molecules and proteins that are essential for life. It is therefore vital that damaged DNA is repaired rapidly and accurately. Some DNA-damaging agents, such as gamma radiation, break both strands of the DNA double helix, which can be fatal to cells if not repaired quickly and accurately.
One important pathway in charge of repairing such double-strand breaks is called the homologous recombination repair pathway. The first stage of this repair involves cutting away part of one of the DNA strands at the break. This exposes a single-stranded stretch of the partner strand, which can be used for the repair.
One organism that is highly resistant to having its DNA damaged by radiation is the bacterium Deinococcus radiodurans. In this bacterium, an enzyme called RecJ performs part of the first step in the repair of DNA double-strand breaks by progressively shortening one end of a DNA strand. Cheng et al. have now used crystallography to look at the structure that RecJ forms when it binds to DNA. This, together with the results from biochemical experiments, revealed how RecJ recognizes where to bind on a broken DNA strand and how it moves along the broken strand along with cutting that strand.
Further investigations revealed that two other proteins enhance the ability of RecJ to process the ends of broken DNA strands. Cheng et al. also examined the structure that RecJ forms with one of these additional proteins, called SSB. A future goal is to determine how all three proteins co-ordinate with each other to efficiently and accurately repair double stranded breaks in the D. radiodurans bacteria.
PMCID: PMC4846377  PMID: 27058167
RecF pathway; DNA end resection; two-metal-ion catalysis; RecJ; single-strand-DNA binding protein; Deinococcus radiodurans; Other
4.  The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase 
Journal of Bacteriology  2015;197(21):3409-3420.
GINS is a key component of the eukaryotic Cdc45-minichromosome maintenance (MCM)-GINS (CMG) complex, which unwinds duplex DNA at the moving replication fork. Archaeal GINS complexes have been shown to stimulate the helicase activity of their cognate MCM mainly by elevating its ATPase activity. Here, we report that GINS from the thermoacidophilic crenarchaeon Sulfolobus solfataricus (SsoGINS) is capable of DNA binding and binds preferentially to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA). Notably, SsoGINS binds more strongly to dsDNA with a 5′ ssDNA tail than to dsDNA with a 3′ tail and more strongly to an ssDNA fragment blocked at the 3′ end than to one at the 5′ end with a biotin-streptavidin (SA) complex, suggesting the ability of the protein complex to slide in a 5′-to-3′ direction along ssDNA. DNA-bound SsoGINS enhances DNA binding by SsoMCM. Furthermore, SsoGINS increases the helicase activity of SsoMCM. However, the ATPase activity of SsoMCM is not affected by SsoGINS. Our results suggest that SsoGINS facilitates processive DNA unwinding by SsoMCM by enhancing the binding of the helicase to DNA. We propose that SsoGINS stabilizes the interaction of SsoMCM with the replication fork and moves along with the helicase as the fork progresses.
IMPORTANCE GINS is a key component of the eukaryotic Cdc45-MCM-GINS complex, a molecular motor that drives the unwinding of DNA in front of the replication fork. Archaea also encode GINS, which interacts with MCM, the helicase. But how archaeal GINS serves its role remains to be understood. In this study, we show that GINS from the hyperthermophilic archaeon Sulfolobus solfataricus is able to bind to DNA and slide along ssDNA in a 5′-to-3′ direction. Furthermore, Sulfolobus GINS enhances DNA binding by MCM, which slides along ssDNA in a 3′-to-5′ direction. Taken together, these results suggest that Sulfolobus GINS may stabilize the interaction of MCM with the moving replication fork, facilitating processive DNA unwinding.
PMCID: PMC4621065  PMID: 26283767
5.  Architectures of archaeal GINS complexes, essential DNA replication initiation factors 
BMC Biology  2011;9:28.
In the early stage of eukaryotic DNA replication, the template DNA is unwound by the MCM helicase, which is activated by forming a complex with the Cdc45 and GINS proteins. The eukaryotic GINS forms a heterotetramer, comprising four types of subunits. On the other hand, the archaeal GINS appears to be either a tetramer formed by two types of subunits in a 2:2 ratio (α2β2) or a homotetramer of a single subunit (α4). Due to the low sequence similarity between the archaeal and eukaryotic GINS subunits, the atomic structures of the archaeal GINS complexes are attracting interest for comparisons of their subunit architectures and organization.
We determined the crystal structure of the α2β2 GINS tetramer from Thermococcus kodakaraensis (TkoGINS), comprising Gins51 and Gins23, and compared it with the reported human GINS structures. The backbone structure of each subunit and the tetrameric assembly are similar to those of human GINS. However, the location of the C-terminal small domain of Gins51 is remarkably different between the archaeal and human GINS structures. In addition, TkoGINS exhibits different subunit contacts from those in human GINS, as a consequence of the different relative locations and orientations between the domains. Based on the GINS crystal structures, we built a homology model of the putative homotetrameric GINS from Thermoplasma acidophilum (TacGINS). Importantly, we propose that a long insertion loop allows the differential positioning of the C-terminal domains and, as a consequence, exclusively leads to the formation of an asymmetric homotetramer rather than a symmetrical one.
The DNA metabolizing proteins from archaea are similar to those from eukaryotes, and the archaeal multi-subunit complexes are occasionally simplified versions of the eukaryotic ones. The overall similarity in the architectures between the archaeal and eukaryotic GINS complexes suggests that the GINS function, directed through interactions with other protein components, is basically conserved. On the other hand, the different subunit contacts, including the locations and contributions of the C-terminal domains to the tetramer formation, imply the possibility that the archaeal and eukaryotic GINS complexes contribute to DNA unwinding reactions by significantly different mechanisms in terms of the atomic details.
PMCID: PMC3114041  PMID: 21527023
6.  A Thermostable Single-Strand DNase from Methanococcus jannaschii Related to the RecJ Recombination and Repair Exonuclease from Escherichia coli 
Journal of Bacteriology  2000;182(3):607-612.
The RecJ protein of Escherichia coli plays an important role in a number of DNA repair and recombination pathways. RecJ catalyzes processive degradation of single-stranded DNA in a 5′-to-3′ direction. Sequences highly related to those encoding RecJ can be found in most of the eubacterial genomes sequenced to date. From alignment of these sequences, seven conserved motifs are apparent. At least five of these motifs are shared among a large family of proteins in eubacteria, eukaryotes, and archaea, including the PPX1 polyphosphatase of yeast and Drosophila Prune. Archaeal genomes are particularly rich in such sequences, but it has not been clear whether any of the encoded proteins play a functional role similar to that of RecJ exonuclease. We have investigated three such proteins from Methanococcus jannaschii with the strongest overall sequence similarity to E. coli RecJ. Two of the genes, MJ0977 and MJ0831, partially complement a recJ mutant phenotype in E. coli. The expression of MJ0977 in E. coli resulted in high levels of a thermostable single-stranded DNase activity with properties similar to those of RecJ exonuclease. Despite overall weak sequence similarity between the MJ0977 product and RecJ, these nucleases are likely to have similar biological functions.
PMCID: PMC94321  PMID: 10633092
7.  A Novel C-Terminal Domain of RecJ is Critical for Interaction with HerA in Deinococcus radiodurans 
Homologous recombination (HR) generates error-free repair products, which plays an important role in double strand break repair and replication fork rescue processes. DNA end resection, the critical step in HR, is usually performed by a series of nuclease/helicase. RecJ was identified as a 5′-3′ exonuclease involved in bacterial DNA end resection. Typical RecJ possesses a conserved DHH domain, a DHHA1 domain, and an oligonucleotide/oligosaccharide-binding (OB) fold. However, RecJs from Deinococcus-Thermus phylum, such as Deinococcus radiodurans RecJ (DrRecJ), possess an extra C-terminal domain (CTD), of which the function has not been characterized. Here, we showed that a CTD-deletion of DrRecJ (DrRecJΔC) could not restore drrecJ mutant growth and mitomycin C (MMC)-sensitive phenotypes, indicating that this domain is essential for DrRecJ in vivo. DrRecJΔC displayed reduced DNA nuclease activity and DNA binding ability. Direct interaction was identified between DrRecJ-CTD and DrHerA, which stimulates DrRecJ nuclease activity by enhancing its DNA binding affinity. Moreover, DrNurA nuclease, another partner of DrHerA, inhibited the stimulation of DrHerA on DrRecJ nuclease activity by interaction with DrHerA. Opposing growth and MMC-resistance phenotypes between the recJ and nurA mutants were observed. A novel modulation mechanism among DrRecJ, DrHerA, and DrNurA was also suggested.
PMCID: PMC4663267  PMID: 26648913
RecJ; Deinococcus radiodurans; HerA; NurA; DNA end resection; protein–protein interaction; DNA repair
8.  Mutational Analysis of the RecJ Exonuclease of Escherichia coli: Identification of Phosphoesterase Motifs 
Journal of Bacteriology  1999;181(19):6098-6102.
The recJ gene, identified in Escherichia coli, encodes a Mg+2-dependent 5′-to-3′ exonuclease with high specificity for single-strand DNA. Genetic and biochemical experiments implicate RecJ exonuclease in homologous recombination, base excision, and methyl-directed mismatch repair. Genes encoding proteins with strong similarities to RecJ have been found in every eubacterial genome sequenced to date, with the exception of Mycoplasma and Mycobacterium tuberculosis. Multiple genes encoding proteins similar to RecJ are found in some eubacteria, including Bacillus and Helicobacter, and in the archaea. Among this divergent set of sequences, seven conserved motifs emerge. We demonstrate here that amino acids within six of these motifs are essential for both the biochemical and genetic functions of E. coli RecJ. These motifs may define interactions with Mg2+ ions or substrate DNA. A large family of proteins more distantly related to RecJ is present in archaea, eubacteria, and eukaryotes, including a hypothetical protein in the MgPa adhesin operon of Mycoplasma, a domain of putative polyA polymerases in Synechocystis and Aquifex, PRUNE of Drosophila, and an exopolyphosphatase (PPX1) of Saccharomyces cereviseae. Because these six RecJ motifs are shared between exonucleases and exopolyphosphatases, they may constitute an ancient phosphoesterase domain now found in all kingdoms of life.
PMCID: PMC103638  PMID: 10498723
9.  Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function 
Archaea  2015;2015:305497.
In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring.
PMCID: PMC4619765  PMID: 26539061
10.  DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome 
eLife  2014;3:e03273.
The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a DNA duplex bearing a 3′ single-stranded tail. The structure shows that the MCM subunits of the CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral form highlights how Mcm2-7 transitions through different conformational and assembly states as it matures into a functional helicase.
eLife digest
Before a cell divides, it must duplicate its DNA so that each new cell inherits its own copy of the genome. To do this, the DNA double helix must be unwound so that the two individual strands of DNA can serve as templates for making new DNA molecules. Unwinding begins when two helicase complexes, termed the Mcm2-7 rings, are loaded together onto the DNA.
At first, the two Mcm2-7 rings encircle the double-stranded DNA and remain bound together in an inactive form. Activating the Mcm2-7 rings requires the binding of five other proteins to each ring, which forms two larger complexes called CMG helicases. When the CMG helicases form, the two DNA strands separate and an individual Mcm2-7 ring ends up encircling each of the single DNA strands. However, how an activated CMG complex is assembled, and how it binds to and unwinds DNA, is not fully understood.
Now, Costa et al. have determined the three-dimensional structure of the fruit fly CMG helicase bound to a DNA double helix with a single-stranded overhang at one end. The activated Mcm2-7 ring binds to the overhang, which confirms previous findings indicating that the activated helicase prefers single-stranded over double-stranded DNA. The structure also shows that, as a CMG helicase slides along the single-stranded DNA towards the double-stranded DNA, it is the ring complex's ‘motor domains’ that lead the way, while its DNA-binding domains trail behind.
Costa et al. also found that disrupting some of the interactions between two of the five proteins that bind to the Mcm2-7 ring either prevented the replicative helicase from forming or made it unstable. Furthermore, it was revealed that one of these two proteins—called Cdc45—was ideally placed to capture the strand of DNA that might be accidentally released from the Mcm2-7 ring. It was also discovered that when the complex is bound to DNA, the motor domains of the Mcm2-7 complex change shape from a flat ring to a spiral structure; the DNA-binding domains, however, remain in a flat ring. Costa et al. note that this structure is similar to that adopted by many viral and bacterial helicases, and that it even shares many features with the molecular machinery that breaks down unneeded or damaged proteins inside cells.
Finally, Costa et al. were able to image a structure composed of two CMG complexes bound together. This reveals the relative orientation of the two Mcm2-7 rings before they separate and move in opposite directions to unravel the DNA. The findings of Costa et al., combined with previous structural work in this field, demonstrate that the Mcm2-7 helicase complex can adopt many different shapes as it is assembled on DNA and activated to support DNA replication.
PMCID: PMC4359367  PMID: 25117490
DNA replication; Mcm2-7; helicase; motor proteins; replication fork; AAA+ ATPase; D. melanogaster
11.  Replication Fork Reversal after Replication–Transcription Collision 
PLoS Genetics  2012;8(4):e1002622.
Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication–transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only recombination protein required for cell viability under these conditions of increased replication-transcription collisions. In its absence, fork breakage occurs at the site of collision, and the resulting linear DNA is not repaired and is slowly degraded by the RecJ exonuclease. Lethal fork breakage is also observed in cells that lack RecA and RecD, i.e. when both homologous recombination and the potent exonuclease V activity of the RecBCD complex are inactivated, with a slow degradation of the resulting linear DNA by the combined action of the RecBC helicase and the RecJ exonuclease. The sizes of the major linear fragments indicate that DNA degradation is slowed down by the encounter with another rrn operon. The amount of linear DNA decreases nearly two-fold when the Holliday junction resolvase RuvABC is inactivated in recB, as well as in recA recD mutants, indicating that part of the linear DNA is formed by resolution of a Holliday junction. Our results suggest that replication fork reversal occurs after replication–transcription head-on collision, and we propose that it promotes the action of the accessory replicative helicases that dislodge the obstacle.
Author Summary
Genomes are duplicated prior to cell division by DNA replication, and in all organisms replication impairment leads to chromosome instability. In bacteria, replication and transcription take place simultaneously, and in eukaryotes house-keeping genes are expressed during the S-phase; consequently, transcription is susceptible to impair replication progression. Here, we increase head-on replication–transcription collisions on the bacterial chromosome by inversion of a ribosomal operon (rrn). We show that only one recombination protein is required for growth when the rrn genes are highly expressed: the RecBCD complex, an exonuclease/recombinase that promotes degradation and RecA-dependent homologous recombination of linear DNA. In the absence of RecBCD, we observe linear DNA that ends in the collision region. This linear DNA is composed of only the origin-proximal region of the inverted rrn operon, indicating that it results from fork breakage. It is partly RuvABC-dependent (i.e. produced by the E. coli Holliday junction resolvase), indicating that blocked forks are reversed. The linear DNA ends up at the inverted rrn locus only if the RecJ exonuclease is inactivated; otherwise it is degraded, with major products ending in other upstream rrn operons, indicating that DNA degradation is slowed down by ribosomal operon sequences.
PMCID: PMC3320595  PMID: 22496668
12.  RecJ exonuclease: substrates, products and interaction with SSB 
Nucleic Acids Research  2006;34(4):1084-1091.
The RecJ exonuclease from Escherichia coli degrades single-stranded DNA (ssDNA) in the 5′–3′ direction and participates in homologous recombination and mismatch repair. The experiments described here address RecJ's substrate requirements and reaction products. RecJ complexes on a variety of 5′ single-strand tailed substrates were analyzed by electrophoretic mobility shift in the absence of Mg2+ ion required for substrate degradation. RecJ required single-stranded tails of 7 nt or greater for robust binding; addition of Mg2+ confirmed that substrates with 5′ tails of 6 nt or less were poor substrates for RecJ exonuclease. RecJ is a processive exonuclease, degrading ∼1000 nt after a single binding event to single-strand DNA, and releases mononucleotide products. RecJ is capable of degrading a single-stranded tail up to a double-stranded junction, although products in such reactions were heterogeneous and RecJ showed a limited ability to penetrate the duplex region. RecJ exonuclease was equally potent on 5′ phosphorylated and unphosphorylated ends. Finally, DNA binding and nuclease activity of RecJ was specifically enhanced by the pre-addition of ssDNA-binding protein and we propose that this specific interaction may aid recruitment of RecJ.
PMCID: PMC1373692  PMID: 16488881
13.  DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding 
Nucleic Acids Research  2013;42(4):2308-2319.
The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3′ protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3′–5′ polarity and, thereby acts as a molecular ‘wedge’ to initiate DNA strand displacement.
PMCID: PMC3936751  PMID: 24293646
14.  Tethering of SCFDia2 to the Replisome Promotes Efficient Ubiquitylation and Disassembly of the CMG Helicase 
Current Biology  2015;25(17):2254-2259.
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase, which unwinds the parental DNA duplex at eukaryotic replication forks, is the key regulated step during replication termination but is poorly understood [1, 2]. In budding yeast, the F-box protein Dia2 drives ubiquitylation of the CMG helicase at the end of replication, leading to a disassembly pathway that requires the Cdc48 segregase [3]. The substrate-binding domain of Dia2 comprises leucine-rich repeats, but Dia2 also has a TPR domain at its amino terminus that interacts with the Ctf4 and Mrc1 subunits of the replisome progression complex [4, 5], which assembles around the CMG helicase at replication forks [6]. Previous studies suggested two disparate roles for the TPR domain of Dia2, either mediating replisome-specific degradation of Mrc1 and Ctf4 [4] or else tethering SCFDia2 (SCF [Skp1/cullin/F-box protein]) to the replisome to increase its local concentration at replication forks [5]. Here, we show that SCFDia2 does not mediate replisome-specific degradation of Mrc1 and Ctf4, either during normal S phase or in response to replication stress. Instead, the tethering of SCFDia2 to the replisome progression complex increases the efficiency of ubiquitylation of the Mcm7 subunit of CMG, both in vitro and in vivo. Correspondingly, loss of tethering reduces the efficiency of CMG disassembly in vivo and is synthetic lethal in combination with a disassembly-defective allele of CDC48. Residual ubiquitylation of Mcm7 in dia2-ΔTPR cells is still CMG specific, highlighting the complex regulation of the final stages of chromosome replication, about which much still remains to be learned.
Graphical Abstract
•Replisome tethering of SCFDia2 promotes efficient ubiquitylation of the CMG helicase•Loss of tethering and mutation of Cdc48 cause synthetic CMG disassembly defects
Disassembly of the CMG helicase is the key regulated step at the end of chromosome replication in eukaryotes, and in budding yeast, this is driven by the ubiquitin ligase SCFDia2 and the Cdc48 segregase. SCFDia2 is tethered to the replisome, and Maculins et al. show that this connection controls the efficiency of CMG ubiquitylation and disassembly.
PMCID: PMC4562905  PMID: 26255844
15.  DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast 
Molecular Biology of the Cell  2012;23(16):3240-3253.
DNA Pol ε synthesizes the leading strands, following the CMG (Cdc45/Mcm2-7/GINS) helicase, although the N-terminal polymerase domain of the catalytic subunit, Cdc20 in fission yeast, is dispensable for viability. We show that the C-terminal domain of Cdc20 plays the noncatalytic essential roles in both the assembly and progression of CMG helicase.
DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.
PMCID: PMC3418317  PMID: 22718908
16.  Suppression of recA deficiency in plasmid recombination by bacteriophage lambda beta protein in RecBCD- ExoI- Escherichia coli cells. 
Journal of Bacteriology  1989;171(6):3523-3529.
Plasmid recombination, like other homologous recombination in Escherichia coli, requires RecA protein in most conditions. We have found that the plasmid recombination defect in a recA mutant can be efficiently suppressed by the beta protein of bacteriophage lambda. beta protein is required for homologous recombination of lambda chromosomes during lytic phage growth in a recA host and is known to have a strand-annealing activity resembling that of RecA protein. The bioluminescence recombination assay was used for genetic analysis of beta-protein-mediated plasmid recombination. Efficient suppression of the recA mutation by beta protein required the absence of the E. coli nucleases exonuclease I and RecBCD nuclease. These nucleases inhibit a RecA-mediated plasmid recombination pathway that is more efficient than the pathway functioning in wild-type cells. Like RecA-mediated plasmid recombination in RecBCD- ExoI- cells, beta-protein-mediated plasmid recombination depended on concurrent DNA replication and on the activity of the recQ gene. However, unlike RecA-mediated plasmid recombination, beta-protein-mediated recombination in RecBCD- ExoI- cells was independent of recF and recJ activities. We propose that inactivation of exonuclease I and RecBCD nuclease stabilizes a recombination intermediate that is involved in RecA- and beta-protein-catalyzed homologous pairing reactions. We suggest that the intermediate may be linear plasmid DNA with a protruding 3' end, since these nucleases are known to interfere with the synthesis of such linear forms. The different recF and recJ requirements for beta-protein-dependent and RecA-dependent recombinations imply that the mechanisms of formation or processing of the putative intermediate differ in the two cases.
PMCID: PMC210080  PMID: 2542228
17.  Insights into the Initiation of Eukaryotic DNA Replication 
Nucleus  2015;6(6):449-454.
The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2–7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2–7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2–7 complex. Sld3 recruits Cdc45 to Mcm2–7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2–7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2–7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.
PMCID: PMC4915513  PMID: 26710261
cancer; DNA replication; eukaryotic; helicase; initiation
18.  Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate 
Nature Communications  2016;7:10708.
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during the elongation step of eukaryotic genome duplication and this process depends on the MCM ATPase function. Whether CMG translocation occurs on single- or double-stranded DNA and how ATP hydrolysis drives DNA unwinding remain open questions. Here we use cryo-electron microscopy to describe two subnanometre resolution structures of the CMG helicase trapped on a DNA fork. In the predominant state, the ring-shaped C-terminal ATPase of MCM is compact and contacts single-stranded DNA, via a set of pre-sensor 1 hairpins that spiral around the translocation substrate. In the second state, the ATPase module is relaxed and apparently substrate free, while DNA intimately contacts the downstream amino-terminal tier of the MCM motor ring. These results, supported by single-molecule FRET measurements, lead us to suggest a replication fork unwinding mechanism whereby the N-terminal and AAA+ tiers of the MCM work in concert to translocate on single-stranded DNA.
The Cdc45-MCM-GINS (CMG) helicase unwinds DNA during replication, a process that requires the ATPase-dependent activity of the MCM complex. Using cryo-EM reconstructions of the CMG complex in different conformations, the authors propose a model where the N-terminal and AAA+ domains of MCM work in concert to translocate along DNA.
PMCID: PMC4759635  PMID: 26888060
19.  UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1 
Saline Systems  2005;1:3.
A variety of strategies for survival of UV irradiation are used by cells, ranging from repair of UV-damaged DNA, cell cycle arrest, tolerance of unrepaired UV photoproducts, and shielding from UV light. Some of these responses involve UV-inducible genes, including the SOS response in bacteria and an array of genes in eukaryotes. To address the mechanisms used in the third branch of life, we have studied the model archaeon, Halobacterium sp. strain NRC-1, which tolerates high levels of solar radiation in its natural hypersaline environment.
Cells were irradiated with 30–70 J/m2 UV-C and an immunoassay showed that the resulting DNA damage was largely repaired within 3 hours in the dark. Under such conditions, transcriptional profiling showed the most strongly up-regulated gene was radA1, the archaeal homolog of rad51/recA, which was induced 7-fold. Additional genes involved in homologous recombination, such as arj1 (recJ-like exonuclease), dbp (eukaryote-like DNA binding protein of the superfamily I DNA and RNA helicases), and rfa3 (replication protein A complex), as well as nrdJ, encoding for cobalamin-dependent ribonucleotide reductase involved in DNA metabolism, were also significantly induced in one or more of our experimental conditions. Neither prokaryotic nor eukaryotic excision repair gene homologs were induced and there was no evidence of an SOS-like response.
These results show that homologous recombination plays an important role in the cellular response of Halobacterium sp. NRC-1 to UV damage. Homologous recombination may permit rescue of stalled replication forks, and/or facilitate recombinational repair. In either case, this provides a mechanism for the observed high-frequency recombination among natural populations of halophilic archaea.
PMCID: PMC1224876  PMID: 16176594
20.  MCM-GINS and MCM-MCM interactions in vivo visualised by bimolecular fluorescence complementation in fission yeast 
BMC Cell Biology  2009;10:12.
Each of the three individual components of the CMG complex (Cdc45, MCM and GINS) is essential for chromosomal DNA replication in eukaryotic cells, both for the initiation of replication at origins and also for normal replication fork progression. The MCM complex is a DNA helicase that most likely functions as the catalytic core of the replicative helicase, unwinding the parental duplex DNA ahead of the moving replication fork, whereas Cdc45 and the GINS complex are believed to act as accessory factors for MCM.
To investigate interactions between components of the CMG complex, we have used bimolecular fluorescence complementation (BiFC) in the fission yeast Schizosaccharomyces pombe for the first time, to analyse protein-protein interactions between GINS and MCM subunits expressed from their native chromosomal loci. We demonstrate interactions between GINS and MCM in the nuclei of exponentially-growing fission yeast cells and on chromatin in binucleate S-phase cells. In addition we present evidence of MCM-MCM interactions in diploid fission yeast cells. As with GINS-MCM interactions, MCM-MCM interactions also occur on chromatin in S-phase cells.
Bimolecular fluorescence complementation can be used in fission yeast to visualise interactions between two of the three components of the CMG complex, offering the prospect that this technique could in the future be used to allow studies on replication protein dynamics in living S. pombe cells.
PMCID: PMC2652428  PMID: 19228417
21.  Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors 
Biology Direct  2009;4:11.
Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved.
We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases.
Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal ancestor of eukaryotes encoded three DNA polymerases, namely, two distinct B-family polymerases and a D-family polymerase all of which contributed to the evolution of the eukaryotic replication machinery. The Zn-finger might have been acquired from PolD by the B-family form that gave rise to Pol ε prior to or in the course of eukaryogenesis, and subsequently, was captured by the ancestor of the other B-family eukaryotic polymerases. The inactivated polymerase-exonuclease module of Pol ε might have evolved by fusion with a distinct polymerase, rather than by duplication of the active module of Pol ε, and is likely to play an important role in the assembly of eukaryotic replication and repair complexes.
This article was reviewed by Patrick Forterre, Arcady Mushegian, and Chris Ponting. For the full reviews, please go to the Reviewers' Reports section.
PMCID: PMC2669801  PMID: 19296856
22.  The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress 
PLoS Genetics  2016;12(2):e1005843.
Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101Mms22 ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101Mms22 E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1’s replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks.
Author Summary
Post-translational protein modifications, such as ubiquitylation, are essential for cells to respond to environmental cues. In order to understand how eukaryotes cope with DNA damage, we have investigated a conserved E3 ubiquitin ligase complex required for the resistance to carcinogenic chemicals. This complex, composed of Rtt101, Mms1 and Mms22 in budding yeast, plays a critical role in regulating the fate of stalled DNA replication. Here, we found that the Rtt101Mms22 E3 ubiquitin ligase complex interacts with the replisome during S-phase, and orchestrates the repair/restart of DNA synthesis after stalling by activating a Rad52-dependent homologous recombination pathway. Our findings indicate that Rtt101Mms22 specifically counteracts the replicative activity of Mrc1, a subunit of the fork protection complex, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) helicase complex upon fork stalling. Altogether, our study unravels a functional protein cluster that is essential to understand how eukaryotic cells cope with DNA damage during replication and, thus deepens our knowledge of the biology that underlies carcinogenesis.
PMCID: PMC4743919  PMID: 26849847
23.  Mcm10 coordinates the timely assembly and activation of the replication fork helicase 
Nucleic Acids Research  2015;44(1):315-329.
Mcm10 is an essential replication factor that is required for DNA replication in eukaryotes. Two key steps in the initiation of DNA replication are the assembly and activation of Cdc45–Mcm2–7-GINS (CMG) replicative helicase. However, it is not known what coordinates helicase assembly with helicase activation. We show in this manuscript, using purified proteins from budding yeast, that Mcm10 directly interacts with the Mcm2–7 complex and Cdc45. In fact, Mcm10 recruits Cdc45 to Mcm2–7 complex in vitro. To study the role of Mcm10 in more detail in vivo we used an auxin inducible degron in which Mcm10 is degraded upon addition of auxin. We show in this manuscript that Mcm10 is required for the timely recruitment of Cdc45 and GINS recruitment to the Mcm2–7 complex in vivo during early S phase. We also found that Mcm10 stimulates Mcm2 phosphorylation by DDK in vivo and in vitro. These findings indicate that Mcm10 plays a critical role in coupling replicative helicase assembly with helicase activation. Mcm10 is first involved in the recruitment of Cdc45 to the Mcm2–7 complex. After Cdc45–Mcm2–7 complex assembly, Mcm10 promotes origin melting by stimulating DDK phosphorylation of Mcm2, which thereby leads to GINS attachment to Mcm2–7.
PMCID: PMC4705653  PMID: 26582917
24.  RecA4142 Causes SOS Constitutive Expression by Loading onto Reversed Replication Forks in Escherichia coli K-12 ▿  
Journal of Bacteriology  2010;192(10):2575-2582.
Escherichia coli initiates the SOS response when single-stranded DNA (ssDNA) produced by DNA damage is bound by RecA and forms a RecA-DNA filament. recA SOS constitutive [recA(Con)] mutants induce the SOS response in the absence of DNA damage. It has been proposed that recA(Con) mutants bind to ssDNA at replication forks, although the specific mechanism is unknown. Previously, it had been shown that recA4142(F217Y), a novel recA(Con) mutant, was dependent on RecBCD for its high SOS constitutive [SOS(Con)] expression. This was presumably because RecA4142 was loaded at a double-strand end (DSE) of DNA. Herein, it is shown that recA4142 SOS(Con) expression is additionally dependent on ruvAB (replication fork reversal [RFR] activity only) and recJ (5′→3′ exonuclease), xonA (3′→5′ exonuclease) and partially dependent on recQ (helicase). Lastly, sbcCD mutations (Mre11/Rad50 homolog) in recA4142 strains caused full SOS(Con) expression in an ruvAB-, recBCD-, recJ-, and xonA-independent manner. It is hypothesized that RuvAB catalyzes RFR, RecJ and XonA blunt the DSE (created by the RFR), and then RecBCD loads RecA4142 onto this end to produce SOS(Con) expression. In sbcCD mutants, RecA4142 can bind other DNA substrates by itself that are normally degraded by the SbcCD nuclease.
PMCID: PMC2863556  PMID: 20304994
25.  RecJ-like protein from Pyrococcus furiosus has 3′–5′ exonuclease activity on RNA: implications for proofreading of 3′-mismatched RNA primers in DNA replication 
Nucleic Acids Research  2013;41(11):5817-5826.
Replicative DNA polymerases require an RNA primer for leading and lagging strand DNA synthesis, and primase is responsible for the de novo synthesis of this RNA primer. However, the archaeal primase from Pyrococcus furiosus (Pfu) frequently incorporates mismatched nucleoside monophosphate, which stops RNA synthesis. Pfu DNA polymerase (PolB) cannot elongate the resulting 3′-mismatched RNA primer because it cannot remove the 3′-mismatched ribonucleotide. This study demonstrates the potential role of a RecJ-like protein from P. furiosus (PfRecJ) in proofreading 3′-mismatched ribonucleotides. PfRecJ hydrolyzes single-stranded RNA and the RNA strand of RNA/DNA hybrids in the 3′–5′ direction, and the kinetic parameters (Km and Kcat) of PfRecJ during RNA strand digestion are consistent with a role in proofreading 3′-mismatched RNA primers. Replication protein A, the single-stranded DNA–binding protein, stimulates the removal of 3′-mismatched ribonucleotides of the RNA strand in RNA/DNA hybrids, and Pfu DNA polymerase can extend the 3′-mismatched RNA primer after the 3′-mismatched ribonucleotide is removed by PfRecJ. Finally, we reconstituted the primer-proofreading reaction of a 3′-mismatched ribonucleotide RNA/DNA hybrid using PfRecJ, replication protein A, Proliferating cell nuclear antigen (PCNA) and PolB. Given that PfRecJ is associated with the GINS complex, a central nexus in archaeal DNA replication fork, we speculate that PfRecJ proofreads the RNA primer in vivo.
PMCID: PMC3675489  PMID: 23605041

Results 1-25 (750205)