Search tips
Search criteria

Results 1-25 (545735)

Clipboard (0)

Related Articles

1.  Architectures of archaeal GINS complexes, essential DNA replication initiation factors 
BMC Biology  2011;9:28.
In the early stage of eukaryotic DNA replication, the template DNA is unwound by the MCM helicase, which is activated by forming a complex with the Cdc45 and GINS proteins. The eukaryotic GINS forms a heterotetramer, comprising four types of subunits. On the other hand, the archaeal GINS appears to be either a tetramer formed by two types of subunits in a 2:2 ratio (α2β2) or a homotetramer of a single subunit (α4). Due to the low sequence similarity between the archaeal and eukaryotic GINS subunits, the atomic structures of the archaeal GINS complexes are attracting interest for comparisons of their subunit architectures and organization.
We determined the crystal structure of the α2β2 GINS tetramer from Thermococcus kodakaraensis (TkoGINS), comprising Gins51 and Gins23, and compared it with the reported human GINS structures. The backbone structure of each subunit and the tetrameric assembly are similar to those of human GINS. However, the location of the C-terminal small domain of Gins51 is remarkably different between the archaeal and human GINS structures. In addition, TkoGINS exhibits different subunit contacts from those in human GINS, as a consequence of the different relative locations and orientations between the domains. Based on the GINS crystal structures, we built a homology model of the putative homotetrameric GINS from Thermoplasma acidophilum (TacGINS). Importantly, we propose that a long insertion loop allows the differential positioning of the C-terminal domains and, as a consequence, exclusively leads to the formation of an asymmetric homotetramer rather than a symmetrical one.
The DNA metabolizing proteins from archaea are similar to those from eukaryotes, and the archaeal multi-subunit complexes are occasionally simplified versions of the eukaryotic ones. The overall similarity in the architectures between the archaeal and eukaryotic GINS complexes suggests that the GINS function, directed through interactions with other protein components, is basically conserved. On the other hand, the different subunit contacts, including the locations and contributions of the C-terminal domains to the tetramer formation, imply the possibility that the archaeal and eukaryotic GINS complexes contribute to DNA unwinding reactions by significantly different mechanisms in terms of the atomic details.
PMCID: PMC3114041  PMID: 21527023
2.  A Thermostable Single-Strand DNase from Methanococcus jannaschii Related to the RecJ Recombination and Repair Exonuclease from Escherichia coli 
Journal of Bacteriology  2000;182(3):607-612.
The RecJ protein of Escherichia coli plays an important role in a number of DNA repair and recombination pathways. RecJ catalyzes processive degradation of single-stranded DNA in a 5′-to-3′ direction. Sequences highly related to those encoding RecJ can be found in most of the eubacterial genomes sequenced to date. From alignment of these sequences, seven conserved motifs are apparent. At least five of these motifs are shared among a large family of proteins in eubacteria, eukaryotes, and archaea, including the PPX1 polyphosphatase of yeast and Drosophila Prune. Archaeal genomes are particularly rich in such sequences, but it has not been clear whether any of the encoded proteins play a functional role similar to that of RecJ exonuclease. We have investigated three such proteins from Methanococcus jannaschii with the strongest overall sequence similarity to E. coli RecJ. Two of the genes, MJ0977 and MJ0831, partially complement a recJ mutant phenotype in E. coli. The expression of MJ0977 in E. coli resulted in high levels of a thermostable single-stranded DNase activity with properties similar to those of RecJ exonuclease. Despite overall weak sequence similarity between the MJ0977 product and RecJ, these nucleases are likely to have similar biological functions.
PMCID: PMC94321  PMID: 10633092
3.  Mutational Analysis of the RecJ Exonuclease of Escherichia coli: Identification of Phosphoesterase Motifs 
Journal of Bacteriology  1999;181(19):6098-6102.
The recJ gene, identified in Escherichia coli, encodes a Mg+2-dependent 5′-to-3′ exonuclease with high specificity for single-strand DNA. Genetic and biochemical experiments implicate RecJ exonuclease in homologous recombination, base excision, and methyl-directed mismatch repair. Genes encoding proteins with strong similarities to RecJ have been found in every eubacterial genome sequenced to date, with the exception of Mycoplasma and Mycobacterium tuberculosis. Multiple genes encoding proteins similar to RecJ are found in some eubacteria, including Bacillus and Helicobacter, and in the archaea. Among this divergent set of sequences, seven conserved motifs emerge. We demonstrate here that amino acids within six of these motifs are essential for both the biochemical and genetic functions of E. coli RecJ. These motifs may define interactions with Mg2+ ions or substrate DNA. A large family of proteins more distantly related to RecJ is present in archaea, eubacteria, and eukaryotes, including a hypothetical protein in the MgPa adhesin operon of Mycoplasma, a domain of putative polyA polymerases in Synechocystis and Aquifex, PRUNE of Drosophila, and an exopolyphosphatase (PPX1) of Saccharomyces cereviseae. Because these six RecJ motifs are shared between exonucleases and exopolyphosphatases, they may constitute an ancient phosphoesterase domain now found in all kingdoms of life.
PMCID: PMC103638  PMID: 10498723
4.  Replication Fork Reversal after Replication–Transcription Collision 
PLoS Genetics  2012;8(4):e1002622.
Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication–transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only recombination protein required for cell viability under these conditions of increased replication-transcription collisions. In its absence, fork breakage occurs at the site of collision, and the resulting linear DNA is not repaired and is slowly degraded by the RecJ exonuclease. Lethal fork breakage is also observed in cells that lack RecA and RecD, i.e. when both homologous recombination and the potent exonuclease V activity of the RecBCD complex are inactivated, with a slow degradation of the resulting linear DNA by the combined action of the RecBC helicase and the RecJ exonuclease. The sizes of the major linear fragments indicate that DNA degradation is slowed down by the encounter with another rrn operon. The amount of linear DNA decreases nearly two-fold when the Holliday junction resolvase RuvABC is inactivated in recB, as well as in recA recD mutants, indicating that part of the linear DNA is formed by resolution of a Holliday junction. Our results suggest that replication fork reversal occurs after replication–transcription head-on collision, and we propose that it promotes the action of the accessory replicative helicases that dislodge the obstacle.
Author Summary
Genomes are duplicated prior to cell division by DNA replication, and in all organisms replication impairment leads to chromosome instability. In bacteria, replication and transcription take place simultaneously, and in eukaryotes house-keeping genes are expressed during the S-phase; consequently, transcription is susceptible to impair replication progression. Here, we increase head-on replication–transcription collisions on the bacterial chromosome by inversion of a ribosomal operon (rrn). We show that only one recombination protein is required for growth when the rrn genes are highly expressed: the RecBCD complex, an exonuclease/recombinase that promotes degradation and RecA-dependent homologous recombination of linear DNA. In the absence of RecBCD, we observe linear DNA that ends in the collision region. This linear DNA is composed of only the origin-proximal region of the inverted rrn operon, indicating that it results from fork breakage. It is partly RuvABC-dependent (i.e. produced by the E. coli Holliday junction resolvase), indicating that blocked forks are reversed. The linear DNA ends up at the inverted rrn locus only if the RecJ exonuclease is inactivated; otherwise it is degraded, with major products ending in other upstream rrn operons, indicating that DNA degradation is slowed down by ribosomal operon sequences.
PMCID: PMC3320595  PMID: 22496668
5.  RecJ exonuclease: substrates, products and interaction with SSB 
Nucleic Acids Research  2006;34(4):1084-1091.
The RecJ exonuclease from Escherichia coli degrades single-stranded DNA (ssDNA) in the 5′–3′ direction and participates in homologous recombination and mismatch repair. The experiments described here address RecJ's substrate requirements and reaction products. RecJ complexes on a variety of 5′ single-strand tailed substrates were analyzed by electrophoretic mobility shift in the absence of Mg2+ ion required for substrate degradation. RecJ required single-stranded tails of 7 nt or greater for robust binding; addition of Mg2+ confirmed that substrates with 5′ tails of 6 nt or less were poor substrates for RecJ exonuclease. RecJ is a processive exonuclease, degrading ∼1000 nt after a single binding event to single-strand DNA, and releases mononucleotide products. RecJ is capable of degrading a single-stranded tail up to a double-stranded junction, although products in such reactions were heterogeneous and RecJ showed a limited ability to penetrate the duplex region. RecJ exonuclease was equally potent on 5′ phosphorylated and unphosphorylated ends. Finally, DNA binding and nuclease activity of RecJ was specifically enhanced by the pre-addition of ssDNA-binding protein and we propose that this specific interaction may aid recruitment of RecJ.
PMCID: PMC1373692  PMID: 16488881
6.  DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding 
Nucleic Acids Research  2013;42(4):2308-2319.
The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3′ protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3′–5′ polarity and, thereby acts as a molecular ‘wedge’ to initiate DNA strand displacement.
PMCID: PMC3936751  PMID: 24293646
7.  RAD51 and MRE11 dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks 
In higher eukaryotes the dynamics of replisome components during fork collapse and restart are poorly understood. Here, we reconstituted replication fork collapse and restart by inducing single-strand DNA (ssDNA) lesions that create a double-strand break (DSB) in one of the replicated sister chromatids after fork passage. We found that, upon fork collapse, the active CDC45–MCM–GINS (CMG) helicase complex loses its GINS subunit. A functional replisome is restored by the reloading of GINS and Pol epsilon onto DNA in a RAD51- and MRE11- dependent manner, but independently of replication origin assembly and firing. PCNA mutant alleles defective in break-induced replication (BIR) are unable to support restoration of replisome integrity. These results reveal that in higher eukaryotes replisomes are partially dismantled following fork collapse and fully re-established by a recombination-mediated process.
PMCID: PMC4306020  PMID: 22139015
8.  A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome 
Nature  2014;510(7504):293-297.
Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks1, to avoid stalling of the replication machinery and consequent genomic instability2-4. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a β-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the N-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new paradigm for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of E. coli5-8. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.
PMCID: PMC4059944  PMID: 24805245
9.  Suppression of recA deficiency in plasmid recombination by bacteriophage lambda beta protein in RecBCD- ExoI- Escherichia coli cells. 
Journal of Bacteriology  1989;171(6):3523-3529.
Plasmid recombination, like other homologous recombination in Escherichia coli, requires RecA protein in most conditions. We have found that the plasmid recombination defect in a recA mutant can be efficiently suppressed by the beta protein of bacteriophage lambda. beta protein is required for homologous recombination of lambda chromosomes during lytic phage growth in a recA host and is known to have a strand-annealing activity resembling that of RecA protein. The bioluminescence recombination assay was used for genetic analysis of beta-protein-mediated plasmid recombination. Efficient suppression of the recA mutation by beta protein required the absence of the E. coli nucleases exonuclease I and RecBCD nuclease. These nucleases inhibit a RecA-mediated plasmid recombination pathway that is more efficient than the pathway functioning in wild-type cells. Like RecA-mediated plasmid recombination in RecBCD- ExoI- cells, beta-protein-mediated plasmid recombination depended on concurrent DNA replication and on the activity of the recQ gene. However, unlike RecA-mediated plasmid recombination, beta-protein-mediated recombination in RecBCD- ExoI- cells was independent of recF and recJ activities. We propose that inactivation of exonuclease I and RecBCD nuclease stabilizes a recombination intermediate that is involved in RecA- and beta-protein-catalyzed homologous pairing reactions. We suggest that the intermediate may be linear plasmid DNA with a protruding 3' end, since these nucleases are known to interfere with the synthesis of such linear forms. The different recF and recJ requirements for beta-protein-dependent and RecA-dependent recombinations imply that the mechanisms of formation or processing of the putative intermediate differ in the two cases.
PMCID: PMC210080  PMID: 2542228
10.  UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1 
Saline Systems  2005;1:3.
A variety of strategies for survival of UV irradiation are used by cells, ranging from repair of UV-damaged DNA, cell cycle arrest, tolerance of unrepaired UV photoproducts, and shielding from UV light. Some of these responses involve UV-inducible genes, including the SOS response in bacteria and an array of genes in eukaryotes. To address the mechanisms used in the third branch of life, we have studied the model archaeon, Halobacterium sp. strain NRC-1, which tolerates high levels of solar radiation in its natural hypersaline environment.
Cells were irradiated with 30–70 J/m2 UV-C and an immunoassay showed that the resulting DNA damage was largely repaired within 3 hours in the dark. Under such conditions, transcriptional profiling showed the most strongly up-regulated gene was radA1, the archaeal homolog of rad51/recA, which was induced 7-fold. Additional genes involved in homologous recombination, such as arj1 (recJ-like exonuclease), dbp (eukaryote-like DNA binding protein of the superfamily I DNA and RNA helicases), and rfa3 (replication protein A complex), as well as nrdJ, encoding for cobalamin-dependent ribonucleotide reductase involved in DNA metabolism, were also significantly induced in one or more of our experimental conditions. Neither prokaryotic nor eukaryotic excision repair gene homologs were induced and there was no evidence of an SOS-like response.
These results show that homologous recombination plays an important role in the cellular response of Halobacterium sp. NRC-1 to UV damage. Homologous recombination may permit rescue of stalled replication forks, and/or facilitate recombinational repair. In either case, this provides a mechanism for the observed high-frequency recombination among natural populations of halophilic archaea.
PMCID: PMC1224876  PMID: 16176594
11.  RecA4142 Causes SOS Constitutive Expression by Loading onto Reversed Replication Forks in Escherichia coli K-12 ▿  
Journal of Bacteriology  2010;192(10):2575-2582.
Escherichia coli initiates the SOS response when single-stranded DNA (ssDNA) produced by DNA damage is bound by RecA and forms a RecA-DNA filament. recA SOS constitutive [recA(Con)] mutants induce the SOS response in the absence of DNA damage. It has been proposed that recA(Con) mutants bind to ssDNA at replication forks, although the specific mechanism is unknown. Previously, it had been shown that recA4142(F217Y), a novel recA(Con) mutant, was dependent on RecBCD for its high SOS constitutive [SOS(Con)] expression. This was presumably because RecA4142 was loaded at a double-strand end (DSE) of DNA. Herein, it is shown that recA4142 SOS(Con) expression is additionally dependent on ruvAB (replication fork reversal [RFR] activity only) and recJ (5′→3′ exonuclease), xonA (3′→5′ exonuclease) and partially dependent on recQ (helicase). Lastly, sbcCD mutations (Mre11/Rad50 homolog) in recA4142 strains caused full SOS(Con) expression in an ruvAB-, recBCD-, recJ-, and xonA-independent manner. It is hypothesized that RuvAB catalyzes RFR, RecJ and XonA blunt the DSE (created by the RFR), and then RecBCD loads RecA4142 onto this end to produce SOS(Con) expression. In sbcCD mutants, RecA4142 can bind other DNA substrates by itself that are normally degraded by the SbcCD nuclease.
PMCID: PMC2863556  PMID: 20304994
12.  RecJ-like protein from Pyrococcus furiosus has 3′–5′ exonuclease activity on RNA: implications for proofreading of 3′-mismatched RNA primers in DNA replication 
Nucleic Acids Research  2013;41(11):5817-5826.
Replicative DNA polymerases require an RNA primer for leading and lagging strand DNA synthesis, and primase is responsible for the de novo synthesis of this RNA primer. However, the archaeal primase from Pyrococcus furiosus (Pfu) frequently incorporates mismatched nucleoside monophosphate, which stops RNA synthesis. Pfu DNA polymerase (PolB) cannot elongate the resulting 3′-mismatched RNA primer because it cannot remove the 3′-mismatched ribonucleotide. This study demonstrates the potential role of a RecJ-like protein from P. furiosus (PfRecJ) in proofreading 3′-mismatched ribonucleotides. PfRecJ hydrolyzes single-stranded RNA and the RNA strand of RNA/DNA hybrids in the 3′–5′ direction, and the kinetic parameters (Km and Kcat) of PfRecJ during RNA strand digestion are consistent with a role in proofreading 3′-mismatched RNA primers. Replication protein A, the single-stranded DNA–binding protein, stimulates the removal of 3′-mismatched ribonucleotides of the RNA strand in RNA/DNA hybrids, and Pfu DNA polymerase can extend the 3′-mismatched RNA primer after the 3′-mismatched ribonucleotide is removed by PfRecJ. Finally, we reconstituted the primer-proofreading reaction of a 3′-mismatched ribonucleotide RNA/DNA hybrid using PfRecJ, replication protein A, Proliferating cell nuclear antigen (PCNA) and PolB. Given that PfRecJ is associated with the GINS complex, a central nexus in archaeal DNA replication fork, we speculate that PfRecJ proofreads the RNA primer in vivo.
PMCID: PMC3675489  PMID: 23605041
13.  Nucleotide sequence of the Escherichia coli recJ chromosomal region and construction of recJ-overexpression plasmids. 
Journal of Bacteriology  1991;173(1):353-364.
The nucleotide sequence of the recJ gene of Escherichia coli K-12 and two upstream coding regions was determined. Three regions were identified within these two upstream genes that exhibited weak to moderate promoter activity in fusions to the galK gene and are candidates for the recJ promoter. recJ appeared to be poorly translated: the recJ nucleotide sequence revealed a suboptimal initiation codon GUG, no discernible ribosome-binding consensus sequence, and relatively nonbiased synonymous codon usage. Comparison of the sequence of this region of the chromosome with DNA data bases identified the gene immediately downstream of recJ as prfB, which encodes translational release factor 2 and has been mapped near recJ at 62 min. No significant homology between recJ and other previously sequenced regions of DNA was detected. However, protein sequence comparisons with a gene upstream of recJ, denoted xprB, revealed significant homology with several site-specific recombination proteins. Its genetic function is presently unknown. Knowledge of the nucleotide sequence of recJ allowed the construction of a plasmid from which overexpression of RecJ protein could be induced. Supporting the notion that translation of recJ is limiting, a strong T7 bacteriophage promoter upstream of recJ did not, by itself, allow high-level expression of RecJ protein. The addition of a ribosome-binding sequence fused to the initiator GTG of recJ in this construction was necessary to promote expression of high levels of RecJ protein.
PMCID: PMC207194  PMID: 1987126
14.  Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors 
Biology Direct  2009;4:11.
Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved.
We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases.
Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal ancestor of eukaryotes encoded three DNA polymerases, namely, two distinct B-family polymerases and a D-family polymerase all of which contributed to the evolution of the eukaryotic replication machinery. The Zn-finger might have been acquired from PolD by the B-family form that gave rise to Pol ε prior to or in the course of eukaryogenesis, and subsequently, was captured by the ancestor of the other B-family eukaryotic polymerases. The inactivated polymerase-exonuclease module of Pol ε might have evolved by fusion with a distinct polymerase, rather than by duplication of the active module of Pol ε, and is likely to play an important role in the assembly of eukaryotic replication and repair complexes.
This article was reviewed by Patrick Forterre, Arcady Mushegian, and Chris Ponting. For the full reviews, please go to the Reviewers' Reports section.
PMCID: PMC2669801  PMID: 19296856
15.  Roles of the recJ and recN Genes in Homologous Recombination and DNA Repair Pathways of Neisseria gonorrhoeae 
Journal of Bacteriology  2002;184(4):919-927.
The paradigm of homologous recombination comes from Escherichia coli, where the genes involved have been segregated into pathways. In the human pathogen Neisseria gonorrhoeae (the gonococcus), the pathways of homologous recombination are being delineated. To investigate the roles of the gonococcal recN and recJ genes in the recombination-based processes of the gonococcus, these genes were inactivated in the N. gonorrhoeae strain FA1090. We report that both recN and recJ loss-of-function mutants show decreased DNA repair ability. In addition, the recJ mutant was decreased in pilus-dependent colony morphology variation frequency but not DNA transformation efficiency, while the recN mutant was decreased in DNA transformation efficiency but not pilus-dependent variation frequency. We were able to complement all of these deficiencies by supplying an ectopic functional copy of either recJ or recN at an irrelevant locus. These results describe the role of recJ and recN in the recombination-dependent processes of the gonococcus and further define the pathways of homologous recombination in this organism.
PMCID: PMC134828  PMID: 11807051
16.  REC, Drosophila MCM8, Drives Formation of Meiotic Crossovers 
PLoS Genetics  2005;1(3):e40.
Crossovers ensure the accurate segregation of homologous chromosomes from one another during meiosis. Here, we describe the identity and function of the Drosophila melanogaster gene recombination defective (rec), which is required for most meiotic crossing over. We show that rec encodes a member of the mini-chromosome maintenance (MCM) protein family. Six MCM proteins (MCM2–7) are essential for DNA replication and are found in all eukaryotes. REC is the Drosophila ortholog of the recently identified seventh member of this family, MCM8. Our phylogenetic analysis reveals the existence of yet another family member, MCM9, and shows that MCM8 and MCM9 arose early in eukaryotic evolution, though one or both have been lost in multiple eukaryotic lineages. Drosophila has lost MCM9 but retained MCM8, represented by REC. We used genetic and molecular methods to study the function of REC in meiotic recombination. Epistasis experiments suggest that REC acts after the Rad51 ortholog SPN-A but before the endonuclease MEI-9. Although crossovers are reduced by 95% in rec mutants, the frequency of noncrossover gene conversion is significantly increased. Interestingly, gene conversion tracts in rec mutants are about half the length of tracts in wild-type flies. To account for these phenotypes, we propose that REC facilitates repair synthesis during meiotic recombination. In the absence of REC, synthesis does not proceed far enough to allow formation of an intermediate that can give rise to crossovers, and recombination proceeds via synthesis-dependent strand annealing to generate only noncrossover products.
Most of our cells have two copies of each chromosome. For sexual reproduction, these must separate from one another to produce sperm or eggs with one copy of each chromosome. This occurs during meiosis, when chromosomes pair and exchange DNA segments. This exchange— meiotic recombination—creates physical linkages between chromosome pairs and is also a source of genetic diversity. To learn more about the process of meiotic recombination, the authors characterized the gene recombination defective (rec) from the fruit fly Drosophila melanogaster. Molecular analysis revealed that rec is related to a large family of genes found in all animals, plants, and protists. These genes are thought to be important in DNA replication, but rec appears to have a novel function. The authors found that mutants lacking rec are unable to copy enough DNA during meiotic recombination to form linkages between chromosomes. This results in chromosomes segregating randomly during meiosis, so that most eggs have an incorrect number or composition of chromosomes.
PMCID: PMC1231718  PMID: 16189551
17.  Thermococcus kodakarensis encodes three MCM homologs but only one is essential 
Nucleic Acids Research  2011;39(22):9671-9680.
The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea and eukaryotes. In eukaryotes, this complex is an assembly of six different but related polypeptides (MCM2-7) but, in most archaea, one MCM protein assembles to form a homohexameric complex. Atypically, the Thermococcus kodakarensis genome encodes three archaeal MCM homologs, here designated MCM1-3, although MCM1 and MCM2 are unusual in having long and unique N-terminal extensions. The results reported establish that MCM2 and MCM3 assemble into homohexamers and exhibit DNA binding, helicase and ATPase activities in vitro typical of archaeal MCMs. In contrast, MCM1 does not form homohexamers and although MCM1 binds DNA and has ATPase activity, it has only minimal helicase activity in vitro. Removal of the N-terminal extension had no detectable effects on MCM1 but increased the helicase activity of MCM2. A T. kodakarensis strain with the genes TK0096 (MCM1) and TK1361 (MCM2) deleted has been constructed that exhibits no detectable defects in growth or viability, but all attempts to delete TK1620 (MCM3) have been unsuccessful arguing that that MCM3 is essential and is likely the replicative helicase in T. kodakarensis. The origins and possible function(s) of the three MCM proteins are discussed.
PMCID: PMC3239210  PMID: 21821658
18.  Overexpression, purification and characterization of RecJ protein from Thermus thermophilus HB8 and its core domain 
Nucleic Acids Research  2001;29(22):4617-4624.
A recJ homolog was cloned from the extremely thermophilic bacterium Thermus themophilus HB8. It encodes a 527 amino acid protein that has 33% identity to Escherichia coli RecJ protein and includes the characteristic motifs conserved among RecJ homologs. Although T.thermophilus RecJ protein (ttRecJ) was expressed as an inclusion body, it was purified in soluble form through denaturation with urea and subsequent refolding steps. Limited proteolysis showed that ttRecJ has a protease-resistant core domain, which includes all the conserved motifs. We constructed a truncated ttRecJ gene that corresponds to the core domain (cd-ttRecJ). cd-ttRecJ was overexpressed in soluble form and purified. ttRecJ and cd-ttRecJ were stable up to 60°C. Size exclusion chromatography indicated that ttRecJ exists in several oligomeric states, whereas cd-ttRecJ is monomeric in solution. Both proteins have 5′→3′ exonuclease activity, which was enhanced by increasing the temperature to 50°C. Mg2+, Mn2+ or Co2+ ions were required to activate both proteins, whereas Ca2+ and Zn2+ had no effects.
PMCID: PMC92510  PMID: 11713311
19.  Evolution of DNA Replication Protein Complexes in Eukaryotes and Archaea 
PLoS ONE  2010;5(6):e10866.
The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and the minichromosome maintenance (MCM) complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best.
Methodology/Principal Findings
While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex—all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea.
This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.
PMCID: PMC2880001  PMID: 20532250
20.  Ancient diversification of eukaryotic MCM DNA replication proteins 
Yeast and animal cells require six mini-chromosome maintenance proteins (Mcm2-7) for pre-replication complex formation, DNA replication initiation and DNA synthesis. These six individual MCM proteins form distinct heterogeneous subunits within a hexamer which is believed to form the replicative helicase and which associates with the essential but non-homologous Mcm10 protein during DNA replication. In contrast Archaea generally only possess one MCM homologue which forms a homohexameric MCM helicase. In some eukaryotes Mcm8 and Mcm9 paralogues also appear to be involved in DNA replication although their exact roles are unclear.
We used comparative genomics and phylogenetics to reconstruct the diversification of the eukaryotic Mcm2-9 gene family, demonstrating that Mcm2-9 were formed by seven gene duplication events before the last common ancestor of the eukaryotes. Mcm2-7 protein paralogues were present in all eukaryote genomes studied suggesting that no gene loss or functional replacements have been tolerated during the evolutionary diversification of eukaryotes. Mcm8 and 9 are widely distributed in eukaryotes and group together on the MCM phylogenetic tree to the exclusion of all other MCM paralogues suggesting co-ancestry. Mcm8 and Mcm9 are absent in some taxa, including Trichomonas and Giardia, and appear to have been secondarily lost in some fungi and some animals. The presence and absence of Mcm8 and 9 is concordant in all taxa sampled with the exception of Drosophila species. Mcm10 is present in most eukaryotes sampled but shows no concordant pattern of presence or absence with Mcm8 or 9.
A multifaceted and heterogeneous Mcm2-7 hexamer evolved during the early evolution of the eukaryote cell in parallel with numerous other acquisitions in cell complexity and prior to the diversification of extant eukaryotes. The conservation of all six paralogues throughout the eukaryotes suggests that each Mcm2-7 hexamer component has an exclusive functional role, either by a combination of unique lock and key interactions between MCM hexamer subunits and/or by a range of novel side interactions. Mcm8 and 9 evolved early in eukaryote cell evolution and their pattern of presence or absence suggests that they may have linked functions. Mcm8 is highly divergent in all Drosophila species and may not provide a good model for Mcm8 in other eukaryotes.
PMCID: PMC2667178  PMID: 19292915
21.  Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery 
The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the family D archaeal polymerases.
PMCID: PMC4104785  PMID: 25101062
DNA replication; archaea; mobile genetic elements; DNA polymerases; enzyme inactivation
22.  Genetic Requirements for High Constitutive SOS Expression in recA730 Mutants of Escherichia coli ▿  
Journal of Bacteriology  2011;193(18):4643-4651.
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5′–3′ exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5′–3′ exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.
PMCID: PMC3165666  PMID: 21764927
23.  Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties 
Nucleic Acids Research  2005;33(15):4940-4950.
The origin recognition complex, Cdc6 and the minichromosome maintenance (MCM) complex play essential roles in the initiation of eukaryotic DNA replication. Homologs of these proteins may play similar roles in archaeal replication initiation. While the interactions among the eukaryotic initiation proteins are well documented, the protein–protein interactions between the archaeal proteins have not yet been determined. Here, an extensive structural and functional analysis of the interactions between the Methanothermobacter thermautotrophicus MCM and the two Cdc6 proteins (Cdc6-1 and -2) identified in the organism is described. The main contact between Cdc6 and MCM occurs via the N-terminal portion of the MCM protein. It was found that Cdc6–MCM interaction, but not Cdc6–DNA binding, plays the predominant role in regulating MCM helicase activity. In addition, the data showed that the interactions with MCM modulate the autophosphorylation of Cdc6-1 and -2. The results also suggest that MCM and DNA may compete for Cdc6-1 protein binding. The implications of these observations for the initiation of archaeal DNA replication are discussed.
PMCID: PMC1201339  PMID: 16150924
24.  Conserved domains in DNA repair proteins and evolution of repair systems. 
Nucleic Acids Research  1999;27(5):1223-1242.
A detailed analysis of protein domains involved in DNA repair was performed by comparing the sequences of the repair proteins from two well-studied model organisms, the bacterium Escherichia coli and yeast Saccharomyces cerevisiae, to the entire sets of protein sequences encoded in completely sequenced genomes of bacteria, archaea and eukaryotes. Previously uncharacterized conserved domains involved in repair were identified, namely four families of nucleases and a family of eukaryotic repair proteins related to the proliferating cell nuclear antigen. In addition, a number of previously undetected occurrences of known conserved domains were detected; for example, a modified helix-hairpin-helix nucleic acid-binding domain in archaeal and eukaryotic RecA homologs. There is a limited repertoire of conserved domains, primarily ATPases and nucleases, nucleic acid-binding domains and adaptor (protein-protein interaction) domains that comprise the repair machinery in all cells, but very few of the repair proteins are represented by orthologs with conserved domain architecture across the three superkingdoms of life. Both the external environment of an organism and the internal environment of the cell, such as the chromatin superstructure in eukaryotes, seem to have a profound effect on the layout of the repair systems. Another factor that apparently has made a major contribution to the composition of the repair machinery is horizontal gene transfer, particularly the invasion of eukaryotic genomes by organellar genes, but also a number of likely transfer events between bacteria and archaea. Several additional general trends in the evolution of repair proteins were noticed; in particular, multiple, independent fusions of helicase and nuclease domains, and independent inactivation of enzymatic domains that apparently retain adaptor or regulatory functions.
PMCID: PMC148307  PMID: 9973609
25.  Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus 
Nucleic Acids Research  2003;31(16):4888-4898.
The eukaryotic pre-replication complex is assembled at replication origins in a reaction called licensing. Licensing involves the interactions of a variety of proteins including the origin recognition complex (ORC), Cdc6 and the Mcm2-7 helicase, homologues of which are also found in archaea. The euryarchaeote Archaeoglobus fulgidus encodes two genes with homology to Orc/Cdc6 and a single Mcm homologue. The A.fulgidus Mcm protein and one Orc/Cdc6 homologue have been purified and investigated in vitro. The Mcm protein is an ATP-dependent, hexameric helicase that can unwind between 200 and 400 bp of duplex DNA. Deletion of 112 amino acids from the N-terminus of A.f Mcm produced a protein, which was still capable of forming a hexamer, was competent in DNA binding and was able to unwind at least 1 kb of duplex DNA. The purified Orc/Cdc6 homologue was also able to bind DNA. Both Mcm and Orc/Cdc6 show a preference for specific DNA structures, namely molecules containing a single stranded bubble that mimics early replication intermediates. Nuclease protection showed that the binding sites for Mcm and Orc/Cdc6 overlap. The Orc/Cdc6 protein bound more tightly to these substrates and was able to displace pre-bound Mcm hexamer.
PMCID: PMC169903  PMID: 12907732

Results 1-25 (545735)