Search tips
Search criteria

Results 1-25 (844828)

Clipboard (0)

Related Articles

1.  Structure of the HHARI Catalytic Domain Shows Glimpses of a HECT E3 Ligase 
PLoS ONE  2013;8(8):e74047.
The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases.
PMCID: PMC3772753  PMID: 24058416
2.  UbcH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids 
Nature  2011;474(7349):105-108.
Although the functional interaction between ubiquitin conjugating enzymes (E2s) and ubiquitin ligases (E3s) is essential in ubiquitin (Ub) signaling, the criteria that define an active E2–E3 pair are not well-established. The human E2 UbcH7 (Ube2L3) shows broad specificity for HECT-type E3s1, but often fails to function with RING E3s in vitro despite forming specific complexes2–4. Structural comparisons of inactive UbcH7/RING complexes with active UbcH5/RING complexes reveal no defining differences3,4, highlighting a gap in our understanding of Ub transfer. We show that, unlike many E2s that transfer Ub with RINGs, UbcH7 lacks intrinsic, E3-independent reactivity with lysine, explaining its preference for HECTs. Despite lacking lysine reactivity, UbcH7 exhibits activity with the RING-In Between-RING (RBR) family of E3s that includes Parkin and human homologue of ariadne (HHARI)5,6. Found in all eukaryotes7, RBRs regulate processes such as translation8 and immune signaling9. RBRs contain a canonical C3HC4-type RING, followed by two conserved Cys/His-rich Zn2+-binding domains, In-Between-RING (IBR) and RING2 domains, which together define this E3 family7. Here we show that RBRs function like RING/HECT hybrids: they bind E2s via a RING domain, but transfer Ub through an obligate thioester-linked Ub (denoted ‘~Ub’), requiring a conserved cysteine residue in RING2. Our results define the functional cadre of E3s for UbcH7, an E2 involved in cell proliferation10 and immune function11, and suggest a novel mechanism for an entire class of E3s.
PMCID: PMC3444301  PMID: 21532592
3.  TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes 
The EMBO Journal  2013;32(21):2848-2860.
RING (Really Interesting New Gene)-in-between-RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc-binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto-inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin-RING ligase (CRL) complexes. In comparison to the modest E3 ligase activity displayed by isolated TRIAD1 or HHARI, binding of the cognate neddylated CRL to TRIAD1 or HHARI greatly stimulates RBR ligase activity in vitro, as determined by auto-ubiquitylation, their ability to stimulate dissociation of a thioester-linked UBCH7∼ubiquitin intermediate, and reactivity with ubiquitin-vinyl methyl ester. Moreover, genetic evidence shows that RBR ligase activity impacts both the levels and activities of neddylated CRLs in vivo. Cumulatively, our work proposes a conserved mechanism of CRL-induced Ariadne RBR ligase activation and further suggests a reciprocal role of this special class of RBRs as regulators of distinct CRLs.
TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes
Ubiquitin ligases of the distinct Cullin-RING ligase (CRL) and RING-between-RING (RBR) families physically and functionally interact, suggesting how RBR ligase auto-inhibition may be relieved in Ariadne-subfamily members.
PMCID: PMC3817463  PMID: 24076655
auto-inhibition; Cullin-RING ligases; HHARI; RBR E3 ubiquitin ligases; TRIAD1
4.  RBR E3 ubiquitin ligases: new structures, new insights, new questions 
Biochemical Journal  2014;458(Pt 3):421-437.
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
PMCID: PMC3940038  PMID: 24576094
catalysis; structure; ubiquitination; ubiquitin ligase; ANKIB1, ankyrin repeat- and IBR domain-containing 1; BRcat, benign-catalytic; CCCP, carbonyl cyanide m-chlorophenylhydrazone; Cdk5, cyclin-dependent kinase 5; cIAP2, cellular inhibitor of apoptosis 2; CK1, casein kinase 1; CPH, Cul7, Parc and HERC2 proteins; CRL, Cul-RING-ligase; Cul, cullin; Eps15, epidermal growth factor receptor pathway substrate 15; FANCL, Fanconi anaemia, complementation group L; HDAC, histone deacetylase; HECT, homologous with E6-associated protein C-terminus; HOIL-1, haem-oxidized IRP2 ubiquitin ligase 1; HOIP, HOIL-1-interacting protein; IBR, InBetweenRING; LUBAC, linear ubiquitin chain assembly complex; MDM2, murine double minute 2; MIRO, mitochondrial Rho GTPase; NEDD, neural-precursor-cell-expressed developmentally down-regulated; NEMO, NF-κB essential modulator; NF-κB, nuclear factor κB; NZF, Npl4 ZNF; Parc, parkin-like cytoplasmic p53-binding protein; PINK1, PTEN-induced putative kinase 1; PKC, protein kinase C; RanBP2, RAN-binding protein 2; RBR, RING-BetweenRING-RING/RING1-BRcat-Rcat; Rcat, required-for-catalysis; RNF, RING finger protein; RWD, RING finger and WD repeat-containing; SH3, Src homology 3; SHARPIN, SHANK-associated RH domain interactor; SILAC, stable isotope labelling by amino acids in cell culture; SUMO, small ubiquitin-related modifier; TOMM70A, translocase of outer mitochondrial membrane 70 homologue A; TRAF6, tumour-necrosis-factor-receptor-associated factor 6; TRIAD, two RING fingers and a DRIL (double RING finger linked); UBA, ubiquitin-associated; UBE2L, ubiquitin-conjugating enzyme E2L; UIM, ubiquitin-interacting motif; Ubl, ubiquitin-like; ZNF, zinc finger
5.  Diversification and Specialization of Plant RBR Ubiquitin Ligases 
PLoS ONE  2010;5(7):e11579.
RBR ubiquitin ligases are components of the ubiquitin-proteasome system present in all eukaryotes. They are characterized by having the RBR (RING – IBR – RING) supradomain. In this study, the patterns of emergence of RBR genes in plants are described.
Methodology/Principal Findings
Phylogenetic and structural data confirm that just four RBR subfamilies (Ariadne, ARA54, Plant I/Helicase and Plant II) exist in viridiplantae. All of them originated before the split that separated green algae from the rest of plants. Multiple genes of two of these subfamilies (Ariadne and Plant II) appeared in early plant evolution. It is deduced that the common ancestor of all plants contained at least five RBR genes and the available data suggest that this number has been increasing slowly along streptophyta evolution, although losses, especially of Helicase RBR genes, have also occurred in several lineages. Some higher plants (e. g. Arabidopsis thaliana, Oryza sativa) contain a very large number of RBR genes and many of them were recently generated by tandem duplications. Microarray data indicate that most of these new genes have low-level and sometimes specific expression patterns. On the contrary, and as occurs in animals, a small set of older genes are broadly expressed at higher levels.
The available data suggests that the dynamics of appearance and conservation of RBR genes is quite different in plants from what has been described in animals. In animals, an abrupt emergence of many structurally diverse RBR subfamilies in early animal history, followed by losses of multiple genes in particular lineages, occurred. These patterns are not observed in plants. It is also shown that while both plants and animals contain a small, similar set of essential RBR genes, the rest evolves differently. The functional implications of these results are discussed.
PMCID: PMC2904391  PMID: 20644651
6.  LUBAC synthesizes linear ubiquitin chains via a thioester intermediate 
EMBO Reports  2012;13(9):840-846.
LUBAC synthesizes linear ubiquitin chains via a thioester intermediate
The N-terminus of the LUBAC catalytic subunit is shown to be autoinhibitory and counteracted by the other subunits of the complex. Linear ubiquitination proceeds through a thioesther intermediate, indicative of a RING/HECT hybrid mechanism.
The linear ubiquitin chain assembly complex (LUBAC) is a RING E3 ligase that regulates immune and inflammatory signalling pathways. Unlike classical RING E3 ligases, LUBAC determines the type of ubiquitin chain being formed, an activity normally associated with the E2 enzyme. We show that the RING-in-between-RING (RBR)-containing region of HOIP—the catalytic subunit of LUBAC—is sufficient to generate linear ubiquitin chains. However, this activity is inhibited by the N-terminal portion of the molecule, an inhibition that is released upon complex formation with HOIL-1L or SHARPIN. Furthermore, we demonstrate that HOIP transfers ubiquitin to the substrate through a thioester intermediate formed by a conserved cysteine in the RING2 domain, supporting the notion that RBR ligases act as RING/HECT hybrids.
PMCID: PMC3432797  PMID: 22791023
E3 ligase; mechanism; thioester; ubiquitination
7.  Genome-Wide Identification and Characterization of RBR Ubiquitin Ligase Genes in Soybean 
PLoS ONE  2014;9(1):e87282.
RBR (RING1-IBR-RING2) proteins play an important role in protein ubiquitination and are involved in many cellular processes. Recent studies showed plant RBR genes were induced by abiotic and biotic stresses. However, detailed studies on RBR genes in the important oil crop, soybean (Glycine max (L.) Merr.), is still lacking. Here we performed a genome-wide search and identified 24 RBR domain-containing genes from the soybean genome sequence and cloned 11 of them. Most soybean RBR proteins contain a highly conserved RBR supra-domain. Phylogenetic analyses indicated all 24 soybean RBR proteins are most related to the RBR proteins from Phaseolus vulgaris, and could be classified into seven groups including Ariadne A, Ariadne B, ARA54, Plant IIA, Plant IIB, Plant IIC, and Helicase. Tandem duplication and block duplication were found among the Ariadne B and Plant IIC group of soybean RBR genes. Despite the conserved RBR supra-domain, there are extensive variations in the additional protein motifs and exon-intron structures between different groups, which indicate they might have diverse functions. Most soybean RBR proteins are predicted to localize in nucleus, and four of them were experimentally confirmed by GFP fusion proteins. Soybean RBR genes are broadly expressed in many tissue types with a little more abundant in the roots and flowers than leaves, stems, and seeds. The expression of GmRTRTP3 (Plant IIB) and GmRTRTP5 (Plant IIC) are induced by NaCl treatment, which suggests these RBR genes might be involved in soybean response to abiotic stresses.
PMCID: PMC3904995  PMID: 24489889
8.  Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases 
Nature Communications  2013;4:1982.
Parkin is a RING-between-RING E3 ligase that functions in the covalent attachment of ubiquitin to specific substrates, and mutations in Parkin are linked to Parkinson’s disease, cancer and mycobacterial infection. The RING-between-RING family of E3 ligases are suggested to function with a canonical RING domain and a catalytic cysteine residue usually restricted to HECT E3 ligases, thus termed ‘RING/HECT hybrid’ enzymes. Here we present the 1.58 Å structure of Parkin-R0RBR, revealing the fold architecture for the four RING domains, and several unpredicted interfaces. Examination of the Parkin active site suggests a catalytic network consisting of C431 and H433. In cells, mutation of C431 eliminates Parkin-catalysed degradation of mitochondria, and capture of an ubiquitin oxyester confirms C431 as Parkin’s cellular active site. Our data confirm that Parkin is a RING/HECT hybrid, and provide the first crystal structure of an RING-between-RING E3 ligase at atomic resolution, providing insight into this disease-related protein.
The Parkinson’s disease-associated protein Parkin regulates the fate of damaged mitochondria by ubiquitinating mitochondrial substrates. Riley et al. present the crystal structure of the Parkin-R0RBR domain, providing new insight into the catalytic mechanism of the enzyme.
PMCID: PMC3709503  PMID: 23770887
9.  The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension 
The EMBO Journal  2012;31(19):3833-3844.
The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension
Like Parkin, the linear ubiquitin chain assembly complex LUBAC functions as a RING/HECT-hybrid ubiquitin ligase, but includes a unique extension that dictates linear ubiquitin linkage specificity.
Activation of the NF-κB pathway requires the formation of Met1-linked ‘linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed ‘Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains.
PMCID: PMC3463842  PMID: 22863777
E3 ligase; HHARI; Parkin; RNF31; TRIAD
10.  UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1 
The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV RESISTANCE LOCUS 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B.
•ARIADNE12 (ARI12) is a functional monoubiquitinated E3 ubiquitin ligase.•CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) regulates the UV-B induction of ARI12.•A genomic ARI12-GFP fusion boosts growth in light and reduces tolerance to UV-B.•ARI12 is a target of a COP1 controlled high fluence rate UV-B signaling pathway.
PMCID: PMC4503874  PMID: 25817546
Arabidopsis; ARIADNE12 (ARI12); CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1); E3 ligase; Transcription; UV-B
11.  Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP 
Nature  2013;503(7476):422-426.
Linear ubiquitin chains are important regulators of cellular signaling pathways that control innate immunity and inflammation through NF-κB activation and protection against TNFα-induced apoptosis1-5. They are synthesized by HOIP, which belongs to the RBR (RING-between-RING) family of E3 ligases and is the catalytic component of LUBAC (linear ubiquitin chain assembly complex), a multi-subunit E3 ligase6. RBR family members act as RING/HECT hybrids, employing RING1 to recognize ubiquitin-loaded E2 while a conserved cysteine in RING2 subsequently forms a thioester intermediate with the transferred or “donor” ubiquitin7. Here we report the crystal structure of the catalytic core of HOIP in its apo form and in complex with ubiquitin. The C-terminal portion of HOIP adopts a novel fold that, together with a zinc finger, forms an ubiquitin-binding platform which orients the acceptor ubiquitin and positions its α-amino group for nucleophilic attack on the E3~ubiquitin thioester. The carboxy-terminal tail of a second ubiquitin molecule is located in close proximity to the catalytic cysteine providing a unique snapshot of the ubiquitin transfer complex containing both donor and acceptor ubiquitin. These interactions are required for activation of the NF-kB pathway in vivo and explain the determinants of linear ubiquitin chain specificity by LUBAC.
PMCID: PMC3838313  PMID: 24141947
E3 ubiquitin ligase; linear ubiquitin chains; structure; mechanism; ubiquitination
12.  Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3 
eLife  2013;2:e00828.
Ubiquitination by HECT E3 enzymes regulates myriad processes, including tumor suppression, transcription, protein trafficking, and degradation. HECT E3s use a two-step mechanism to ligate ubiquitin to target proteins. The first step is guided by interactions between the catalytic HECT domain and the E2∼ubiquitin intermediate, which promote formation of a transient, thioester-bonded HECT∼ubiquitin intermediate. Here we report that the second step of ligation is mediated by a distinct catalytic architecture established by both the HECT E3 and its covalently linked ubiquitin. The structure of a chemically trapped proxy for an E3∼ubiquitin-substrate intermediate reveals three-way interactions between ubiquitin and the bilobal HECT domain orienting the E3∼ubiquitin thioester bond for ligation, and restricting the location of the substrate-binding domain to prioritize target lysines for ubiquitination. The data allow visualization of an E2-to-E3-to-substrate ubiquitin transfer cascade, and show how HECT-specific ubiquitin interactions driving multiple reactions are repurposed by a major E3 conformational change to promote ligation.
eLife digest
Ubiquitin is a small protein that can be covalently linked to other, ‘target’, proteins in a cell to influence their behavior. Ubiquitin can be linked to its targets either as single copies or as polyubiquitin chains in which several ubiquitin molecules are bound end-on-end to each other, with one end of the chain attached to the target protein. A multi-step cascade involving enzymes known as E1, E2, and E3 adds ubiquitin to its targets. These enzymes function in a manner like runners in a relay, with ubiquitin a baton that is passed from E1 to E2 to E3 to the target.
The E3 enzyme is a ligase that catalyzes the formation of a new chemical bond between a ubiquitin and its target. There are approximately 600 different E3 enzymes in human cells that regulate a wide variety of target proteins. A major class of E3 enzymes, called HECT E3s, attaches ubiquitin to its targets in a unique two-step mechanism: the E2 enzymes covalently link a ubiquitin to a HECT E3 to form a complex that subsequently transfers the ubiquitin to its target protein. The ubiquitin is typically added to a particular amino acid, lysine, on the target protein, but the details of how HECT E3s execute this transfer are not well understood. To address this issue, Kamadurai et al. investigate how Rsp5, a HECT E3 ligase in yeast, attaches ubiquitin to a target protein called Sna3.
All HECT E3s have a domain—the HECT domain—that catalyzes the transfer of ubiquitin to its target protein. This domain consists of two sub-structures: the C-lobe, which can receive ubiquitin from E2 and then itself become linked to ubiquitin, and the N-lobe. These lobes were previously thought to adopt various orientations relative to each other to deliver ubiquitin to sites on different target proteins (including to multiple lysines on a single target protein). Unexpectedly, Kamadurai et al. find that in order to transfer the ubiquitin to Sna3, Rsp5 adopts a discrete HECT domain architecture that creates an active site in which parts of the C-lobe and the N-lobe, which are normally separated, are brought together with a ubiquitin molecule. This architecture also provides a mechanism that dictates which substrate lysines can be ubiquitinated based on how accessible they are to this active site.
The same regions of Rsp5 transfer ubiquitin to targets other than Sna3, suggesting that a uniform mechanism—which Kamadurai et al. show is conserved in two related human HECT E3 ligases—might transfer ubiquitin to all its targets. These studies therefore represent a significant step toward understanding how a major class of E3 enzymes modulates the functions of their targets.
PMCID: PMC3738095  PMID: 23936628
ubiquitin; HECT; E3 ligase; E2 conjugating enzyme; NEDD4; Rsp5; S. cerevisiae
13.  The ring between ring fingers (RBR) protein family 
Genome Biology  2007;8(3):209.
An overview of the large and functionally diverse RBR protein family that mediates protein-protein interactions of various kinds in development and disease.
Proteins of the ring between ring fingers (RBR)-domain family are characterized by three groups of specifically clustered (typically eight) cysteine and histidine residues. Whereas the amino-terminal ring domain (N-RING) binds two zinc ions and folds into a classical cross-brace ring finger, the carboxy-terminal ring domain (C-RING) involves only one zinc ion. The three-dimensional structure of the central ring domain, the IBR domain, is still unsolved. About 400 genes coding for RBR proteins have been identified in the genomes of uni- and multicellular eukaryotes and some of their viruses, but the family has not been found in archaea or bacteria. The RBR proteins are classified into 15 major subfamilies (besides some orphan cases) by the phylogenetic relationships of the RBR segments and the conservation of their sequence architecture. The RBR domain mediates protein-protein interactions and a subset of RBR proteins has been shown to function as E3 ubiquitin ligases. RBR proteins have attracted interest because of their involvement in diseases such as parkinsonism, dementia with Lewy bodies, and Alzheimer's disease, and in susceptibility to some intracellular bacterial pathogens. Here, we present an overview of the RBR-domain containing proteins and their subcellular localization, additional domains, function, specificity, and regulation.
PMCID: PMC1868946  PMID: 17367545
14.  Animal HECT ubiquitin ligases: evolution and functional implications 
HECT ubiquitin ligases (HECT E3s) are key components of the eukaryotic ubiquitin-proteasome system and are involved in the genesis of several human diseases. In this study, I analyze the patterns of diversification of HECT E3s since animals emerged in order to provide the right framework to understand the functional data available for proteins of this family.
I show that the current classification of HECT E3s into three groups (NEDD4-like E3s, HERCs and single-HECT E3s) is fundamentally incorrect. First, the existence of a "Single-HECT E3s" group is not supported by phylogenetic analyses. Second, the HERC proteins must be divided into two subfamilies (Large HERCs, Small HERCs) that are evolutionarily very distant, their structural similarity being due to convergence and not to a common origin. Sequence and structural analyses show that animal HECT E3s can be naturally classified into 16 subfamilies. Almost all of them appeared either before animals originated or in early animal evolution. More recently, multiple gene losses have occurred independently in some lineages (nematodes, insects, urochordates), the same groups that have also lost genes of another type of E3s (RBR family). Interestingly, the emergence of some animal HECT E3s precedes the origin of key cellular systems that they regulate (TGF-β and EGF signal transduction pathways; p53 family of transcription factors) and it can be deduced that distantly related HECT proteins have been independently co-opted to perform similar roles. This may contribute to explain why distantly related HECT E3s are involved in the genesis of multiple types of cancer.
The complex evolutionary history of HECT ubiquitin ligases in animals has been deciphered. The most appropriate model animals to study them and new theoretical and experimental lines of research are suggested by these results.
PMCID: PMC2837046  PMID: 20175895
15.  Structure of the human Parkin ligase domain in an autoinhibited state 
The EMBO Journal  2013;32(15):2099-2112.
Mutations in the protein Parkin are associated with Parkinson's disease (PD), the second most common neurodegenerative disease in men. Parkin is an E3 ubiquitin (Ub) ligase of the structurally uncharacterized RING-in-between-RING(IBR)-RING (RBR) family, which, in an HECT-like fashion, forms a catalytic thioester intermediate with Ub. We here report the crystal structure of human Parkin spanning the Unique Parkin domain (UPD, also annotated as RING0) and RBR domains, revealing a tightly packed structure with unanticipated domain interfaces. The UPD adopts a novel elongated Zn-binding fold, while RING2 resembles an IBR domain. Two key interactions keep Parkin in an autoinhibited conformation. A linker that connects the IBR with the RING2 over a 50-Å distance blocks the conserved E2∼Ub binding site of RING1. RING2 forms a hydrophobic interface with the UPD, burying the catalytic Cys431, which is part of a conserved catalytic triad. Opening of intra-domain interfaces activates Parkin, and enables Ub-based suicide probes to modify Cys431. The structure further reveals a putative phospho-peptide docking site in the UPD, and explains many PD-causing mutations.
Structure of the human Parkin ligase domain in an autoinhibited state
The complete structural view of a RING-IBR-RING (RBR) ubiquitin ligase domain reveals an unexpected catalytic triad and explains the effects of various Parkin mutations underlying Parkinson's disease.
PMCID: PMC3730226  PMID: 23727886
E3 ligase; neurodegenerative disease; Parkin; ubiquitin; X-ray crystallography
16.  Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis 
PLoS ONE  2014;9(11):e111120.
Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2–4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.
PMCID: PMC4218711  PMID: 25364908
17.  VprBP (DCAF1): a promiscuous substrate recognition subunit that incorporates into both RING-family CRL4 and HECT-family EDD/UBR5 E3 ubiquitin ligases 
BMC Molecular Biology  2013;14:22.
The terminal step in the ubiquitin modification system relies on an E3 ubiquitin ligase to facilitate transfer of ubiquitin to a protein substrate. The substrate recognition and ubiquitin transfer activities of the E3 ligase may be mediated by a single polypeptide or may rely on separate subunits. The latter organization is particularly prevalent among members of largest class of E3 ligases, the RING family, although examples of this type of arrangement have also been reported among members of the smaller HECT family of E3 ligases. This review describes recent discoveries that reveal the surprising and distinctive ability of VprBP (DCAF1) to serve as a substrate recognition subunit for a member of both major classes of E3 ligase, the RING-type CRL4 ligase and the HECT-type EDD/UBR5 ligase. The cellular processes normally regulated by VprBP-associated E3 ligases, and their targeting and subversion by viral accessory proteins are also discussed. Taken together, these studies provide important insights and raise interesting new questions regarding the mechanisms that regulate or subvert VprBP function in the context of both the CRL4 and EDD/UBR5 E3 ligases.
PMCID: PMC3847654  PMID: 24028781
VprBP; DCAF1; DDB1; Cul4; CRL4; EDD; UBR5; Dyrk2; Merlin; Katanin; UNG2; LGL2; Mcm10; Histone H3; RORα; Methyl degron; p53; TERT; telomerase; RAG1; V(D)J recombination; HIV; Vpr; Vpx; UL35; Ubiquitin; E3 ubiquitin ligase; RING; HECT; WD40 repeat
18.  Ancient origin of animal U-box ubiquitin ligases 
The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs) are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described.
Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4) were already present in the ancestor of all current metazoans and the seventh (WDSUB1) is found in placozoans, cnidarians and bilaterians. The fact that only 4 - 5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT) of ubiquitin ligases.
Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box) are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system.
PMCID: PMC3087547  PMID: 20979629
19.  Evolution of Plant HECT Ubiquitin Ligases 
PLoS ONE  2013;8(7):e68536.
HECT ubiquitin ligases are key components of the ubiquitin-proteasome system, which is present in all eukaryotes. In this study, the patterns of emergence of HECT genes in plants are described. Phylogenetic and structural data indicate that viridiplantae have six main HECT subfamilies, which arose before the split that separated green algae from the rest of plants. It is estimated that the common ancestor of all plants contained seven HECT genes. Contrary to what happened in animals, the number of HECT genes has been kept quite constant in all lineages, both in chlorophyta and streptophyta, although evolutionary recent duplications are found in some species. Several of the genes found in plants may have originated very early in eukaryotic evolution, given that they have clear similarities, both in sequence and structure, to animal genes. Finally, in Arabidopsis thaliana, we found significant correlations in the expression patterns of HECT genes and some ancient, broadly expressed genes that belong to a different ubiquitin ligase family, called RBR. These results are discussed in the context of the evolution of the gene families required for ubiquitination in plants.
PMCID: PMC3712016  PMID: 23869223
20.  Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism 
Cell Research  2013;23(7):886-897.
Pink1, a mitochondrial kinase, and Parkin, an E3 ubiquitin ligase, function in mitochondrial maintenance. Pink1 accumulates on depolarized mitochondria, where it recruits Parkin to mainly induce K63-linked chain ubiquitination of outer membrane proteins and eventually mitophagy. Parkin belongs to the RBR E3 ligase family. Recently, it has been proposed that the RBR domain transfers ubiquitin to targets via a cysteine∼ubiquitin enzyme intermediate, in a manner similar to HECT domain E3 ligases. However, direct evidence for a ubiquitin transfer mechanism and its importance for Parkin's in vivo function is still missing. Here, we report that Parkin E3 activity relies on cysteine-mediated ubiquitin transfer during mitophagy. Mutating the putative catalytic cysteine to serine (Parkin C431S) traps ubiquitin, and surprisingly, also abrogates Parkin mitochondrial translocation, indicating that E3 activity is essential for Parkin translocation. We found that Parkin can bind to K63-linked ubiquitin chains, and that targeting K63-mimicking ubiquitin chains to mitochondria restores Parkin C431S localization. We propose that Parkin translocation is achieved through a novel catalytic activity coupled mechanism.
PMCID: PMC3698636  PMID: 23670163
Pink1; Parkin; mitophagy; E3 ubiquitin ligase; Parkinson's disease; mitochondria
21.  Dosage-Sensitive Function of RETINOBLASTOMA RELATED and Convergent Epigenetic Control Are Required during the Arabidopsis Life Cycle 
PLoS Genetics  2010;6(6):e1000988.
The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development.
Author Summary
Understanding the convergent developmental mechanisms of core cell cycle genes is highly instructive in biology. When these genes are essential in development, lethality precludes mutation analysis throughout the life cycle of an organism. We subjected a homozygous lethal mutation in RETINOBLASTOMA RELATED (RBR) of Arabidopsis for tetraploid genetic analysis to study the function of RBR during the plant life cycle. In diploids, while RBR–deficient female gametophytes with features of aberrant cell fate and differentiation were analogous to what was previously reported for male gametophytes, we provide evidence that RBR controls gametic genome duplication, thus genome integrity in the gametophyte-derived progeny. Quantitative reduction of RBR in tetraploids led to identification of rbr heterozygous plants that displayed novel RBR dosage-dependent phenotypes in differentiation and development of the sporophyte albeit the absence of cell cycle defects. These phenotypes coincided with deregulation of conserved epigenetic factors such as Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the sporophyte, as shown for the gametophytes as well. However, unlike the repression by the PRC2 in gametophytes, RBR is activated by the sporophytic PRC2 subunits, suggesting that distinct modules of the conserved RBR-PRC2-MET1 loop control gametophyte and sporophyte generations in plants.
PMCID: PMC2887464  PMID: 20585548
22.  Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism 
Structure (London, England : 1993)  2013;21(6):1030-1041.
A distinctive mechanism for ubiquitin (Ub) ligation has recently been proposed for the RING1-IBR-RING2 (RBR) family of E3s: an N-terminal RING1 domain recruits a thioester-linked intermediate complex between Ub and the E2 UbcH7, and a structurally unique C-terminal RING2 domain displays a catalytic cysteine required for Ub ligation. To obtain insights into RBR E3s, we determined the crystal structure of the Human Homolog of Ariadne (HHARI), which reveals the individual RING1, IBR, and RING2 domains embedded in superdomains involving sequences specific to the Ariadne RBR subfamily. The central IBR is flanked on one side by RING1, which is exposed and binds UbcH7. On the other side, a C-terminal autoinhibitory “Ariadne domain” masks the RING2 active site. Insights into RBR E3 mechanisms are provided by structure-based mutations that indicate distinct steps of relief from autoinhibition, Ub transfer from E2 to HHARI, and ligation from the HHARI cysteine to a terminal acceptor.
PMCID: PMC3747818  PMID: 23707686
23.  Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation 
EMBO Reports  2011;12(4):342-349.
Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation
Analysis of ubiquitin binding to the HECT domain of Nedd4 suggests that the ubiquitin chain being elongated is kept close to the catalytic cysteine to promote processivity. Together with the accompanying paper by the Huibregtse group, this study shows the catalysis of polyubiquitin chains by HECT E3 ligases.
Several mechanisms have been proposed for the synthesis of substrate-linked ubiquitin chains. HECT ligases directly catalyse protein ubiquitination and have been found to non-covalently interact with ubiquitin. We report crystal structures of the Nedd4 HECT domain, alone and in complex with ubiquitin, which show a new binding mode involving two surfaces on ubiquitin and both subdomains of the HECT N-lobe. The structures suggest a model for HECT-to-substrate ubiquitin transfer, in which the growing chain on the substrate is kept close to the catalytic cysteine to promote processivity. Mutational analysis highlights differences between the processes of substrate polyubiquitination and self-ubiquitination.
PMCID: PMC3077247  PMID: 21399620
catalysis; E3 ligase; polyubiquitination; structure; ubiquitin
24.  Parkin, A Top Level Manager in the Cell’s Sanitation Department 
Parkin belongs to a class of multiple RING domain proteins designated as RBR (RING, in between RING, RING) proteins. In this review we examine what is known regarding the structure/function relationship of the Parkin protein. Parkin contains three RING domains plus a ubiquitin-like domain and an in-between-RING (IBR) domain. RING domains are rich in cysteine amino acids that act as ligands to bind zinc ions. RING domains may interact with DNA or with other proteins and perform a wide range of functions. Some function as E3 ubiquitin ligases, participating in attachment of ubiquitin chains to signal proteasome degradation; however, ubiquitin may be attached for purposes other than proteasome degradation.
It was determined that the C-terminal most RING, RING2, is essential for Parkin to function as an E3 ubiquitin ligase and a number of substrates have been identified. However, Parkin also participates in a number of other fiunctions, such as DNA repair, microtubule stabilization, and formation of aggresomes. Some functions, such as participation in a multi-protein complex implicated in NMDA activity at the post synaptic density, do not require ubiquitination of substrate molecules. Recent observations of RING proteins suggest their function may be regulated by zinc ion binding. We have modeled the three RING domains of Parkin and have identified a new set of RING2 ligands. This set allows for binding of two rather than just one zinc ion, opening the possibility that the number of zinc ions bound acts as a molecular switch to modulate Parkin function.
PMCID: PMC3104551  PMID: 21633666
Parkin; zinc-binding; RING; domains; E3 ligase ubiquitination.
25.  Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway 
PLoS ONE  2013;8(5):e65443.
The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred – E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions.
PMCID: PMC3667038  PMID: 23734257

Results 1-25 (844828)