PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (360654)

Clipboard (0)
None

Related Articles

1.  Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition 
Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution.
doi:10.3791/51547
PMCID: PMC4172098  PMID: 24837535
Physics; Issue 87; Multicomponent nanowires; electrochemistry; sol-gel processes; photocatalysis; photochemistry; H2 evolution
2.  Effect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells 
Nanoscale Research Letters  2012;7(1):579.
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. XRD patterns showed that the oxygen-annealed TiO2 nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO2 nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 μm, respectively. After TiCl4 treatment, the efficiency of TiO2 nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of Rk (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO2 nanotubes were treated with TiCl4. These results indicate that TiO2 nanotubes treated with TiCl4 can increase the surface area of TiO2 nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.
doi:10.1186/1556-276X-7-579
PMCID: PMC3497852  PMID: 23092158
TiO2 nanotube arrays; dye-sensitized solar cells; TiCl4 treatment
3.  Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays 
Nanoscale Research Letters  2009;4(11):1389-1394.
A silicon nanocrystals (Si-ncs) conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene) (P3HT) polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2) nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2 nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.
doi:10.1007/s11671-009-9410-y
PMCID: PMC2894176  PMID: 20628462
Silicon nanocrystals; Bulk heterojunction; Titanium dioxide nanotubes
4.  Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays 
Nanoscale Research Letters  2009;4(11):1389-1394.
A silicon nanocrystals (Si-ncs) conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene) (P3HT) polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2) nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction.
doi:10.1007/s11671-009-9410-y
PMCID: PMC2894176  PMID: 20628462
Silicon nanocrystals; Bulk heterojunction; Titanium dioxide nanotubes
5.  The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures 
Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis.
doi:10.2147/NSA.S9040
PMCID: PMC3781710  PMID: 24198485
TiO2 nanostructure; fabrication techniques; doping in TiO2; TiO2-assisted photoactivity; solar hydrogen; TiO2-based dye-sensitized solar cells; TiO2 self-cleaning; organic synthesis
6.  TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells 
TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current (Jsc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved Jsc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.
doi:10.1186/1556-276X-9-93
PMCID: PMC3974125  PMID: 24565201
Dye-sensitized solar cells; TiO2 nanotube; Micro-flowers; Anodizing
7.  Selective growth of palladium and titanium dioxide nanostructures inside carbon nanotube membranes 
Nanoscale Research Letters  2012;7(1):342.
Hybrid nanostructured arrays based on carbon nanotubes (CNT) and palladium or titanium dioxide materials have been synthesized using self-supported and silicon-supported anodized aluminum oxide (AAO) as nanoporous template. It is well demonstrated that carbon nanotubes can be grown using these membranes and hydrocarbon precursors that decompose at temperatures closer to 600°C without the use of a metal catalyst. In this process, carbonic fragments condensate to form stacked graphitic sheets, which adopt the shape of the pores, yielding from these moulds' multi-walled carbon nanotubes. After this process, the ends of the tubes remain open and accessible to other substances, whereas the outer walls are protected by the alumina. Taking advantage of this fact, we have performed the synthesis of palladium and titanium dioxide nanostructures selectively inside carbon nanotubes using these CNT-AAO membranes as nanoreactors.
doi:10.1186/1556-276X-7-342
PMCID: PMC3443033  PMID: 22731888
carbon nanotubes; nanohybrids; palladium nanoparticles; titanium oxide; 81.07.-b; 81.15.Gh; 81.07.De
8.  Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania 
Scientific Reports  2013;3:1959.
Since crystal phase dominantly affects the properties of nanocrystals, phase control is important for the applications. To demonstrate the size dependence in anatase-rutile phase transition of titania, we used quantum-size titania prepared from the restricted number of titanium ions within dendrimer templates for size precision purposes and optical wave guide spectroscopy for the detection. Contrary to some theoretical calculations, the observed irreversibility in the transition indicates the metastablity of anatase; thermodynamics cannot explain the formation of metastable states. Therefore, we take into account the kinetic control polymerization of TiO6 octahedral units to explain how the crystal phase of the crystal-nucleus-size titania is dependent on which coordination sites, cis- or trans-, react in the TiO6 octahedra, suggesting possibilities for the synthetic phase control of nanocrystals. In short, the dendrimer templates give access to crystal nucleation chemistry. The paper will also contribute to the creation of artificial metastable nanostructures with atomic-level precision.
doi:10.1038/srep01959
PMCID: PMC3675453  PMID: 23743571
9.  Ni-doped TiO2 nanotubes for wide-range hydrogen sensing 
Nanoscale Research Letters  2014;9(1):118.
Doping of titania nanotubes is one of the efficient way to obtain improved physical and chemical properties. Through electrochemical anodization and annealing treatment, Ni-doped TiO2 nanotube arrays were fabricated and their hydrogen sensing performance was investigated. The nanotube sensor demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen atmospheres ranging from 50 ppm to 2% H2. A temperature-dependent sensing from 25°C to 200°C was also found. Based on the experimental measurements and first-principles calculations, the electronic structure and hydrogen sensing properties of the Ni-doped TiO2 with an anatase structure were also investigated. It reveals that Ni substitution of the Ti sites could induce significant inversion of the conductivity type and effective reduction of the bandgap of anatase oxide. The calculations also reveal that the resistance change for Ni-doped anatase TiO2 with/without hydrogen absorption was closely related to the bandgap especially the Ni-induced impurity level.
doi:10.1186/1556-276X-9-118
PMCID: PMC3984682  PMID: 24624981
TiO2 Nanotubes; Ni doping; Hydrogen sensor; First-principles calculations
10.  Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells 
Scientific Reports  2013;3:1892.
The vertically oriented anatase single crystalline TiO2 nanostructure arrays (TNAs) consisting of TiO2 truncated octahedrons with exposed {001} facets or hierarchical TiO2 nanotubes (HNTs) consisting of numerous nanocrystals on Ti-foil substrate were synthesized via a two-step hydrothermal growth process. The first step hydrothermal reaction of Ti foil and NaOH leads to the formation of H-titanate nanowire arrays, which is further performed the second step hydrothermal reaction to obtain the oriented anatase single crystalline TiO2 nanostructures such as TiO2 nanoarrays assembly with truncated octahedral TiO2 nanocrystals in the presence of NH4F aqueous or hierarchical TiO2 nanotubes with walls made of nanocrystals in the presence of pure water. Subsequently, these TiO2 nanostructures were utilized to produce dye-sensitized solar cells in a backside illumination pattern, yielding a significant high power conversion efficiency (PCE) of 4.66% (TNAs, JSC = 7.46 mA cm−2, VOC = 839 mV, FF = 0.75) and 5.84% (HNTs, JSC = 10.02 mA cm−2, VOC = 817 mV, FF = 0.72), respectively.
doi:10.1038/srep01892
PMCID: PMC3665963  PMID: 23715529
11.  Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion 
Competition occurs between the osteoblasts in regional microenvironments and pathogens introduced during surgery, on the surface of bone implants, such as joint prostheses. The aim of this study was to modulate bacterial and osteoblast adhesion on implant surfaces by using a nanotube array. Titanium oxide (TiO2) nanotube arrays, 30 nm or 80 nm in diameter, were prepared by a two-step anodization on titanium substrates. Mechanically polished and acid-etched titanium samples were also prepared to serve as control groups. The standard strains of Staphylococcus epidermidis (S. epidermidis, American Type Culture Collection [ATCC]35984) and mouse C3H10T1/2 cell lines with osteogenic potential were used to evaluate the different responses to the nanotube arrays, in bacteria and eukaryotic cells. We found that the initial adhesion and colonization of S. epidermidis on the surface of the TiO2 nanotube arrays were significantly reduced and that the adhesion of C3H10T1/2 cells on the surface of the TiO2 nanotube arrays was significantly enhanced when compared with the control samples. Based on a surface analysis of all four groups, we observed increased surface roughness, decreased water contact angles, and an enhanced concentration of oxygen and fluorine atoms on the TiO2 nanotube surface. We conclude that the TiO2 nanotube surface can reduce bacterial colonization and enhance C3H10T1/2 cell adhesion; multiple physical and chemical properties of the TiO2 nanotube surface may contribute to these dual effects.
doi:10.2147/IJN.S48084
PMCID: PMC3747852  PMID: 23983463
bacterial adhesion; titanium implant; surface modification
12.  Tunable Nanostructures and Crystal Structures in Titanium Oxide Films 
Nanoscale Research Letters  2008;4(1):54-62.
Controllable nanostructures in spin coated titanium oxide (TiO2) films have been achieved by a very simple means, through change of post deposition annealing temperature. Electron beam imaging and reciprocal space analysis revealed as-deposited TiO2 films to be characterized by a dominant anatase phase which converts to the rutile form at 600 °C and reverts to the anatase modification at 1,200 °C. The phase changes are also accompanied by changes in the film microstructure: from regular nanoparticles (as-deposited) to nanowires (600 °C) and finally to dendrite like shapes at 1,200 °C. Photoluminescence studies, Raman spectral results, and X-ray diffraction data also furnish evidence in support of the observed solid state phase transformations in TiO2.
doi:10.1007/s11671-008-9202-9
PMCID: PMC2893905  PMID: 20596447
Nanostructured TiO2; Phase transformations; Photoluminescence; Spectroscopy
13.  Tunable Nanostructures and Crystal Structures in Titanium Oxide Films 
Nanoscale Research Letters  2008;4(1):54-62.
Controllable nanostructures in spin coated titanium oxide (TiO2) films have been achieved by a very simple means, through change of post deposition annealing temperature. Electron beam imaging and reciprocal space analysis revealed as-deposited TiO2films to be characterized by a dominant anatase phase which converts to the rutile form at 600 °C and reverts to the anatase modification at 1,200 °C. The phase changes are also accompanied by changes in the film microstructure: from regular nanoparticles (as-deposited) to nanowires (600 °C) and finally to dendrite like shapes at 1,200 °C. Photoluminescence studies, Raman spectral results, and X-ray diffraction data also furnish evidence in support of the observed solid state phase transformations in TiO2.
doi:10.1007/s11671-008-9202-9
PMCID: PMC2893905  PMID: 20596447
Nanostructured TiO2; Phase transformations; Photoluminescence; Spectroscopy
14.  Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores 
Nanoscale Research Letters  2007;2(7):355-363.
Self-aligned nanoporous TiO2templates synthesized via dc current electrochemical anodization have been carefully analyzed. The influence of environmental temperature during the anodization, ranging from 2 °C to ambient, on the structure and morphology of the nanoporous oxide formation has been investigated, as well as that of the HF electrolyte chemical composition, its concentration and their mixtures with other acids employed for the anodization. Arrays of self-assembled titania nanopores with inner pores diameter ranging between 50 and 100 nm, wall thickness around 20–60 nm and 300 nm in length, are grown in amorphous phase, vertical to the Ti substrate, parallel aligned to each other and uniformly disordering distributed over all the sample surface. Additional remarks about the photoluminiscence properties of the titania nanoporous templates and the magnetic behavior of the Ni filled nanoporous semiconductor Ti oxide template are also included.
doi:10.1007/s11671-007-9073-5
PMCID: PMC3246376
Titanium oxides; Nanoporous materials; Electrochemical anodization
15.  Preparation of electrochemically active silicon nanotubes in highly ordered arrays 
Summary
Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability) of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry.
doi:10.3762/bjnano.4.73
PMCID: PMC3817651  PMID: 24205460
atomic layer deposition; electrochemistry; lithium ion battery electrode; silica thermal reduction; silicon nanotubes
16.  Growth and characterization of TiO2 nanotubes from sputtered Ti film on Si substrate 
Nanoscale Research Letters  2012;7(1):388.
In this paper, we present the synthesis of self-organized TiO2 nanotube arrays formed by anodization of thin Ti film deposited on Si wafers by direct current (D.C.) sputtering. Organic electrolyte was used to demonstrate the growth of stable nanotubes at room temperature with voltages varying from 10 to 60 V (D.C.). The tubes were about 1.4 times longer than the thickness of the sputtered Ti film, showing little undesired dissolution of the metal in the electrolyte during anodization. By varying the thickness of the deposited Ti film, the length of the nanotubes could be controlled precisely irrespective of longer anodization time and/or anodization voltage. Scanning electron microscopy, atomic force microscopy, diffuse-reflectance UV–vis spectroscopy, and X-ray diffraction were used to characterize the thin film nanotubes. The tubes exhibited good adhesion to the wafer and did not peel off after annealing in air at 350 °C to form anatase TiO2. With TiO2 nanotubes on planar/stable Si substrates, one can envision their integration with the current micro-fabrication technique large-scale fabrication of TiO2 nanotube-based devices.
doi:10.1186/1556-276X-7-388
PMCID: PMC3431266  PMID: 22788778
TiO2 nanotubes; Si substrate; Room temperature
17.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors 
Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions.
doi:10.1186/1556-276X-7-1
PMCID: PMC3260088  PMID: 22214494
titania nanoparticles; europium doping; optical properties; photoluminescence
18.  Capability of coupled CdSe/TiO2 heterogeneous structure for photocatalytic degradation and photoconductivity 
Nanoscale Research Letters  2014;9(1):636.
Highly ordered TiO2 nanotube arrays (TiO2-NTAs), with a uniform tube size on titanium substrate, were obtained by means of reoxidation and annealing. A composite structure, CdSe quantum dots@TiO2 nanotube arrays (CdSe QDs@TiO2-NTAs), was fabricated by assembling CdSe quantum dots into TiO2-NTAs via cyclic voltammetry electrochemical deposition. The X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), and transmission electron microscope (TEM) were carried out for the determination of the composition and structure of the tubular layers. Optical properties were investigated by ultraviolet-visible spectrophotometer (UV-Vis). Photocurrent response under visible light illumination and photocatalytic activity of samples by degradation of methyl orange were measured. The results demonstrated that the photo absorption of the composite film shifted to the visible region, and the photocurrent intensity was greatly enhanced due to the assembly of CdSe QDs. Especially, photocurrent achieved a maximum of 1.853 μA/cm2 after five voltammetry cycles of all samples. After irradiation under ultra violet-visible light for 2 h, the degradation rate of composition to methyl orange (MO) reached 88.20%, demonstrating that the CdSe QDs@TiO2-NTAs exhibited higher photocatalytic activity.
doi:10.1186/1556-276X-9-636
PMCID: PMC4257061  PMID: 25489287
TiO2 nanotubes; CdSe quantum dots; Cyclic voltammetry; Photocatalysis
19.  Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes 
Various techniques for forming TiO2 coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO2 coatings were prepared using the following three processes: anodizing in 0.1 M H3PO4 or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO2 coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the RB-I value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO2 crystal structure did not influence the osteoconductivity. Anodized TiO2 coatings were hydrophilic, but thermally oxidized TiO2 coatings were less hydrophilic than anodized TiO2 coatings because they lacked in surface OH groups. The TiO2 coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples.
doi:10.1155/2012/495218
PMCID: PMC3535825  PMID: 23316128
20.  p-Type hydrogen sensing with Al- and V-doped TiO2 nanostructures 
Doping with other elements is one of the efficient ways to modify the physical and chemical properties of TiO2 nanomaterials. In the present work, anatase TiO2 nanofilms doped with Al and V elements were fabricated through anodic oxidation of Ti6Al4V alloy and further annealing treatment. Hydrogen sensing behavior of the crystallized Ti-Al-V-O nanofilms at various working temperatures was investigated through exposure to 1,000 ppm H2. Different from n-type hydrogen sensing characteristics of undoped TiO2 nanotubes, the Al- and V-doped nanofilms presented a p-type hydrogen sensing behavior by showing increased resistance upon exposure to the hydrogen-containing atmosphere. The Ti-Al-V-O nanofilm annealed at 450°C was mainly composed of anatase phase, which was sensitive to hydrogen-containing atmosphere only at elevated temperatures. Annealing of the Ti-Al-V-O nanofilm at 550°C could increase the content of anatase phase in the oxide nanofilm and thus resulted in a good sensitivity and resistance recovery at both room temperature and elevated temperatures. The TiO2 nanofilms doped with Al and V elements shows great potential for use as a robust semiconducting hydrogen sensor.
doi:10.1186/1556-276X-8-25
PMCID: PMC3570382  PMID: 23311459
TiO2; Nanostructures; Doping; Hydrogen sensor; p- type
21.  Effect of annealing temperature on wettability of TiO2 nanotube array films 
Nanoscale Research Letters  2014;9(1):621.
Highly ordered TiO2 nanotube array (TN) films were prepared by anodization of titanium foil in a mixed electrolyte solution of glycerin and NH4F and then annealed at 200°C, 400°C, 600°C, and 800°C, respectively. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), water contact angle (WCA), and photoluminescence (PL). It was found that low temperature (below 600°C) has no significant influence on surface morphology, but the diameter of the nanotube increases from 40 to 50 nm with increasing temperature. At 800°C, the nanotube arrays are completely destroyed and only dense rutile film is observed. Samples unannealed and annealed at 200°C are amorphous. At 400°C, anatase phase appears. At 600°C, rutile phase appears. At 800°C, anatase phase changes into rutile phase completely. The wettability of the TN films shows that the WCAs for all samples freshly annealed at different temperatures are about 0°. After the annealed samples have been stored in air for 1 month, the WCAs increase to 130°, 133°, 135°, 141°, and 77°, respectively. Upon ultraviolet (UV) irradiation, they exhibit a significant transition from hydrophobicity to hydrophilicity. Especially, samples unannealed and annealed at 400°C show high photoinduced hydrophilicity.
doi:10.1186/1556-276X-9-621
PMCID: PMC4240947  PMID: 25426006
TiO2 nanotube arrays; Annealing temperature; Wettability; Photoinduced hydrophilicity
22.  Bactericidal Performance of Visible-Light Responsive Titania Photocatalyst with Silver Nanostructures 
PLoS ONE  2010;5(4):e10394.
Background
Titania dioxide (TiO2) photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO2 photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved.
Methodology/Principal Findings
Using thermal reduction method, here we synthesized silver-nanostructures coated TiO2 thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO2, carbon-doped TiO2 [TiO2 (C)] and nitrogen-doped TiO2 [TiO2 (N)], TiO2 (N) showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO2 (N) substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials.
Conclusion/Significance
Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.
doi:10.1371/journal.pone.0010394
PMCID: PMC2861596  PMID: 20454454
23.  Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing 
Scientific Reports  2013;3:2748.
Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing.
doi:10.1038/srep02748
PMCID: PMC3782885  PMID: 24067318
24.  Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization 
Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities.
doi:10.1016/j.msec.2012.12.068
PMCID: PMC4040976  PMID: 23827596
25.  A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask 
Sensors (Basel, Switzerland)  2010;10(1):670-683.
An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO) nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE) processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous) nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (∼33%) improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.
doi:10.3390/s100100670
PMCID: PMC3270862  PMID: 22315561
anodic aluminium oxide (AAO); macroporous; MEMS; TiO2 gas sensor

Results 1-25 (360654)