PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (710629)

Clipboard (0)
None

Related Articles

1.  Nuclear DNA Content Estimates in Green Algal Lineages: Chlorophyta and Streptophyta 
Annals of Botany  2007;99(4):677-701.
Background and Aims
Consensus higher-level molecular phylogenies present a compelling case that an ancient divergence separates eukaryotic green algae into two major monophyletic lineages, Chlorophyta and Streptophyta, and a residuum of green algae, which have been referred to prasinophytes or micromonadophytes. Nuclear DNA content estimates have been published for less than 1% of the described green algal members of Chlorophyta, which includes multicellular green marine algae and freshwater flagellates (e.g. Chlamydomonas and Volvox). The present investigation summarizes the state of our knowledge and adds substantially to our database of C-values, especially for the streptophyte charophycean lineage which is the sister group of the land plants. A recent list of 2C nuclear DNA contents for isolates and species of green algae is expanded by 72 to 157.
Methods
The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and red blood cell (chicken erythrocytes) standard were used to estimate 2C values with static microspectrophotometry.
Key Results
In Chlorophyta, including Chlorophyceae, Prasinophyceae, Trebouxiophyceae and Ulvophyceae, 2C DNA estimates range from 0·01 to 5·8 pg. Nuclear DNA content variation trends are noted and discussed for specific problematic taxon pairs, including Ulotrichales–Ulvales, and Cladophorales–Siphonocladales. For Streptophyta, 2C nuclear DNA contents range from 0·2 to 6·4 pg, excluding the highly polyploid Charales and Desmidiales, which have genome sizes of up to 14·8 and 46·8 pg, respectively. Nuclear DNA content data for Streptophyta superimposed on a contemporary molecular phylogeny indicate that early diverging lineages, including some members of Chlorokybales, Coleochaetales and Klebsormidiales, have genomes as small as 0·1–0·5 pg. It is proposed that the streptophyte ancestral nuclear genome common to both the charophyte and the embryophyte lineages can be characterized as 1C = 0·2 pg and 1n = 6.
Conclusions
These data will help pre-screen candidate species for the on-going construction of bacterial artificial chromosome nuclear genome libraries for land plant ancestors. Data for the prasinophyte Mesostigma are of particular interest as this alga reportedly most closely resembles the ‘ancestral green flagellate’. Both mechanistic and ecological processes are discussed that could have produced the observed C-value increase of >100-fold in the charophyte green algae whereas the ancestral genome was conserved in the embryophytes.
doi:10.1093/aob/mcl294
PMCID: PMC2802934  PMID: 17272304
‘Ancestral green flagellate’ (AGF); C-value enigma; chlorophyta; DNA C-values; nuclear genome size; Streptophyta
2.  The Hawaiian Rhodophyta Biodiversity Survey (2006-2010): a summary of principal findings 
BMC Plant Biology  2010;10:258.
Background
The Hawaiian red algal flora is diverse, isolated, and well studied from a morphological and anatomical perspective, making it an excellent candidate for assessment using a combination of traditional taxonomic and molecular approaches. Acquiring and making these biodiversity data freely available in a timely manner ensures that other researchers can incorporate these baseline findings into phylogeographic studies of Hawaiian red algae or red algae found in other locations.
Results
A total of 1,946 accessions are represented in the collections from 305 different geographical locations in the Hawaiian archipelago. These accessions represent 24 orders, 49 families, 152 genera and 252 species/subspecific taxa of red algae. One order of red algae (the Rhodachlyales) was recognized in Hawaii for the first time and 196 new island distributional records were determined from the survey collections. One family and four genera are reported for the first time from Hawaii, and multiple species descriptions are in progress for newly discovered taxa. A total of 2,418 sequences were generated for Hawaiian red algae in the course of this study - 915 for the nuclear LSU marker, 864 for the plastidial UPA marker, and 639 for the mitochondrial COI marker. These baseline molecular data are presented as neighbor-joining trees to illustrate degrees of divergence within and among taxa. The LSU marker was typically most conserved, followed by UPA and COI. Phylogenetic analysis of a set of concatenated LSU, UPA and COI sequences recovered a tree that broadly resembled the current understanding of florideophyte red algal relationships, but bootstrap support was largely absent above the ordinal level. Phylogeographic trends are reported here for some common taxa within the Hawaiian Islands and include examples of those with, as well as without, intraspecific variation.
Conclusions
The UPA and COI markers were determined to be the most useful of the three and are recommended for inclusion in future algal biodiversity surveys. Molecular data for the survey provide the most extensive assessment of Hawaiian red algal diversity and, in combination with the morphological/anatomical and distributional data collected as part of the project, provide a solid baseline data set for future studies of the flora. The data are freely available via the Hawaiian Algal Database (HADB), which was designed and constructed to accommodate the results of the project. We present the first DNA sequence reference collection for a tropical Pacific seaweed flora, whose value extends beyond Hawaii since many Hawaiian taxa are shared with other tropical areas.
doi:10.1186/1471-2229-10-258
PMCID: PMC3012605  PMID: 21092229
3.  Estimates of nuclear DNA content in 98 species of brown algae (Phaeophyta) 
AoB Plants  2011;2011:plr001.
Despite the fact that brown algae are critical components of marine ecosystems around the world only one species has had its genome sequenced. To facilitate genome studies in the class we report data for 12 of the 19 recognized orders.
Background and aims
Brown algae are critical components of marine ecosystems around the world. However, the genome of only one species of the class has so far been sequenced. This contrasts with numerous sequences available for model organisms such as higher plants, flies or worms. The present communication expands our coverage of DNA content information to 98 species of brown algae with a view to facilitating further genomic investigations of the class.
Methodology
The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and the red blood cell (chicken erythrocyte) standard were used to estimate 2C values by static microspectrophotometry.
Principal results
2C DNA contents are reported for 98 species of brown algae, almost doubling the number of estimates available for the class. The present results also expand the reported DNA content range to 0.2–3.6 pg, with several species of Fucales and Laminariales containing apparent polyploid genomes with 2C = 1.8–3.6 pg.
Conclusions
The data provide DNA content values for 12 of the 19 recognized orders of brown algae spanning the breadth of the class. Despite earlier contentions concerning DNA content and the presence of oogamy, the present results do not support a correlation between phylogenetic placement and genome size. The closest sister groups to the brown algae have genome sizes on the order of 0.3 pg (e.g. Schizocladiophyceae), suggesting that this may be the ancestral genome size. However, DNA content ranges widely across the class.
doi:10.1093/aobpla/plr001
PMCID: PMC3064507  PMID: 22476472
4.  Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). 
Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non-plant (meta-algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta-algae and numerous secondarily non-photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b. I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi-targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma. These hypothetical ER-derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein-coding genes (30 encoding plastid proteins) and a red or blue phycobiliprotein antenna pigment, and the chromobiotes (heterokonts and haptophytes), which lost phycobilins and evolved the brown carotenoid fucoxanthin that colours brown seaweeds, diatoms and haptophytes. Chromobiotes transferred the 30 genes to the nucleus and lost the NM genome and nuclear-pore complexes, but retained its membrane as the periplastid reticulum (PPR), putatively the phospholipid factory of the periplastid space (former algal cytoplasm), as did the ancestral alveolate independently. The chlorarachnean NM has three minute chromosomes bearing approximately 300 genes riddled with pygmy introns. I propose that the periplastid membrane (PPM, the former algal plasma membrane) of chromalveolates, and possibly chlorarachneans, grows by fusion of vesicles emanating from the NM envelope or PPR. Dinoflagellates and euglenoids independently lost the PPM and PPR (after diverging from Sporozoa and chlorarachneans, respectively) and evolved triple chloroplast envelopes comprising the original plant double envelope and an extra outermost membrane, the EM, derived from the perialgal vacuole. In all metaalgae most chloroplast proteins are coded by nuclear genes and enter the chloroplast by using bipartite targeting sequences--an upstream signal sequence for entering the ER and a downstream chloroplast transit sequence. I present a new theory for the four-fold diversification of the chloroplast OM protein translocon following its insertion into the PPM to facilitate protein translocation across it (of both periplastid and plastid proteins). I discuss evidence from genome sequencing and other sources on the contrasting modes of protein targeting, cellular integration, and evolution of these two major lineages of eukaryote "cells within cells". They also provide powerful evidence for natural selection's effectiveness in eliminating most functionless DNA and therefore of a universally useful non-genic function for nuclear non-coding DNA, i.e. most DNA in the biosphere, and dramatic examples of genomic reduction. I briefly argue that chloroplast replacement in dinoflagellates, which happened at least twice, may have been evolutionarily easier than secondary symbiogenesis because parts of the chromalveolate protein-targeting machinery could have helped enslave the foreign plastids.
doi:10.1098/rstb.2002.1194
PMCID: PMC1693104  PMID: 12594921
5.  Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids 
Background
Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes.
Results
The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist plastid genomes.
Conclusion
The phylogenetic studies using concatenated plastid proteins still do not resolve the question of the monophyly of all chromist plastids. However, these results support both the monophyly of heterokont plastids and that of cryptophyte and haptophyte plastids, in agreement with nuclear phylogenies.
doi:10.1186/1471-2148-9-253
PMCID: PMC2765969  PMID: 19835607
6.  Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers 
PLoS ONE  2013;8(3):e59001.
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase – a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.
doi:10.1371/journal.pone.0059001
PMCID: PMC3607583  PMID: 23536846
7.  Nuclear DNA Content Estimates in Multicellular Green, Red and Brown Algae: Phylogenetic Considerations 
Annals of Botany  2005;95(1):7-44.
• Background and Aims Multicellular eukaryotic algae are phylogenetically disparate. Nuclear DNA content estimates have been published for fewer than 1 % of the described species of Chlorophyta, Phaeophyta and Rhodophyta. The present investigation aims to summarize the state of our knowledge and to add substantially to our database of C-values for theses algae.
• Methods The DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole) and RBC (chicken erythrocyte) standard were used to estimate 2C values with static microspectrophotometry.
• Key Results 2C DNA contents for 85 species of Chlorophyta range from 0·2–6·1 pg, excluding the highly polyploidy Charales and Desmidiales with DNA contents of up to 39·2 and 20·7 pg, respectively. 2C DNA contents for 111 species of Rhodophyta range from 0·1–2·8 pg, and for 44 species of Phaeophyta range from 0·2–1·8 pg.
• Conclusions New availability of consensus higher-level molecular phylogenies provides a framework for viewing C-value data in a phylogenetic context. Both DNA content ranges and mean values are greater in taxa considered to be basal. It is proposed that the basal, ancestral genome in each algal group was quite small. Both mechanistic and ecological processes are discussed that could have produced the observed C-value ranges.
doi:10.1093/aob/mci002
PMCID: PMC4246707  PMID: 15596456
C-value enigma; Chlorophyta; DNA C-values; eukaryotic algae; nuclear genome size; Phaeophyta; Rhodophyta
8.  Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism 
A comprehensive genome-scale metabolic network of Chlamydomonas reinhardtii, including a detailed account of light-driven metabolism, is reconstructed and validated. The model provides a new resource for research of C. reinhardtii metabolism and in algal biotechnology.
The genome-scale metabolic network of Chlamydomonas reinhardtii (iRC1080) was reconstructed, accounting for >32% of the estimated metabolic genes encoded in the genome, and including extensive details of lipid metabolic pathways.This is the first metabolic network to explicitly account for stoichiometry and wavelengths of metabolic photon usage, providing a new resource for research of C. reinhardtii metabolism and developments in algal biotechnology.Metabolic functional annotation and the largest transcript verification of a metabolic network to date was performed, at least partially verifying >90% of the transcripts accounted for in iRC1080. Analysis of the network supports hypotheses concerning the evolution of latent lipid pathways in C. reinhardtii, including very long-chain polyunsaturated fatty acid and ceramide synthesis pathways.A novel approach for modeling light-driven metabolism was developed that accounts for both light source intensity and spectral quality of emitted light. The constructs resulting from this approach, termed prism reactions, were shown to significantly improve the accuracy of model predictions, and their use was demonstrated for evaluation of light source efficiency and design.
Algae have garnered significant interest in recent years, especially for their potential application in biofuel production. The hallmark, model eukaryotic microalgae Chlamydomonas reinhardtii has been widely used to study photosynthesis, cell motility and phototaxis, cell wall biogenesis, and other fundamental cellular processes (Harris, 2001). Characterizing algal metabolism is key to engineering production strains and understanding photobiological phenomena. Based on extensive literature on C. reinhardtii metabolism, its genome sequence (Merchant et al, 2007), and gene functional annotation, we have reconstructed and experimentally validated the genome-scale metabolic network for this alga, iRC1080, the first network to account for detailed photon absorption permitting growth simulations under different light sources. iRC1080 accounts for 1080 genes, associated with 2190 reactions and 1068 unique metabolites and encompasses 83 subsystems distributed across 10 cellular compartments (Figure 1A). Its >32% coverage of estimated metabolic genes is a tremendous expansion over previous algal reconstructions (Boyle and Morgan, 2009; Manichaikul et al, 2009). The lipid metabolic pathways of iRC1080 are considerably expanded relative to existing networks, and chemical properties of all metabolites in these pathways are accounted for explicitly, providing sufficient detail to completely specify all individual molecular species: backbone molecule and stereochemical numbering of acyl-chain positions; acyl-chain length; and number, position, and cis–trans stereoisomerism of carbon–carbon double bonds. Such detail in lipid metabolism will be critical for model-driven metabolic engineering efforts.
We experimentally verified transcripts accounted for in the network under permissive growth conditions, detecting >90% of tested transcript models (Figure 1B) and providing validating evidence for the contents of iRC1080. We also analyzed the extent of transcript verification by specific metabolic subsystems. Some subsystems stood out as more poorly verified, including chloroplast and mitochondrial transport systems and sphingolipid metabolism, all of which exhibited <80% of transcripts detected, reflecting incomplete characterization of compartmental transporters and supporting a hypothesis of latent pathway evolution for ceramide synthesis in C. reinhardtii. Additional lines of evidence from the reconstruction effort similarly support this hypothesis including lack of ceramide synthetase and other annotation gaps downstream in sphingolipid metabolism. A similar hypothesis of latent pathway evolution was established for very long-chain fatty acids (VLCFAs) and their polyunsaturated analogs (VLCPUFAs) (Figure 1C), owing to the absence of this class of lipids in previous experimental measurements, lack of a candidate VLCFA elongase in the functional annotation, and additional downstream annotation gaps in arachidonic acid metabolism.
The network provides a detailed account of metabolic photon absorption by light-driven reactions, including photosystems I and II, light-dependent protochlorophyllide oxidoreductase, provitamin D3 photoconversion to vitamin D3, and rhodopsin photoisomerase; this network accounting permits the precise modeling of light-dependent metabolism. iRC1080 accounts for effective light spectral ranges through analysis of biochemical activity spectra (Figure 3A), either reaction activity or absorbance at varying light wavelengths. Defining effective spectral ranges associated with each photon-utilizing reaction enabled our network to model growth under different light sources via stoichiometric representation of the spectral composition of emitted light, termed prism reactions. Coefficients for different photon wavelengths in a prism reaction correspond to the ratios of photon flux in the defined effective spectral ranges to the total emitted photon flux from a given light source (Figure 3B). This approach distinguishes the amount of emitted photons that drive different metabolic reactions. We created prism reactions for most light sources that have been used in published studies for algal and plant growth including solar light, various light bulbs, and LEDs. We also included regulatory effects, resulting from lighting conditions insofar as published studies enabled. Light and dark conditions have been shown to affect metabolic enzyme activity in C. reinhardtii on multiple levels: transcriptional regulation, chloroplast RNA degradation, translational regulation, and thioredoxin-mediated enzyme regulation. Through application of our light model and prism reactions, we were able to closely recapitulate experimental growth measurements under solar, incandescent, and red LED lights. Through unbiased sampling, we were able to establish the tremendous statistical significance of the accuracy of growth predictions achievable through implementation of prism reactions. Finally, application of the photosynthetic model was demonstrated prospectively to evaluate light utilization efficiency under different light sources. The results suggest that, of the existing light sources, red LEDs provide the greatest efficiency, about three times as efficient as sunlight. Extending this analysis, the model was applied to design a maximally efficient LED spectrum for algal growth. The result was a 677-nm peak LED spectrum with a total incident photon flux of 360 μE/m2/s, suggesting that for the simple objective of maximizing growth efficiency, LED technology has already reached an effective theoretical optimum.
In summary, the C. reinhardtii metabolic network iRC1080 that we have reconstructed offers insight into the basic biology of this species and may be employed prospectively for genetic engineering design and light source design relevant to algal biotechnology. iRC1080 was used to analyze lipid metabolism and generate novel hypotheses about the evolution of latent pathways. The predictive capacity of metabolic models developed from iRC1080 was demonstrated in simulating mutant phenotypes and in evaluation of light source efficiency. Our network provides a broad knowledgebase of the biochemistry and genomics underlying global metabolism of a photoautotroph, and our modeling approach for light-driven metabolism exemplifies how integration of largely unvisited data types, such as physicochemical environmental parameters, can expand the diversity of applications of metabolic networks.
Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology.
doi:10.1038/msb.2011.52
PMCID: PMC3202792  PMID: 21811229
Chlamydomonas reinhardtii; lipid metabolism; metabolic engineering; photobioreactor
9.  Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids 
Background
Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont.
Results
We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome.
Conclusions
Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.
doi:10.1186/1471-2148-11-105
PMCID: PMC3101172  PMID: 21501489
10.  Outsourcing the Nucleus: Nuclear Pore Complex Genes are no Longer Encoded in Nucleomorph Genomes 
The nuclear pore complex (NPC) facilitates transport between nucleus and cytoplasm. The protein constituents of the NPC, termed nucleoporins (Nups), are conserved across a wide diversity of eukaryotes. In apparent exception to this, no nucleoporin genes have been identified in nucleomorph genomes. Nucleomorphs, nuclear remnants of once free-living eukaryotes, took up residence as secondary endosymbionts in cryptomonad and chlorarachniophyte algae. As these genomes are highly reduced, Nup genes may have been lost, or relocated to the host nucleus. However, Nup genes are often poorly conserved between species, so absence may be an artifact of low sequence similarity. We therefore constructed an evolutionary bioinformatic screen to establish whether the apparent absence of Nup genes in nucleomorph genomes is due to genuine absence or the inability of current methods to detect homologues. We searched green plant (Arabidopsis and rice), green alga (Chlamydomonas reinhardtii) and red alga (Cyanidioschyzon merolae) genomes, plus two nucleomorph genomes (Bigelowiella natans and Guillardia theta) with profile hidden Markov models (HMMs) from curated alignments of known vertebrate/yeast Nups. Since the plant, algal and nucleomorph genomes all belong to the kingdom Plantae, and are evolutionarily distant from the outgroup (vertebrate/yeast) training set, we use the plant and algal genomes as internal positive controls for the sensitivity of the searches in nucleomorph genomes. We find numerous Nup homologues in all plant and free-living algal species, but none in either nucleomorph genome. BLAST searches using identified plant and algal Nups also failed to detect nucleomorph homologues. We conclude that nucleomorph Nup genes have either been lost, being replaced by host Nup genes, or, that nucleomorph Nup genes have been transferred to the host nucleus twice independently; once in the evolution of the red algal nucleomorph and once in the green algal nucleomorph.
PMCID: PMC2674657  PMID: 19455199
nuclear pore complex; nucleomorph; nucleoporin; reductive evolution; gene loss
11.  Polyploidy of Endosymbiotically Derived Genomes in Complex Algae 
Genome Biology and Evolution  2014;6(4):974-980.
Chlorarachniophyte and cryptophyte algae have complex plastids that were acquired by the uptake of a green or red algal endosymbiont via secondary endosymbiosis. The plastid is surrounded by four membranes, and a relict nucleus, called the nucleomorph, remains in the periplastidal compartment that is the remnant cytoplasm of the endosymbiont. Thus, these two algae possess four different genomes in a cell: Nuclear, nucleomorph, plastid, and mitochondrial. Recently, sequencing of the nuclear genomes of the chlorarachniophyte Bigelowiella natans and the cryptophyte Guillardia theta has been completed, and all four genomes have been made available. However, the copy number of each genome has never been investigated. It is important to know the actual DNA content of each genome, especially the highly reduced nucleomorph genome, for studies on genome evolution. In this study, we calculated genomic copy numbers in B. natans and G. theta using a real-time quantitative polymerase chain reaction approach. The nuclear genomes were haploid in both species, whereas the nucleomorph genomes were estimated to be diploid and tetraploid, respectively. Mitochondria and plastids contained a large copy number of genomic DNA in each cell. In the secondary endosymbioses of chlorarachniophytes and cryptophytes, the endosymbiont nuclear genomes were highly reduced in size and in the number of coding genes, whereas the chromosomal copy number was increased, as in bacterial endosymbiont genomes. This suggests that polyploidization is a general characteristic of highly reduced genomes in broad prokaryotic and eukaryotic endosymbionts.
doi:10.1093/gbe/evu071
PMCID: PMC4007541  PMID: 24709562
chlorarachniophyte; cryptophyte; endosymbiosis; nucleomorph; plastid
12.  Phylogenomic Analysis of “Red” Genes from Two Divergent Species of the “Green” Secondary Phototrophs, the Chlorarachniophytes, Suggests Multiple Horizontal Gene Transfers from the Red Lineage before the Divergence of Extant Chlorarachniophytes 
PLoS ONE  2014;9(6):e101158.
The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the “green” lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of “red” genes in their nuclear genomes. To elucidate the origin of such “red” genes in chlorarachniophyte nuclear genomes, we carried out exhaustive single-gene phylogenetic analyses, including two operational taxonomic units (OTUs) that represent two divergent sister lineages of the Chlorarachniophyta, Amorphochlora amoeboformis ( = Lotharella amoeboformis; based on RNA sequences newly determined here) and Bigelowiella natans (based on the published genome sequence). We identified 10 genes of cyanobacterial origin, phylogenetic analysis of which showed the chlorarachniophytes to branch with the red lineage (red algae and/or red algal secondary or tertiary plastid-containing eukaryotes). Of the 10 genes, 7 demonstrated robust monophyly of the two chlorarachniophyte OTUs. Thus, the common ancestor of the extant chlorarachniophytes likely experienced multiple horizontal gene transfers from the red lineage. Because 4 of the 10 genes are obviously photosynthesis- and/or plastid-related, and almost all of the eukaryotic OTUs in the 10 trees possess plastids, such red genes most likely originated directly from photosynthetic eukaryotes. This situation could be explained by a possible cryptic endosymbiosis of a red algal plastid before the secondary endosymbiosis of the green algal plastid, or a long-term feeding on a single (or multiple closely related) red algal plastid-containing eukaryote(s) after the green secondary endosymbiosis.
doi:10.1371/journal.pone.0101158
PMCID: PMC4074131  PMID: 24972019
13.  The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands 
Background
The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage.
Results
The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ considerably in gene content.
Conclusion
Our results underscore the remarkable plasticity of the chlorophycean chloroplast genome. Owing to this plasticity, only a sketchy portrait could be drawn for the chloroplast genome of the last common ancestor of Scenedesmus and Chlamydomonas.
doi:10.1186/1471-2148-6-37
PMCID: PMC1513399  PMID: 16638149
14.  Complete Sequence and Analysis of Plastid Genomes of Two Economically Important Red Algae: Pyropia haitanensis and Pyropia yezoensis 
PLoS ONE  2013;8(5):e65902.
Background
Pyropia haitanensis and P. yezoensis are two economically important marine crops that are also considered to be research models to study the physiological ecology of intertidal seaweed communities, evolutionary biology of plastids, and the origins of sexual reproduction. This plastid genome information will facilitate study of breeding, population genetics and phylogenetics.
Principal Findings
We have fully sequenced using next-generation sequencing the circular plastid genomes of P. hatanensis (195,597 bp) and P. yezoensis (191,975 bp), the largest of all the plastid genomes of the red lineage sequenced to date. Organization and gene contents of the two plastids were similar, with 211–213 protein-coding genes (including 29–31 unknown-function ORFs), 37 tRNA genes, and 6 ribosomal RNA genes, suggesting a largest coding capacity in the red lineage. In each genome, 14 protein genes overlapped and no interrupted genes were found, indicating a high degree of genomic condensation. Pyropia maintain an ancient gene content and conserved gene clusters in their plastid genomes, containing nearly complete repertoires of the plastid genes known in photosynthetic eukaryotes. Similarity analysis based on the whole plastid genome sequences showed the distance between P. haitanensis and P. yezoensis (0.146) was much smaller than that of Porphyra purpurea and P. haitanensis (0.250), and P. yezoensis (0.251); this supports re-grouping the two species in a resurrected genus Pyropia while maintaining P. purpurea in genus Porphyra. Phylogenetic analysis supports a sister relationship between Bangiophyceae and Florideophyceae, though precise phylogenetic relationships between multicellular red alage and chromists were not fully resolved.
Conclusions
These results indicate that Pyropia have compact plastid genomes. Large coding capacity and long intergenic regions contribute to the size of the largest plastid genomes reported for the red lineage. Possessing the largest coding capacity and ancient gene content yet found reveal that Pyropia are more primitive multicellular red algae.
doi:10.1371/journal.pone.0065902
PMCID: PMC3667073  PMID: 23734264
15.  Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae 
BMC Genomics  2013;14:457.
Background
Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression.
Results
Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength.
Conclusions
Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants. Protein domain structures and expression analyses in green alga H. pluvialis indicate that various chy genes are in different manners response to light. The knowledge of evolution of chy genes in photosynthetic eukaryotes provided information of gene cloning and functional investigation of chy genes in algae in the future.
doi:10.1186/1471-2164-14-457
PMCID: PMC3728230  PMID: 23834441
Carotenoid hydroxylase; Xanthophylls biosynthesis; Structure and evolution; Molecular cloning; Expression profiles; Algae
16.  Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779 
PLoS Genetics  2012;8(11):e1003064.
Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.
Author Summary
Algae are a highly diverse group of organisms that have become the focus of renewed interest due to their potential for producing biofuel feedstocks, nutraceuticals, and biomaterials. Their high photosynthetic yields and ability to grow in areas unsuitable for agriculture provide a potential sustainable alternative to using traditional agricultural crops for biofuels. Because none of the algae currently in use have a history of domestication, and bioengineering of algae is still in its infancy, there is a need to develop algal strains adapted to cultivation for industrial large-scale production of desired compounds. Model organisms ranging from mice to baker's yeast have been instrumental in providing insights into fundamental biological structures and functions. The algal field needs versatile models to develop a fundamental understanding of photosynthetic production of biomass and valuable compounds in unicellular, marine, oleaginous algal species. To contribute to the development of such an algal model system for basic discovery, we sequenced the genome and two sets of transcriptomes of N. oceanica CCMP1779, assembled the genomic sequence, identified putative genes, and began to interpret the function of selected genes. This species was chosen because it is readily transformable with foreign DNA and grows well in culture.
doi:10.1371/journal.pgen.1003064
PMCID: PMC3499364  PMID: 23166516
17.  RNA-Mediated Silencing in Algae: Biological Roles and Tools for Analysis of Gene Function ▿ 
Eukaryotic Cell  2011;10(9):1164-1172.
Algae are a large group of aquatic, typically photosynthetic, eukaryotes that include species from very diverse phylogenetic lineages, from those similar to land plants to those related to protist parasites. The recent sequencing of several algal genomes has provided insights into the great complexity of these organisms. Genomic information has also emphasized our lack of knowledge of the functions of many predicted genes, as well as the gene regulatory mechanisms in algae. Core components of the machinery for RNA-mediated silencing show widespread distribution among algal lineages, but they also seem to have been lost entirely from several species with relatively small nuclear genomes. Complex sets of endogenous small RNAs, including candidate microRNAs and small interfering RNAs, have now been identified by high-throughput sequencing in green, red, and brown algae. However, the natural roles of RNA-mediated silencing in algal biology remain poorly understood. Limited evidence suggests that small RNAs may function, in different algae, in defense mechanisms against transposon mobilization, in responses to nutrient deprivation and, possibly, in the regulation of recently evolved developmental processes. From a practical perspective, RNA interference (RNAi) is becoming a promising tool for assessing gene function by sequence-specific knockdown. Transient gene silencing, triggered with exogenously synthesized nucleic acids, and/or stable gene repression, involving genome-integrated transgenes, have been achieved in green algae, diatoms, yellow-green algae, and euglenoids. The development of RNAi technology in conjunction with system level “omics” approaches may provide the tools needed to advance our understanding of algal physiological and metabolic processes.
doi:10.1128/EC.05106-11
PMCID: PMC3187060  PMID: 21803865
18.  Do Red and Green Make Brown?: Perspectives on Plastid Acquisitions within Chromalveolates ▿ 
Eukaryotic Cell  2011;10(7):856-868.
The chromalveolate “supergroup” is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.
doi:10.1128/EC.00326-10
PMCID: PMC3147421  PMID: 21622904
19.  The Hawaiian Freshwater Algal Database (HfwADB): a laboratory LIMS and online biodiversity resource 
BMC Ecology  2012;12:22.
Background
Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS). The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species.
Description
The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”), the first five of which correspond to the collection site (“Environmental Accession”). Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages.
Conclusions
HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations) and download images of collection sites, specimen photographs and micrographs, and DNA sequences. It is publicly available at http://algae.manoa.hawaii.edu/hfwadb/.
doi:10.1186/1472-6785-12-22
PMCID: PMC3526539  PMID: 23095476
Algae; Biodiversity survey; Freshwater; Hawaii; Hawaiian Freshwater Algal Database; HfwADB
20.  Genetic Affinities between Trans-Oceanic Populations of Non-Buoyant Macroalgae in the High Latitudes of the Southern Hemisphere 
PLoS ONE  2013;8(7):e69138.
Marine biologists and biogeographers have long been puzzled by apparently non-dispersive coastal taxa that nonetheless have extensive transoceanic distributions. We here carried out a broad-scale phylogeographic study to test whether two widespread Southern Hemisphere species of non-buoyant littoral macroalgae are capable of long-distance dispersal. Samples were collected from along the coasts of southern Chile, New Zealand and several subAntarctic islands, with the focus on high latitude populations in the path of the Antarctic Circumpolar Current or West Wind Drift. We targeted two widespread littoral macroalgal species: the brown alga Adenocystisutricularis (Ectocarpales, Heterokontophyta) and the red alga Bostrychiaintricata (Ceramiales, Rhodophyta). Phylogenetic analyses were performed using partial mitochondrial (COI), chloroplast (rbcL) and ribosomal nuclear (LSU / 28S) DNA sequence data. Numerous deeply-divergent clades were resolved across all markers in each of the target species, but close phylogenetic relationships – even shared haplotypes – were observed among some populations separated by large oceanic distances. Despite not being particularly buoyant, both Adenocystisutricularis and Bostrychiaintricata thus show genetic signatures of recent dispersal across vast oceanic distances, presumably by attachment to floating substrata such as wood or buoyant macroalgae.
doi:10.1371/journal.pone.0069138
PMCID: PMC3718832  PMID: 23894421
21.  Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia 
Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances.
doi:10.1016/j.sjbs.2013.06.001
PMCID: PMC3937469  PMID: 24596500
Marine algae; Red sea; Antibacterial activity; Human pathogens; Phyto-chemical analyses
22.  An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta 
BMC Research Notes  2011;4:330.
Background
Euglenophyta and Chlorarachniophyta are groups of photosynthetic eukaryotes harboring secondary plastids of distinct green algal origins. Although previous phylogenetic analyses of genes encoding Calvin cycle enzymes demonstrated the presence of genes apparently not derived from green algal endosymbionts in the nuclear genomes of Euglena gracilis (Euglenophyta) and Bigelowiella natans (Chlorarachniophyta), the origins of these "non-green" genes in "green" secondary phototrophs were unclear due to the limited taxon sampling.
Results
Here, we sequenced five new phosphoribulokinase (PRK) genes (from one euglenophyte, two chlorarachniophytes, and two glaucophytes) and performed an extended phylogenetic analysis of the genes based on a phylum-wide taxon sampling from various photosynthetic eukaryotes. Our phylogenetic analyses demonstrated that the PRK sequences form two genera of Euglenophyta formed a robust monophyletic group within a large clade including stramenopiles, haptophytes and a cryptophyte, and three genera of Chlorarachniophyta were placed within the red algal clade. These "non-green" affiliations were supported by the taxon-specific insertion/deletion sequences in the PRK alignment, especially between euglenophytes and stramenopiles. In addition, phylogenetic analysis of another Calvin cycle enzyme, plastid-targeted sedoheptulose-bisphosphatase (SBP), showed that the SBP sequences from two genera of Chlorarachniophyta were positioned within a red algal clade.
Conclusions
Our results suggest that PRK genes may have been transferred from a "stramenopile" ancestor to Euglenophyta and from a "red algal" ancestor to Chlorarachniophyta before radiation of extant taxa of these two "green" secondary phototrophs. The presence of two of key Calvin cycle enzymes, PRK and SBP, of red algal origins in Chlorarachniophyta indicate that the contribution of "non-green" algae to the plastid proteome in the "green" secondary phototrophs is more significant than ever thought. These "non-green" putative plastid-targeted enzymes from Chlorarachniophyta are likely to have originated from an ancestral red alga via horizontal gene transfer, or from a cryptic red algal endosymbiosis in the common ancestor of the extant chlorarachniophytes.
doi:10.1186/1756-0500-4-330
PMCID: PMC3224528  PMID: 21899749
23.  Genome of the red alga Porphyridium purpureum 
Nature Communications  2013;4:1941.
The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life.
Red algae form one of the most ancient eukaryotic lineages, and have undergone multiple symbioses. Here, Price et al. report the first genome sequence for a mesophilic red alga, and reveal significant differences between these organisms and hyperthermopilic algae.
doi:10.1038/ncomms2931
PMCID: PMC3709513  PMID: 23770768
24.  Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes 
Cell Stress & Chaperones  2007;12(2):172-185.
We have identified 24 members of the DnaK subfamily of heat shock 70 proteins (Hsp70s) in the complete genomes of 5 diverse photosynthetic eukaryotes. The Hsp70s are a ubiquitous protein family that is highly conserved across all domains of life. Eukaryotic Hsp70s are found in a number of subcellular compartments in the cell: cytoplasm, mitochondrion (MT), chloroplast (CP), and endoplasmic reticulum (ER). Although the Hsp70s have been the subject of intense study in model organisms, very little is known of the Hsp70s from early diverging photosynthetic lineages. The sequencing of the complete genomes of Thalassiosira pseudonana (a diatom), Cyanidioschyzon merolae (a red alga), and 3 green algae (Chlamydomonas reinhardtii, Ostreococcus lucimarinus, Ostreococcus tauri) allow us to conduct comparative genomics of the Hsp70s present in these diverse photosynthetic eukaryotes. We have found that the distinct lineages of Hsp70s (MT, CP, ER, and cytoplasmic) each have different evolutionary histories. In general, evolutionary patterns of the mitochondrial and endoplasmic reticulum Hsp70s are relatively stable even among very distantly related organisms. This is not true of the chloroplast Hsp70s and we discuss the distinct evolutionary patterns between “green” and “red” plastids. Finally, we find that, in contrast to the angiosperms Arabidopsis thaliana and Oryza sativa that have numerous cytoplasmic Hsp70, the 5 algal species have only 1 cytoplasmic Hsp70 each. The evolutionary and functional implications of these differences are discussed.
doi:10.1379/CSC-230R1.1
PMCID: PMC1949330  PMID: 17688196
25.  Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life 
Background
The assembly of the tree of life has seen significant progress in recent years but algae and protists have been largely overlooked in this effort. Many groups of algae and protists have ancient roots and it is unclear how much data will be required to resolve their phylogenetic relationships for incorporation in the tree of life. The red algae, a group of primary photosynthetic eukaryotes of more than a billion years old, provide the earliest fossil evidence for eukaryotic multicellularity and sexual reproduction. Despite this evolutionary significance, their phylogenetic relationships are understudied. This study aims to infer a comprehensive red algal tree of life at the family level from a supermatrix containing data mined from GenBank. We aim to locate remaining regions of low support in the topology, evaluate their causes and estimate the amount of data required to resolve them.
Results
Phylogenetic analysis of a supermatrix of 14 loci and 98 red algal families yielded the most complete red algal tree of life to date. Visualization of statistical support showed the presence of five poorly supported regions. Causes for low support were identified with statistics about the age of the region, data availability and node density, showing that poor support has different origins in different parts of the tree. Parametric simulation experiments yielded optimistic estimates of how much data will be needed to resolve the poorly supported regions (ca. 103 to ca. 104 nucleotides for the different regions). Nonparametric simulations gave a markedly more pessimistic image, some regions requiring more than 2.8 105 nucleotides or not achieving the desired level of support at all. The discrepancies between parametric and nonparametric simulations are discussed in light of our dataset and known attributes of both approaches.
Conclusions
Our study takes the red algae one step closer to meaningful inclusion in the tree of life. In addition to the recovery of stable relationships, the recognition of five regions in need of further study is a significant outcome of this work. Based on our analyses of current availability and future requirements of data, we make clear recommendations for forthcoming research.
doi:10.1186/1471-2148-10-16
PMCID: PMC2826327  PMID: 20089168

Results 1-25 (710629)