PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1044035)

Clipboard (0)
None

Related Articles

1.  The Next Generation of Transcription Factor Binding Site Prediction 
PLoS Computational Biology  2013;9(9):e1003214.
Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA-protein interactions, while providing a single unified framework suitable for the next generation of TFBS prediction.
Author Summary
Transcription factors are critical proteins for sequence-specific control of transcriptional regulation. Finding where these proteins bind to DNA is of key importance for global efforts to decipher the complex mechanisms of gene regulation. Greater understanding of the regulation of transcription promises to improve human genetic analysis by specifying critical gene components that have eluded investigators. Classically, computational prediction of transcription factor binding sites (TFBS) is based on models giving weights to each nucleotide at each position. We introduce a novel statistical model for the prediction of TFBS tolerant of a broader range of TFBS configurations than can be conveniently accommodated by existing methods. The new models are designed to address the confounding properties of nucleotide composition, inter-positional sequence dependence and variable lengths (e.g. variable spacing between half-sites) observed in the more comprehensive experimental data now emerging. The new models generate scores consistent with DNA-protein affinities measured experimentally and can be represented graphically, retaining desirable attributes of past methods. It demonstrates the capacity of the new approach to accurately assess DNA-protein interactions. With the rich experimental data generated from chromatin immunoprecipitation experiments, a greater diversity of TFBS properties has emerged that can now be accommodated within a single predictive approach.
doi:10.1371/journal.pcbi.1003214
PMCID: PMC3764009  PMID: 24039567
2.  A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites 
PLoS ONE  2014;9(6):e99015.
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond PWMs.
doi:10.1371/journal.pone.0099015
PMCID: PMC4057186  PMID: 24926895
3.  Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression 
BMC Genomics  2004;5:16.
Background
Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions.
Results
We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI.
Conclusion
Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions.
doi:10.1186/1471-2164-5-16
PMCID: PMC375527  PMID: 15053842
promoter; tissue-specific gene expression; position weight matrix; regulatory motif
4.  Tree-Based Position Weight Matrix Approach to Model Transcription Factor Binding Site Profiles 
PLoS ONE  2011;6(9):e24210.
Most of the position weight matrix (PWM) based bioinformatics methods developed to predict transcription factor binding sites (TFBS) assume each nucleotide in the sequence motif contributes independently to the interaction between protein and DNA sequence, usually producing high false positive predictions. The increasing availability of TF enrichment profiles from recent ChIP-Seq methodology facilitates the investigation of dependent structure and accurate prediction of TFBSs. We develop a novel Tree-based PWM (TPWM) approach to accurately model the interaction between TF and its binding site. The whole tree-structured PWM could be considered as a mixture of different conditional-PWMs. We propose a discriminative approach, called TPD (TPWM based Discriminative Approach), to construct the TPWM from the ChIP-Seq data with a pre-existing PWM. To achieve the maximum discriminative power between the positive and negative datasets, the cutoff value is determined based on the Matthew Correlation Coefficient (MCC). The resulting TPWMs are evaluated with respect to accuracy on extensive synthetic datasets. We then apply our TPWM discriminative approach on several real ChIP-Seq datasets to refine the current TFBS models stored in the TRANSFAC database. Experiments on both the simulated and real ChIP-Seq data show that the proposed method starting from existing PWM has consistently better performance than existing tools in detecting the TFBSs. The improved accuracy is the result of modelling the complete dependent structure of the motifs and better prediction of true positive rate. The findings could lead to better understanding of the mechanisms of TF-DNA interactions.
doi:10.1371/journal.pone.0024210
PMCID: PMC3166302  PMID: 21912677
5.  CTF: a CRF-based transcription factor binding sites finding system 
BMC Genomics  2012;13(Suppl 8):S18.
Background
Identifying the location of transcription factor bindings is crucial to understand transcriptional regulation. Currently, Chromatin Immunoprecipitation followed with high-throughput Sequencing (ChIP-seq) is able to locate the transcription factor binding sites (TFBSs) accurately in high throughput and it has become the gold-standard method for TFBS finding experimentally. However, due to its high cost, it is impractical to apply the method in a very large scale. Considering the large number of transcription factors, numerous cell types and various conditions, computational methods are still very valuable to accurate TFBS identification.
Results
In this paper, we proposed a novel integrated TFBS prediction system, CTF, based on Conditional Random Fields (CRFs). Integrating information from different sources, CTF was able to capture patterns of TFBSs contained in different features (sequence, chromatin and etc) and predicted the TFBS locations with a high accuracy. We compared CTF with several existing tools as well as the PWM baseline method on a dataset generated by ChIP-seq experiments (TFBSs of 13 transcription factors in mouse genome). Results showed that CTF performed significantly better than existing methods tested.
Conclusions
CTF is a powerful tool to predict TFBSs by integrating high throughput data and different features. It can be a useful complement to ChIP-seq and other experimental methods for TFBS identification and thus improve our ability to investigate functional elements in post-genomic era.
Availability: CTF is freely available to academic users at: http://cbb.sjtu.edu.cn/~ccwei/pub/software/CTF/CTF.php
doi:10.1186/1471-2164-13-S8-S18
PMCID: PMC3535700  PMID: 23282203
6.  Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome 
BMC Genomics  2010;11(Suppl 1):S12.
Background
Transcription factor (TF)-DNA binding loci are explored by analyzing massive datasets generated with application of Chromatin Immuno-Precipitation (ChIP)-based high-throughput sequencing technologies. These datasets suffer from a bias in the information about binding loci availability, sample incompleteness and diverse sources of technical and biological noises. Therefore adequate mathematical models of ChIP-based high-throughput assay(s) and statistical tools are required for a robust identification of specific and reliable TF binding sites (TFBS), a precise characterization of TFBS avidity distribution and a plausible estimation the total number of specific TFBS for a given TF in the genome for a given cell type.
Results
We developed an exploratory mixture probabilistic model for a specific and non-specific transcription factor-DNA (TF-DNA) binding. Within ChiP-seq data sets, the statistics of specific and non-specific DNA-protein binding is defined by a mixture of sample size-dependent skewed functions described by Kolmogorov-Waring (K-W) function (Kuznetsov, 2003) and exponential function, respectively. Using available Chip-seq data for eleven TFs, essential for self-maintenance and differentiation of mouse embryonic stem cells (SC) (Nanog, Oct4, sox2, KLf4, STAT3, E2F1, Tcfcp211, ZFX, n-Myc, c-Myc and Essrb) reported in Chen et al (2008), we estimated (i) the specificity and the sensitivity of the ChiP-seq binding assays and (ii) the number of specific but not identified in the current experiments binding sites (BSs) in the genome of mouse embryonic stem cells. Motif finding analysis applied to the identified c-Myc TFBSs supports our results and allowed us to predict many novel c-Myc target genes.
Conclusion
We provide a novel methodology of estimating the specificity and the sensitivity of TF-DNA binding in massively paralleled ChIP sequencing (ChIP-seq) binding assay. Goodness-of fit analysis of K-W functions suggests that a large fraction of low- and moderate- avidity TFBSs cannot be identified by the ChIP-based methods. Thus the task to identify the binding sensitivity of a TF cannot be technically resolved yet by current ChIP-seq, compared to former experimental techniques. Considering our improvement in measuring the sensitivity and the specificity of the TFs obtained from the ChIP-seq data, the models of transcriptional regulatory networks in embryonic cells and other cell types derived from the given ChIp-seq data should be carefully revised.
doi:10.1186/1471-2164-11-S1-S12
PMCID: PMC2822526  PMID: 20158869
7.  Selective Constraints in Experimentally Defined Primate Regulatory Regions 
PLoS Genetics  2008;4(8):e1000157.
Changes in gene regulation may be important in evolution. However, the evolutionary properties of regulatory mutations are currently poorly understood. This is partly the result of an incomplete annotation of functional regulatory DNA in many species. For example, transcription factor binding sites (TFBSs), a major component of eukaryotic regulatory architecture, are typically short, degenerate, and therefore difficult to differentiate from randomly occurring, nonfunctional sequences. Furthermore, although sites such as TFBSs can be computationally predicted using evolutionary conservation as a criterion, estimates of the true level of selective constraint (defined as the fraction of strongly deleterious mutations occurring at a locus) in regulatory regions will, by definition, be upwardly biased in datasets that are a priori evolutionarily conserved. Here we investigate the fitness effects of regulatory mutations using two complementary datasets of human TFBSs that are likely to be relatively free of ascertainment bias with respect to evolutionary conservation but, importantly, are supported by experimental data. The first is a collection of almost >2,100 human TFBSs drawn from the literature in the TRANSFAC database, and the second is derived from several recent high-throughput chromatin immunoprecipitation coupled with genomic microarray (ChIP-chip) analyses. We also define a set of putative cis-regulatory modules (pCRMs) by spatially clustering multiple TFBSs that regulate the same gene. We find that a relatively high proportion (∼37%) of mutations at TFBSs are strongly deleterious, similar to that at a 2-fold degenerate protein-coding site. However, constraint is significantly reduced in human and chimpanzee pCRMS and ChIP-chip sequences, relative to macaques. We estimate that the fraction of regulatory mutations that have been driven to fixation by positive selection in humans is not significantly different from zero. We also find that the level of selective constraint in our TFBSs, pCRMs, and ChIP-chip sequences is negatively correlated with the expression breadth of the regulated gene, whereas the opposite relationship holds at that gene's nonsynonymous and synonymous sites. Finally, we find that the rate of protein evolution in a transcription factor appears to be positively correlated with the breadth of expression of the gene it regulates. Our study suggests that strongly deleterious regulatory mutations are considerably more likely (1.6-fold) to occur in tissue-specific than in housekeeping genes, implying that there is a fitness cost to increasing “complexity” of gene expression.
Author Summary
Changes in gene expression have been suggested to play a major role in mammalian evolution. In eukaryotes, gene expression is primarily controlled by sites, such as transcription factor binding sites (TFBSs), located in the noncoding region of the genome. The majority of these TFBSs remain unannotated, however, because they are typically short, degenerate, and laborious to identify experimentally. As a result, the effects of mutations in TFBSs on organism fitness remain poorly understood. We collected a dataset of TFBSs derived from the experimental biology literature and recent high-throughput studies to estimate the proportions of new mutations in TFBSs that have strongly deleterious and strongly beneficial effects upon organism fitness. We find that a relatively high proportion of new mutations in TFBSs are strongly deleterious, although it appears that relatively few are adaptive. We also demonstrate that the fraction of strongly deleterious regulatory mutations is correlated with the breadth of expression of the regulated gene. Thus, ubiquitously expressed genes are likely to experience fewer deleterious regulatory mutations than those expressed in a small number of tissues.
doi:10.1371/journal.pgen.1000157
PMCID: PMC2490716  PMID: 18704158
8.  A Bayesian Search for Transcriptional Motifs 
PLoS ONE  2010;5(11):e13897.
Identifying transcription factor (TF) binding sites (TFBSs) is an important step towards understanding transcriptional regulation. A common approach is to use gaplessly aligned, experimentally supported TFBSs for a particular TF, and algorithmically search for more occurrences of the same TFBSs. The largest publicly available databases of TF binding specificities contain models which are represented as position weight matrices (PWM). There are other methods using more sophisticated representations, but these have more limited databases, or aren't publicly available. Therefore, this paper focuses on methods that search using one PWM per TF. An algorithm, MATCHTM, for identifying TFBSs corresponding to a particular PWM is available, but is not based on a rigorous statistical model of TF binding, making it difficult to interpret or adjust the parameters and output of the algorithm. Furthermore, there is no public description of the algorithm sufficient to exactly reproduce it. Another algorithm, MAST, computes a p-value for the presence of a TFBS using true probabilities of finding each base at each offset from that position. We developed a statistical model, BaSeTraM, for the binding of TFs to TFBSs, taking into account random variation in the base present at each position within a TFBS. Treating the counts in the matrices and the sequences of sites as random variables, we combine this TFBS composition model with a background model to obtain a Bayesian classifier. We implemented our classifier in a package (SBaSeTraM). We tested SBaSeTraM against a MATCHTM implementation by searching all probes used in an experimental Saccharomyces cerevisiae TF binding dataset, and comparing our predictions to the data. We found no statistically significant differences in sensitivity between the algorithms (at fixed selectivity), indicating that SBaSeTraM's performance is at least comparable to the leading currently available algorithm. Our software is freely available at: http://wiki.github.com/A1kmm/sbasetram/building-the-tools.
doi:10.1371/journal.pone.0013897
PMCID: PMC2987817  PMID: 21124986
9.  A probabilistic approach to learn chromatin architecture and accurate inference of the NF-κB/RelA regulatory network using ChIP-Seq 
Nucleic Acids Research  2013;41(15):7240-7259.
Using nuclear factor-κB (NF-κB) ChIP-Seq data, we present a framework for iterative learning of regulatory networks. For every possible transcription factor-binding site (TFBS)-putatively regulated gene pair, the relative distance and orientation are calculated to learn which TFBSs are most likely to regulate a given gene. Weighted TFBS contributions to putative gene regulation are integrated to derive an NF-κB gene network. A de novo motif enrichment analysis uncovers secondary TFBSs (AP1, SP1) at characteristic distances from NF-κB/RelA TFBSs. Comparison with experimental ENCODE ChIP-Seq data indicates that experimental TFBSs highly correlate with predicted sites. We observe that RelA-SP1-enriched promoters have distinct expression profiles from that of RelA-AP1 and are enriched in introns, CpG islands and DNase accessible sites. Sixteen novel NF-κB/RelA-regulated genes and TFBSs were experimentally validated, including TANK, a negative feedback gene whose expression is NF-κB/RelA dependent and requires a functional interaction with the AP1 TFBSs. Our probabilistic method yields more accurate NF-κB/RelA-regulated networks than a traditional, distance-based approach, confirmed by both analysis of gene expression and increased informativity of Genome Ontology annotations. Our analysis provides new insights into how co-occurring TFBSs and local chromatin context orchestrate activation of NF-κB/RelA sub-pathways differing in biological function and temporal expression patterns.
doi:10.1093/nar/gkt493
PMCID: PMC3753626  PMID: 23771139
10.  Low nucleosome occupancy is encoded around functional human transcription factor binding sites 
BMC Genomics  2008;9:332.
Background
Transcriptional regulation of genes in eukaryotes is achieved by the interactions of multiple transcription factors with arrays of transcription factor binding sites (TFBSs) on DNA and with each other. Identification of these TFBSs is an essential step in our understanding of gene regulatory networks, but computational prediction of TFBSs with either consensus or commonly used stochastic models such as Position-Specific Scoring Matrices (PSSMs) results in an unacceptably high number of hits consisting of a few true functional binding sites and numerous false non-functional binding sites. This is due to the inability of the models to incorporate higher order properties of sequences including sequences surrounding TFBSs and influencing the positioning of nucleosomes and/or the interactions that might occur between transcription factors.
Results
Significant improvement can be expected through the development of a new framework for the modeling and prediction of TFBSs that considers explicitly these higher order sequence properties. It would be particularly interesting to include in the new modeling framework the information present in the nucleosome positioning sequences (NPSs) surrounding TFBSs, as it can be hypothesized that genomes use this information to encode the formation of stable nucleosomes over non-functional sites, while functional sites have a more open chromatin configuration.
In this report we evaluate the usefulness of the latter feature by comparing the nucleosome occupancy probabilities around experimentally verified human TFBSs with the nucleosome occupancy probabilities around false positive TFBSs and in random sequences.
Conclusion
We present evidence that nucleosome occupancy is remarkably lower around true functional human TFBSs as compared to non-functional human TFBSs, which supports the use of this feature to improve current TFBS prediction approaches in higher eukaryotes.
doi:10.1186/1471-2164-9-332
PMCID: PMC2490708  PMID: 18627598
11.  Fine-Tuning Enhancer Models to Predict Transcriptional Targets across Multiple Genomes 
PLoS ONE  2007;2(11):e1115.
Networks of regulatory relations between transcription factors (TF) and their target genes (TG)- implemented through TF binding sites (TFBS)- are key features of biology. An idealized approach to solving such networks consists of starting from a consensus TFBS or a position weight matrix (PWM) to generate a high accuracy list of candidate TGs for biological validation. Developing and evaluating such approaches remains a formidable challenge in regulatory bioinformatics. We perform a benchmark study on 34 Drosophila TFs to assess existing TFBS and cis-regulatory module (CRM) detection methods, with a strong focus on the use of multiple genomes. Particularly, for CRM-modelling we investigate the addition of orthologous sites to a known PWM to construct phyloPWMs and we assess the added value of phylogenentic footprinting to predict contextual motifs around known TFBSs. For CRM-prediction, we compare motif conservation with network-level conservation approaches across multiple genomes. Choosing the optimal training and scoring strategies strongly enhances the performance of TG prediction for more than half of the tested TFs. Finally, we analyse a 35th TF, namely Eyeless, and find a significant overlap between predicted TGs and candidate TGs identified by microarray expression studies. In summary we identify several ways to optimize TF-specific TG predictions, some of which can be applied to all TFs, and others that can be applied only to particular TFs. The ability to model known TF-TG relations, together with the use of multiple genomes, results in a significant step forward in solving the architecture of gene regulatory networks.
doi:10.1371/journal.pone.0001115
PMCID: PMC2047340  PMID: 17973026
12.  Variable structure motifs for transcription factor binding sites 
BMC Genomics  2010;11:30.
Background
Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets.
Results
We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance.
Conclusions
We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable structure that are suitable for follow-up structural studies. To our knowledge, we are the first to apply variable length motif models to eukaryotic ChIP-seq data sets and consequently the first to show their value in this domain. The results include a novel motif for the ubiquitous transcription factor Sp1.
doi:10.1186/1471-2164-11-30
PMCID: PMC2824720  PMID: 20074339
13.  Increasing Coverage of Transcription Factor Position Weight Matrices through Domain-level Homology 
PLoS ONE  2012;7(8):e42779.
Transcription factor-DNA interactions, central to cellular regulation and control, are commonly described by position weight matrices (PWMs). These matrices are frequently used to predict transcription factor binding sites in regulatory regions of DNA to complement and guide further experimental investigation. The DNA sequence preferences of transcription factors, encoded in PWMs, are dictated primarily by select residues within the DNA binding domain(s) that interact directly with DNA. Therefore, the DNA binding properties of homologous transcription factors with identical DNA binding domains may be characterized by PWMs derived from different species. Accordingly, we have implemented a fully automated domain-level homology searching method for identical DNA binding sequences.
By applying the domain-level homology search to transcription factors with existing PWMs in the JASPAR and TRANSFAC databases, we were able to significantly increase coverage in terms of the total number of PWMs associated with a given species, assign PWMs to transcription factors that did not previously have any associations, and increase the number of represented species with PWMs over an order of magnitude. Additionally, using protein binding microarray (PBM) data, we have validated the domain-level method by demonstrating that transcription factor pairs with matching DNA binding domains exhibit comparable DNA binding specificity predictions to transcription factor pairs with completely identical sequences.
The increased coverage achieved herein demonstrates the potential for more thorough species-associated investigation of protein-DNA interactions using existing resources. The PWM scanning results highlight the challenging nature of transcription factors that contain multiple DNA binding domains, as well as the impact of motif discovery on the ability to predict DNA binding properties. The method is additionally suitable for identifying domain-level homology mappings to enable utilization of additional information sources in the study of transcription factors. The domain-level homology search method, resulting PWM mappings, web-based user interface, and web API are publicly available at http://dodoma.systemsbiology.netdodoma.systemsbiology.net.
doi:10.1371/journal.pone.0042779
PMCID: PMC3428306  PMID: 22952610
14.  LASAGNA: A novel algorithm for transcription factor binding site alignment 
BMC Bioinformatics  2013;14:108.
Background
Scientists routinely scan DNA sequences for transcription factor (TF) binding sites (TFBSs). Most of the available tools rely on position-specific scoring matrices (PSSMs) constructed from aligned binding sites. Because of the resolutions of assays used to obtain TFBSs, databases such as TRANSFAC, ORegAnno and PAZAR store unaligned variable-length DNA segments containing binding sites of a TF. These DNA segments need to be aligned to build a PSSM. While the TRANSFAC database provides scoring matrices for TFs, nearly 78% of the TFs in the public release do not have matrices available. As work on TFBS alignment algorithms has been limited, it is highly desirable to have an alignment algorithm tailored to TFBSs.
Results
We designed a novel algorithm named LASAGNA, which is aware of the lengths of input TFBSs and utilizes position dependence. Results on 189 TFs of 5 species in the TRANSFAC database showed that our method significantly outperformed ClustalW2 and MEME. We further compared a PSSM method dependent on LASAGNA to an alignment-free TFBS search method. Results on 89 TFs whose binding sites can be located in genomes showed that our method is significantly more precise at fixed recall rates. Finally, we described LASAGNA-ChIP, a more sophisticated version for ChIP (Chromatin immunoprecipitation) experiments. Under the one-per-sequence model, it showed comparable performance with MEME in discovering motifs in ChIP-seq peak sequences.
Conclusions
We conclude that the LASAGNA algorithm is simple and effective in aligning variable-length binding sites. It has been integrated into a user-friendly webtool for TFBS search and visualization called LASAGNA-Search. The tool currently stores precomputed PSSM models for 189 TFs and 133 TFs built from TFBSs in the TRANSFAC Public database (release 7.0) and the ORegAnno database (08Nov10 dump), respectively. The webtool is available at http://biogrid.engr.uconn.edu/lasagna_search/.
doi:10.1186/1471-2105-14-108
PMCID: PMC3747862  PMID: 23522376
15.  Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions 
BMC Bioinformatics  2007;8:481.
Background
Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered.
Results
To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.
To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.
Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies.
Conclusion
Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.
doi:10.1186/1471-2105-8-481
PMCID: PMC2265442  PMID: 18093302
16.  A general integrative genomic feature transcription factor binding site prediction method applied to analysis of USF1 binding in cardiovascular disease 
Human genomics  2009;3(3):221-235.
Transcription factors are key mediators of human complex disease processes. Identifying the target genes of transcription factors will increase our understanding of the biological network leading to disease risk. The prediction of transcription factor binding sites (TFBSs) is one method to identify these target genes; however, current prediction methods need improvement. We chose the transcription factor upstream stimulatory factor 1 (USF1) to evaluate the performance of our novel TFBS prediction method because of its known genetic association with coronary artery disease (CAD) and the recent availability of USF1 chromatin immunoprecipitation microarray (ChIP-chip) results. The specific goals of our study were to develop a novel and accurate genome-scale method for predicting USF1 binding sites and associated target genes to aid in the study of CAD. Previously published USF1 ChIP-chip data for 1 per cent of the genome were used to develop and evaluate several kernel logistic regression prediction models. A combination of genomic features (phylogenetic conservation, regulatory potential, presence of a CpG island and DNaseI hypersensitivity), as well as position weight matrix (PWM) scores, were used as variables for these models. Our most accurate predictor achieved an area under the receiver operator characteristic curve of 0.827 during cross-validation experiments, significantly outperforming standard PWM-based prediction methods. When applied to the whole human genome, we predicted 24,010 USF1 binding sites within 5 kilobases upstream of the transcription start site of 9,721 genes. These predictions included 16 of 20 genes with strong evidence of USF1 regulation. Finally, in the spirit of genomic convergence, we integrated independent experimental CAD data with these USF1 binding site prediction results to develop a prioritised set of candidate genes for future CAD studies. We have shown that our novel prediction method, which employs genomic features related to the presence of regulatory elements, enables more accurate and efficient prediction of USF1 binding sites. This method can be extended to other transcription factors identified in human disease studies to help further our understanding of the biology of complex disease.
PMCID: PMC2742312  PMID: 19403457
transcription factors; cardiovascular disease; human genetics; binding site prediction
17.  A general integrative genomic feature transcription factor binding site prediction method applied to analysis of USF1 binding in cardiovascular disease 
Human Genomics  2009;3(3):221-235.
Transcription factors are key mediators of human complex disease processes. Identifying the target genes of transcription factors will increase our understanding of the biological network leading to disease risk. The prediction of transcription factor binding sites (TFBSs) is one method to identify these target genes; however, current prediction methods need improvement. We chose the transcription factor upstream stimulatory factor l (USF1) to evaluate the performance of our novel TFBS prediction method because of its known genetic association with coronary artery disease (CAD) and the recent availability of USF1 chromatin immunoprecipitation microarray (ChIP-chip) results. The specific goals of our study were to develop a novel and accurate genome-scale method for predicting USF1 binding sites and associated target genes to aid in the study of CAD. Previously published USF1 ChIP-chip data for 1 per cent of the genome were used to develop and evaluate several kernel logistic regression prediction models. A combination of genomic features (phylogenetic conservation, regulatory potential, presence of a CpG island and DNaseI hypersensitivity), as well as position weight matrix (PWM) scores, were used as variables for these models. Our most accurate predictor achieved an area under the receiver operator characteristic curve of 0.827 during cross-validation experiments, significantly outperforming standard PWM-based prediction methods. When applied to the whole human genome, we predicted 24,010 USF1 binding sites within 5 kilobases upstream of the transcription start site of 9,721 genes. These predictions included 16 of 20 genes with strong evidence of USF1 regulation. Finally, in the spirit of genomic convergence, we integrated independent experimental CAD data with these USF1 binding site prediction results to develop a prioritised set of candidate genes for future CAD studies. We have shown that our novel prediction method, which employs genomic features related to the presence of regulatory elements, enables more accurate and efficient prediction of USF1 binding sites. This method can be extended to other transcription factors identified in human disease studies to help further our understanding of the biology of complex disease.
doi:10.1186/1479-7364-3-3-221
PMCID: PMC2742312  PMID: 19403457
transcription factors; cardiovascular disease; human genetics; binding site prediction
18.  Transcription Factor Binding Sites Prediction Based on Modified Nucleosomes 
PLoS ONE  2014;9(2):e89226.
In computational methods, position weight matrices (PWMs) are commonly applied for transcription factor binding site (TFBS) prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP) predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, “modified nucleosomes neighboring” and “modified nucleosomes occupancy”, to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method for TFBS prediction.
doi:10.1371/journal.pone.0089226
PMCID: PMC3931712  PMID: 24586611
19.  CSMET: Comparative Genomic Motif Detection via Multi-Resolution Phylogenetic Shadowing 
PLoS Computational Biology  2008;4(6):e1000090.
Functional turnover of transcription factor binding sites (TFBSs), such as whole-motif loss or gain, are common events during genome evolution. Conventional probabilistic phylogenetic shadowing methods model the evolution of genomes only at nucleotide level, and lack the ability to capture the evolutionary dynamics of functional turnover of aligned sequence entities. As a result, comparative genomic search of non-conserved motifs across evolutionarily related taxa remains a difficult challenge, especially in higher eukaryotes, where the cis-regulatory regions containing motifs can be long and divergent; existing methods rely heavily on specialized pattern-driven heuristic search or sampling algorithms, which can be difficult to generalize and hard to interpret based on phylogenetic principles. We propose a new method: Conditional Shadowing via Multi-resolution Evolutionary Trees, or CSMET, which uses a context-dependent probabilistic graphical model that allows aligned sites from different taxa in a multiple alignment to be modeled by either a background or an appropriate motif phylogeny conditioning on the functional specifications of each taxon. The functional specifications themselves are the output of a phylogeny which models the evolution not of individual nucleotides, but of the overall functionality (e.g., functional retention or loss) of the aligned sequence segments over lineages. Combining this method with a hidden Markov model that autocorrelates evolutionary rates on successive sites in the genome, CSMET offers a principled way to take into consideration lineage-specific evolution of TFBSs during motif detection, and a readily computable analytical form of the posterior distribution of motifs under TFBS turnover. On both simulated and real Drosophila cis-regulatory modules, CSMET outperforms other state-of-the-art comparative genomic motif finders.
Author Summary
Functional turnover of transcription factor binding sites (TFBSs), such as whole-motif loss or gain, are common events during genome evolution, and play a major role in shaping the genome and regulatory circuitry of contemporary species. Conventional methods for searching non-conserved motifs across evolutionarily related species have little or no probabilistic machinery to explicitly model this important evolutionary process; therefore, they offer little insight into the mechanism and dynamics of TFBS turnover and have limited power in finding motif patterns shaped by such processes. In this paper, we propose a new method: Conditional Shadowing via Multi-resolution Evolutionary Trees, or CSMET, which uses a mathematically elegant and computationally efficient way to model biological sequence evolution at both nucleotide level at each individual site, and functional level of a whole TFBS. CSMET offers the first principled way to take into consideration lineage-specific evolution of TFBSs and CRMs during motif detection, and offers a readily computable analytical form of the posterior distribution of motifs under TFBS turnover. Its performance improves upon current state-of-the-art programs. It represents an initial foray into the problem of statistical inference of functional evolution of TFBS, and offers a well-founded mathematical basis for the development of more realistic and informative models.
doi:10.1371/journal.pcbi.1000090
PMCID: PMC2396503  PMID: 18535663
20.  MYBS: a comprehensive web server for mining transcription factor binding sites in yeast 
Nucleic Acids Research  2007;35(Web Server issue):W221-W226.
Correct interactions between transcription factors (TFs) and their binding sites (TFBSs) are of central importance to gene regulation. Recently developed chromatin-immunoprecipitation DNA chip (ChIP-chip) techniques and the phylogenetic footprinting method provide ways to identify TFBSs with high precision. In this study, we constructed a user-friendly interactive platform for dynamic binding site mapping using ChIP-chip data and phylogenetic footprinting as two filters. MYBS (Mining Yeast Binding Sites) is a comprehensive web server that integrates an array of both experimentally verified and predicted position weight matrixes (PWMs) from eleven databases, including 481 binding motif consensus sequences and 71 PWMs that correspond to 183 TFs. MYBS users can search within this platform for motif occurrences (possible binding sites) in the promoters of genes of interest via simple motif or gene queries in conjunction with the above two filters. In addition, MYBS enables users to visualize in parallel the potential regulators for a given set of genes, a feature useful for finding potential regulatory associations between TFs. MYBS also allows users to identify target gene sets of each TF pair, which could be used as a starting point for further explorations of TF combinatorial regulation. MYBS is available at http://cg1.iis.sinica.edu.tw/~mybs/.
doi:10.1093/nar/gkm379
PMCID: PMC1933147  PMID: 17537814
21.  A Structural-Based Strategy for Recognition of Transcription Factor Binding Sites 
PLoS ONE  2013;8(1):e52460.
Scanning through genomes for potential transcription factor binding sites (TFBSs) is becoming increasingly important in this post-genomic era. The position weight matrix (PWM) is the standard representation of TFBSs utilized when scanning through sequences for potential binding sites. However, many transcription factor (TF) motifs are short and highly degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA) exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased prediction accuracy and robustness compared with those using a more general energy function. The software is freely available upon request.
doi:10.1371/journal.pone.0052460
PMCID: PMC3540023  PMID: 23320072
22.  Identifying Functional Transcription Factor Binding Sites in Yeast by Considering Their Positional Preference in the Promoters 
PLoS ONE  2013;8(12):e83791.
Transcription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant) is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC), to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS). This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO) terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.
doi:10.1371/journal.pone.0083791
PMCID: PMC3873331  PMID: 24386279
23.  A Machine Learning Approach for Identifying Novel Cell Type–Specific Transcriptional Regulators of Myogenesis 
PLoS Genetics  2012;8(3):e1002531.
Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with similar activities requires the identification of both their unique and their shared sequence features. To address this problem, we combined phylogenetic profiling with a DNA–based enhancer sequence classifier that analyzes the TF binding sites (TFBSs) governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species. Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs. Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs. Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of cognate TFs that coordinate cell type–specific developmental gene expression patterns.
Author Summary
The development of multicellular organisms requires the formation of a diversity of cell types. Each cell has a unique genetic program that is orchestrated by regulatory sequences called enhancers, comprising multiple short DNA sequences that bind distinct transcription factors. Understanding developmental regulatory networks requires knowledge of the sequence features of functionally related enhancers. We developed an integrated evolutionary and computational approach for deciphering enhancer regulatory codes and applied this method to discover new components of the transcriptional network controlling muscle development in the fruit fly, Drosophila melanogaster. Our method involves assembling known muscle enhancers, expanding this set with evolutionarily conserved sequences, computationally classifying these enhancers based on their shared sequence features, and scanning the entire Drosophila genome to predict additional related enhancers. Using this approach, we created a map of 5,500 putative muscle enhancers, identified candidate transcription factors to which they bind, observed a strong correlation between mapped enhancers and muscle gene expression, and uncovered extensive heterogeneity among combinations of transcription factor binding sites in validated muscle enhancers, a feature that may contribute to the individual cellular specificities of these regulatory elements. Our strategy can readily be generalized to study transcriptional networks in other organisms and developmental contexts.
doi:10.1371/journal.pgen.1002531
PMCID: PMC3297574  PMID: 22412381
24.  Uncovering transcriptional interactions via an adaptive fuzzy logic approach 
BMC Bioinformatics  2009;10:400.
Background
To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM) performed poorly in inferring transcriptional interactions (TIs), which represent physical interactions between transcription factors (TF) and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM) was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning) fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy.
Results
AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF), and using 19 transcription factors (TFs), we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms.
Conclusion
AdaFuzzy successfully integrates multiple types of data (sequence, ChIP, and microarray) to predict transcriptional regulatory networks. The validated success in the prediction results implies that AdaFuzzy can be applied to uncover TIs in yeast.
doi:10.1186/1471-2105-10-400
PMCID: PMC2797023  PMID: 19961622
25.  Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment 
BMC Genomics  2014;15(1):472.
Background
Chromatin immunoprecipitation (ChIP) coupled to high-throughput sequencing (ChIP-Seq) techniques can reveal DNA regions bound by transcription factors (TF). Analysis of the ChIP-Seq regions is now a central component in gene regulation studies. The need remains strong for methods to improve the interpretation of ChIP-Seq data and the study of specific TF binding sites (TFBS).
Results
We introduce a set of methods to improve the interpretation of ChIP-Seq data, including the inference of mediating TFs based on TFBS motif over-representation analysis and the subsequent study of spatial distribution of TFBSs. TFBS over-representation analysis applied to ChIP-Seq data is used to detect which TFBSs arise more frequently than expected by chance. Visualization of over-representation analysis results with new composition-bias plots reveals systematic bias in over-representation scores. We introduce the BiasAway background generating software to resolve the problem. A heuristic procedure based on topological motif enrichment relative to the ChIP-Seq peaks’ local maximums highlights peaks likely to be directly bound by a TF of interest. The results suggest that on average two-thirds of a ChIP-Seq dataset’s peaks are bound by the ChIP’d TF; the origin of the remaining peaks remaining undetermined. Additional visualization methods allow for the study of both inter-TFBS spatial relationships and motif-flanking sequence properties, as demonstrated in case studies for TBP and ZNF143/THAP11.
Conclusions
Topological properties of TFBS within ChIP-Seq datasets can be harnessed to better interpret regulatory sequences. Using GC content corrected TFBS over-representation analysis, combined with visualization techniques and analysis of the topological distribution of TFBS, we can distinguish peaks likely to be directly bound by a TF. The new methods will empower researchers for exploration of gene regulation and TF binding.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-472) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-472
PMCID: PMC4082612  PMID: 24927817
Chromatin immunoprecipitation; ChIP-Seq; Motif prediction; Over-representation analysis; Regulation; Sequence analysis; Transcription factor; Transcription factor binding site; Visualization

Results 1-25 (1044035)