PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1420531)

Clipboard (0)
None

Related Articles

1.  Integrative Genomic Analyses Identify BRF2 as a Novel Lineage-Specific Oncogene in Lung Squamous Cell Carcinoma 
PLoS Medicine  2010;7(7):e1000315.
William Lockwood and colleagues show that the focal amplification of a gene, BRF2, on Chromosome 8p12 plays a key role in squamous cell carcinoma of the lung.
Background
Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes—adenocarcinoma (AC) and squamous cell carcinoma (SqCC)—respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome.
Methods and Findings
We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage.
Conclusions
This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays a key role in squamous cell lineage specificity of the disease. Our data suggest that genetic activation of BRF2 represents a unique mechanism of SqCC lung tumorigenesis through the increase of Pol III-mediated transcription. It can serve as a marker for lung SqCC and may provide a novel target for therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the commonest cause of cancer-related death. Every year, 1.3 million people die from this disease, which is mainly caused by smoking. Most cases of lung cancer are “non-small cell lung cancers” (NSCLCs). Like all cancers, NSCLC starts when cells begin to divide uncontrollably and to move round the body (metastasize) because of changes (mutations) in their genes. These mutations are often in “oncogenes,” genes that, when activated, encourage cell division. Oncogenes can be activated by mutations that alter the properties of the proteins they encode or by mutations that increase the amount of protein made from them, such as gene amplification (an increase in the number of copies of a gene). If NSCLC is diagnosed before it has spread from the lungs (stage I disease), it can be surgically removed and many patients with stage I NSCLC survive for more than 5 years after their diagnosis. Unfortunately, in more than half of patients, NSCLC has metastasized before it is diagnosed. This stage IV NSCLC can be treated with chemotherapy (toxic chemicals that kill fast-growing cancer cells) but only 2% of patients with stage IV lung cancer are alive 5 years after diagnosis.
Why Was This Study Done?
Traditionally, NSCLC has been regarded as a single disease in terms of treatment. However, emerging evidence suggests that the two major subtypes of NSCLC—adenocarcinoma and squamous cell carcinoma (SqCC)—respond differently to chemotherapy. Adenocarcinoma and SqCC start in different types of lung cell and experts think that for each cell type in the body, specific combinations of mutations interact with the cell type's own unique characteristics to provide the growth and survival advantage needed for cancer development. If this is true, then identifying the molecular differences between adenocarcinoma and SqCC could provide targets for more effective therapies for these major subtypes of NSCLC. Amplification of a chromosome region called 8p12 is very common in NSCLC, which suggests that an oncogene that drives lung cancer development is present in this chromosome region. In this study, the researchers investigate this possibility by looking for an amplified gene in the 8p12 chromosome region that makes increased amounts of protein in lung SqCC but not in lung adenocarcinoma.
What Did the Researchers Do and Find?
The researchers used a technique called comparative genomic hybridization to show that focal regions of Chromosome 8p are amplified in about 40% of lung SqCCs, but that DNA loss in this region is the most common alteration in lung adenocarcinomas. Ten genes in the 8p12 chromosome region were expressed at higher levels in the SqCC samples that they examined than in adenocarcinoma samples, they report, and overexpression of five of these genes correlated with amplification of the 8p12 region in the SqCC samples. Only one of the genes—BRF2—was more highly expressed in squamous carcinoma cells than in normal bronchial epithelial cells (the cell type that lines the tubes that take air into the lungs and from which SqCC develops). Artificially induced expression of BRF2 in bronchial epithelial cells made these normal cells behave like tumor cells, whereas reduction of BRF2 expression in squamous carcinoma cells made them behave more like normal bronchial epithelial cells. Finally, BRF2 was frequently activated in two early stages of squamous cell carcinoma—bronchial carcinoma in situ and dysplastic lesions.
What Do These Findings Mean?
Together, these findings show that the focal amplification of chromosome region 8p12 plays a role in the development of lung SqCC but not in the development of lung adenocarcinoma, the other major subtype of NSCLC. These findings identify BRF2 (which encodes a RNA polymerase III transcription initiation factor, a protein that is required for the synthesis of RNA molecules that help to control cell growth) as a lung SqCC-specific oncogene and uncover a unique mechanism for lung SqCC development. Most importantly, these findings suggest that genetic activation of BRF2 could be used as a marker for lung SqCC, which might facilitate the early detection of this type of NSCLC and that BRF2 might provide a new target for therapy.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000315.
The US National Cancer Institute provides detailed information for patients and professionals about all aspects of lung cancer, including information on non-small cell carcinoma (in English and Spanish)
Cancer Research UK also provides information about lung cancer and information on how cancer starts
MedlinePlus has links to other resources about lung cancer (in English and Spanish)
doi:10.1371/journal.pmed.1000315
PMCID: PMC2910599  PMID: 20668658
2.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies  
PLoS Medicine  2008;5(9):e185.
Background
Better information on lung cancer occurrence in lifelong nonsmokers is needed to understand gender and racial disparities and to examine how factors other than active smoking influence risk in different time periods and geographic regions.
Methods and Findings
We pooled information on lung cancer incidence and/or death rates among self-reported never-smokers from 13 large cohort studies, representing over 630,000 and 1.8 million persons for incidence and mortality, respectively. We also abstracted population-based data for women from 22 cancer registries and ten countries in time periods and geographic regions where few women smoked. Our main findings were: (1) Men had higher death rates from lung cancer than women in all age and racial groups studied; (2) male and female incidence rates were similar when standardized across all ages 40+ y, albeit with some variation by age; (3) African Americans and Asians living in Korea and Japan (but not in the US) had higher death rates from lung cancer than individuals of European descent; (4) no temporal trends were seen when comparing incidence and death rates among US women age 40–69 y during the 1930s to contemporary populations where few women smoke, or in temporal comparisons of never-smokers in two large American Cancer Society cohorts from 1959 to 2004; and (5) lung cancer incidence rates were higher and more variable among women in East Asia than in other geographic areas with low female smoking.
Conclusions
These comprehensive analyses support claims that the death rate from lung cancer among never-smokers is higher in men than in women, and in African Americans and Asians residing in Asia than in individuals of European descent, but contradict assertions that risk is increasing or that women have a higher incidence rate than men. Further research is needed on the high and variable lung cancer rates among women in Pacific Rim countries.
Michael Thun and colleagues pooled and analyzed comprehensive data on lung cancer incidence and death rates among never-smokers to examine what factors other than active smoking affect lung cancer risk.
Editors' Summary
Background.
Every year, more than 1.4 million people die from lung cancer, a leading cause of cancer deaths worldwide. In the US alone, more than 161,000 people will die from lung cancer this year. Like all cancers, lung cancer occurs when cells begin to divide uncontrollably because of changes in their genes. The main trigger for these changes in lung cancer is exposure to the chemicals in cigarette smoke—either directly through smoking cigarettes or indirectly through exposure to secondhand smoke. Eighty-five to 90% of lung cancer deaths are caused by exposure to cigarette smoke and, on average, current smokers are 15 times more likely to die from lung cancer than lifelong nonsmokers (never smokers). Furthermore, a person's cumulative lifetime risk of developing lung cancer is related to how much they smoke, to how many years they are a smoker, and—if they give up smoking—to the age at which they stop smoking.
Why Was This Study Done?
Because lung cancer is so common, even the small fraction of lung cancer that occurs in lifelong nonsmokers represents a large number of people. For example, about 20,000 of this year's US lung cancer deaths will be in never-smokers. However, very little is known about how age, sex, or race affects the incidence (the annual number of new cases of diseases in a population) or death rates from lung cancer among never-smokers. A better understanding of the patterns of lung cancer incidence and death rates among never-smokers could provide useful information about the factors other than cigarette smoke that increase the likelihood of not only never-smokers, but also former smokers and current smokers developing lung cancer. In this study, therefore, the researchers pooled and analyzed a large amount of information about lung cancer incidence and death rates among never smokers to examine what factors other than active smoking affect lung cancer risk.
What Did the Researchers Do and Find?
The researchers analyzed information on lung cancer incidence and/or death rates among nearly 2.5 million self-reported never smokers (men and women) from 13 large studies investigating the health of people in North America, Europe, and Asia. They also analyzed similar information for women taken from cancer registries in ten countries at times when very few women were smokers (for example, the US in the late 1930s). The researchers' detailed statistical analyses reveal, for example, that lung cancer death rates in African Americans and in Asians living in Korea and Japan (but not among Asians living in the US) are higher than those in people of the European continental ancestry group. They also show that men have higher death rates from lung cancer than women irrespective of racial group, but that women aged 40–59 years have a slightly higher incidence of lung cancer than men of a similar age. This difference disappears at older ages. Finally, an analysis of lung cancer incidence and death rates at different times during the past 70 years shows no evidence of an increase in the lung cancer burden among never smokers over time.
What Do These Findings Mean?
Although some of the findings described above have been hinted at in previous, smaller studies, these and other findings provide a much more accurate picture of lung cancer incidence and death rates among never smokers. Most importantly the underlying data used in these analyses are now freely available and should provide an excellent resource for future studies of lung cancer in never smokers.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050185.
The US National Cancer Institute provides detailed information for patients and health professionals about all aspects of lung cancer and information on smoking and cancer (in English and Spanish)
Links to other US-based resources dealing with lung cancer are provided by MedlinePlus (in English and Spanish)
Cancer Research UK provides key facts about the link between lung cancer and smoking and information about all other aspects of lung cancer
doi:10.1371/journal.pmed.0050185
PMCID: PMC2531137  PMID: 18788891
3.  Clinical Features and Outcome of Patients With Non–Small-Cell Lung Cancer Who Harbor EML4-ALK 
Journal of Clinical Oncology  2009;27(26):4247-4253.
Purpose
The EML4-ALK fusion oncogene represents a novel molecular target in a small subset of non–small-cell lung cancers (NSCLC). To aid in identification and treatment of these patients, we examined the clinical characteristics and treatment outcomes of patients who had NSCLC with and without EML4-ALK.
Patients and Methods
Patients with NSCLC were selected for genetic screening on the basis of two or more of the following characteristics: female sex, Asian ethnicity, never/light smoking history, and adenocarcinoma histology. EML4-ALK was identified by using fluorescent in situ hybridization for ALK rearrangements and was confirmed by immunohistochemistry for ALK expression. EGFR and KRAS mutations were determined by DNA sequencing.
Results
Of 141 tumors screened, 19 (13%) were EML4-ALK mutant, 31 (22%) were EGFR mutant, and 91 (65%) were wild type (WT/WT) for both ALK and EGFR. Compared with the EGFR mutant and WT/WT cohorts, patients with EML4-ALK mutant tumors were significantly younger (P < .001 and P = .005) and were more likely to be men (P = .036 and P = .039). Patients with EML4-ALK–positive tumors, like patients who harbored EGFR mutations, also were more likely to be never/light smokers compared with patients in the WT/WT cohort (P < .001). Eighteen of the 19 EML4-ALK tumors were adenocarcinomas, predominantly the signet ring cell subtype. Among patients with metastatic disease, EML4-ALK positivity was associated with resistance to EGFR tyrosine kinase inhibitors (TKIs). Patients in the EML4-ALK cohort and the WT/WT cohort showed similar response rates to platinum-based combination chemotherapy and no difference in overall survival.
Conclusion
EML4-ALK defines a molecular subset of NSCLC with distinct clinical characteristics. Patients who harbor this mutation do not benefit from EGFR TKIs and should be directed to trials of ALK-targeted agents.
doi:10.1200/JCO.2009.22.6993
PMCID: PMC2744268  PMID: 19667264
4.  Relation between smoking history and gene expression profiles in lung adenocarcinomas 
BMC Medical Genomics  2012;5:22.
Background
Lung cancer is the worldwide leading cause of death from cancer. Tobacco usage is the major pathogenic factor, but all lung cancers are not attributable to smoking. Specifically, lung cancer in never-smokers has been suggested to represent a distinct disease entity compared to lung cancer arising in smokers due to differences in etiology, natural history and response to specific treatment regimes. However, the genetic aberrations that differ between smokers and never-smokers’ lung carcinomas remain to a large extent unclear.
Methods
Unsupervised gene expression analysis of 39 primary lung adenocarcinomas was performed using Illumina HT-12 microarrays. Results from unsupervised analysis were validated in six external adenocarcinoma data sets (n=687), and six data sets comprising normal airway epithelial or normal lung tissue specimens (n=467). Supervised gene expression analysis between smokers and never-smokers were performed in seven adenocarcinoma data sets, and results validated in the six normal data sets.
Results
Initial unsupervised analysis of 39 adenocarcinomas identified two subgroups of which one harbored all never-smokers. A generated gene expression signature could subsequently identify never-smokers with 79-100% sensitivity in external adenocarcinoma data sets and with 76-88% sensitivity in the normal materials. A notable fraction of current/former smokers were grouped with never-smokers. Intriguingly, supervised analysis of never-smokers versus smokers in seven adenocarcinoma data sets generated similar results. Overlap in classification between the two approaches was high, indicating that both approaches identify a common set of samples from current/former smokers as potential never-smokers. The gene signature from unsupervised analysis included several genes implicated in lung tumorigenesis, immune-response associated pathways, genes previously associated with smoking, as well as marker genes for alveolar type II pneumocytes, while the best classifier from supervised analysis comprised genes strongly associated with proliferation, but also genes previously associated with smoking.
Conclusions
Based on gene expression profiling, we demonstrate that never-smokers can be identified with high sensitivity in both tumor material and normal airway epithelial specimens. Our results indicate that tumors arising in never-smokers, together with a subset of tumors from smokers, represent a distinct entity of lung adenocarcinomas. Taken together, these analyses provide further insight into the transcriptional patterns occurring in lung adenocarcinoma stratified by smoking history.
doi:10.1186/1755-8794-5-22
PMCID: PMC3447685  PMID: 22676229
Lung cancer; Smoking; Gene expression analysis; Adenocarcinoma; EGFR; Never-smokers; Immune response
5.  Clinical Significance of EML4-ALK Fusion Gene and Association with EGFR and KRAS Gene Mutations in 208 Chinese Patients with Non-Small Cell Lung Cancer 
PLoS ONE  2013;8(1):e52093.
The EML4-ALK fusion gene has been recently identified in a small subset of non-small cell lung cancer (NSCLC) patients who respond positively to ALK inhibitors. The characteristics of the EML4-ALK fusion gene in Chinese patients with NSCLC are poorly understood. Here, we report on the prevalence of EML4-ALK, EGFR status and KRAS mutations in 208 Chinese patients with NSCLC. EGFR mutations were found in 24.5% (51/208) of patients. In concordance with previous reports, these mutations were identified at high frequencies in females (47.5% vs 15.0% in males; P<0.05); never-smokers (42.3% vs 13.9% in smokers; P<0.05), and adenocarcinoma patients (44.2% vs 8.0% in non-adenocarcinoma patients; P<0.05). There were only 2.88% (6/208) patients with KRAS mutations in our study group. We identified 7 patients who harbored the EML4-ALK fusion gene (3.37%, 7/208), including 4 cases with variant 3 (57.1%), 2 with variant 1, and 1 with variant 2. All positive cases corresponded to female patients (11.5%, 7/61). Six of the positive cases were non-smokers (7.69%, 6/78). The incidence of EML4-ALK translocation in female, non-smoking adenocarcinoma patients was as high as 15.2% (5/33). No EGFR/KRAS mutations were detected among the EML4-ALK positive patients. Pathological analysis showed no difference between solid signet-ring cell pattern (4/7) and mucinous cribriform pattern (3/7) in ALK-positive patients. Immunostaining showed intratumor heterogeneity of ALK rearrangement in primary carcinomas and 50% (3/6) of metastatic tumors with ALK-negative staining. Meta-analysis demonstrated that EML4-ALK translocation occurred in 4.84% (125/2580) of unselected patients with NSCLC, and was also predominant in non-smoking patients with adenocarcinoma. Taken together, EML4-ALK translocations were infrequent in the entire NSCLC patient population, but were frequent in the NSCLC subgroup of female, non-smoker, adenocarcinoma patients. There was intratumor heterogeneity of ALK rearrangement in primary carcinomas and at metastatic sites.
doi:10.1371/journal.pone.0052093
PMCID: PMC3544857  PMID: 23341890
6.  Prospective genetic profiling of squamous cell lung cancer and adenosquamous carcinoma in Japanese patients by multitarget assays 
BMC Cancer  2014;14(1):786.
Background
Despite considerable recent progress in the treatment of lung adenocarcinoma, there has been little progress in the development of efficacious molecular targeted therapies for squamous cell lung cancer. In addition to the recent comprehensive genome-wide characterization of squamous cell lung cancer, it is also important to genotype this form of cancer. We therefore conducted the Shizuoka Lung Cancer Mutation Study to analyze driver mutations in patients with thoracic malignancies. Here we report the results of genotyping in patients with squamous cell lung cancer.
Methods
Based on the biobanking system, in conjunction with the clinic and pathology lab, we developed a genotyping panel designed to assess 24 mutations in 10 genes (EGFR, KRAS, BRAF, PIK3CA, NRAS, MEK1, AKT1, PTEN, HER2 and DDR2), EGFR, MET, PIK3CA, FGFR1 and FGFR2 copy numbers, and EML4-ALK and ROS1 translocations, using pyrosequencing plus capillary electrophoresis, quantitative polymerase chain reaction (PCR) and reverse-transcription PCR, respectively.
Results
A total of 129 patients with squamous cell lung cancer and adenosquamous carcinoma were enrolled in this study between July 2011 and November 2012. We detected genetic alterations in 40% of all cases. Gene alterations included: EGFR mutations, 6%; KRAS mutations, 4%; PIK3CA mutations, 13%; NRAS mutations, 1%; KIF5b-RET fusion gene, 1%; EGFR copy number gain, 5%; PIK3CA copy number gain, 15%; and FGFR1 copy number gain, 5%. Twelve patients (9%) harbored simultaneous genetic alterations. Genetic alterations were detected more frequently in surgically-resected, snap-frozen samples than in formalin-fixed, paraffin-embedded samples (50% vs. 29%). In addition, patients aged ≤70 years old and never-smokers showed high frequencies of genetic alterations.
Conclusions
This study represents one of the largest prospective tumor-genotyping studies to be performed in Asian patients with squamous cell lung cancer. These results suggest that incorporation of genetic profiling into lung cancer clinical practice may facilitate the administration of personalized cancer treatments in patients with squamous cell lung cancer.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-786) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2407-14-786
PMCID: PMC4221703  PMID: 25348872
Lung cancer; Squamous cell carcinoma; Adenosquamos carcinoma; Genetic profiling; Driver mutation; PIK3CA mutation; FGFR1 copy number gain
7.  Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression 
Molecular Cancer  2010;9:188.
Background
The anaplastic lymphoma kinase (ALK) gene is frequently involved in translocations that lead to gene fusions in a variety of human malignancies, including lymphoma and lung cancer. Fusion partners of ALK include NPM, EML4, TPM3, ATIC, TFG, CARS, and CLTC. Characterization of ALK fusion patterns and their resulting clinicopathological profiles could be of great benefit in better understanding the biology of lung cancer.
Results
RACE-coupled PCR sequencing was used to assess ALK fusions in a cohort of 103 non-small cell lung carcinoma (NSCLC) patients. Within this cohort, the EML4-ALK fusion gene was identified in 12 tumors (11.6%). Further analysis revealed that EML4-ALK was present at a frequency of 16.13% (10/62) in patients with adenocarcinomas, 19.23% (10/52) in never-smokers, and 42.80% (9/21) in patients with adenocarcinomas lacking EGFR and KRAS mutations. The EML4-ALK fusion was associated with non-smokers (P = 0.03), younger age of onset (P = 0.03), and adenocarcinomas without EGFR/KRAS mutations (P = 0.04). A trend towards improved survival was observed for patients with the EML4-ALK fusion, although it was not statistically significant (P = 0.20). Concurrent deletion in EGFR exon 19 and fusion of EML4-ALK was identified for the first time in a Chinese female patient with an adenocarcinoma. Analysis of ALK expression revealed that ALK mRNA levels were higher in tumors positive for the EML-ALK fusion than in negative tumors (normalized intensity of 21.99 vs. 0.45, respectively; P = 0.0018). However, expression of EML4 did not differ between the groups.
Conclusions
The EML4-ALK fusion gene was present at a high frequency in Chinese NSCLC patients, particularly in those with adenocarcinomas lacking EGFR/KRAS mutations. The EML4-ALK fusion appears to be tightly associated with ALK mRNA expression levels. RACE-coupled PCR sequencing is a highly sensitive method that could be used clinically for the identification of EML4-ALK-positive patients.
doi:10.1186/1476-4598-9-188
PMCID: PMC2908583  PMID: 20624322
8.  Genomic Aberrations in Lung Adenocarcinoma in Never Smokers 
PLoS ONE  2010;5(12):e15145.
Background
Lung cancer in never smokers would rank as the seventh most common cause of cancer death worldwide.
Methods and Findings
We performed high-resolution array comparative genomic hybridization analysis of lung adenocarcinoma in sixty never smokers and identified fourteen new minimal common regions (MCR) of gain or loss, of which five contained a single gene (MOCS2, NSUN3, KHDRBS2, SNTG1 and ST18). One larger MCR of gain contained NSD1. One focal amplification and nine gains contained FUS. NSD1 and FUS are oncogenes hitherto not known to be associated with lung cancer. FISH showed that the amplicon containing FUS was joined to the next telomeric amplicon at 16p11.2. FUS was over-expressed in 10 tumors with gain of 16p11.2 compared to 30 tumors without that gain. Other cancer genes present in aberrations included ARNT, BCL9, CDK4, CDKN2B, EGFR, ERBB2, MDM2, MDM4, MET, MYC and KRAS. Unsupervised hierarchical clustering with adjustment for false-discovery rate revealed clusters differing by the level and pattern of aberrations and displaying particular tumor characteristics. One cluster was strongly associated with gain of MYC. Another cluster was characterized by extensive losses containing tumor suppressor genes of which RB1 and WRN. Tumors in that cluster frequently harbored a central scar-like fibrosis. A third cluster was associated with gains on 7p and 7q, containing ETV1 and BRAF, and displayed the highest rate of EGFR mutations. SNP array analysis validated copy-number aberrations and revealed that RB1 and WRN were altered by recurrent copy-neutral loss of heterozygosity.
Conclusions
The present study has uncovered new aberrations containing cancer genes. The oncogene FUS is a candidate gene in the 16p region that is frequently gained in never smokers. Multiple genetic pathways defined by gains of MYC, deletions of RB1 and WRN or gains on 7p and 7q are involved in lung adenocarcinoma in never smokers.
doi:10.1371/journal.pone.0015145
PMCID: PMC2997777  PMID: 21151896
9.  Frequency of driver mutations in lung adenocarcinoma from female never-smokers varies with histological subtypes and age at diagnosis 
Clinical Cancer Research  2012;18(7):1947-1953.
Purpose
Our previous study revealed that 90% (47 of 52; 95% CI: 0.79–0.96) of Chinese never-smokers with lung adenocarcinoma harbor known oncogenic driver mutations in just four genes: EGFR, ALK, HER2, and KRAS. Here, we examined the status of known driver mutations specifically in female never-smokers with lung adenocarcinoma.
Experimental Design
Tumors were genotyped for mutations in EGFR, KRAS, ALK, HER2, and BRAF. Data on age, stage, tumor differentiation, histological subtypes, and molecular alterations were recorded from 349 resected lung adenocarcinomas from female never-smokers. We further compared the clinicopathological parameters according to mutational status of these genes.
Results
Two hundred and sixty-six (76.2%) tumors harbored EGFR mutations, 16 (4.6%) HER2 mutations, 15 (4.3%) EML4-ALK fusions, seven (2.0%) KRAS mutations, and two (0.6%) BRAF mutations. In univariate analysis, patients harboring EGFR mutations were significantly older (p<0.001), whereas patients harboring HER2 mutations were significantly younger (p=0.036). Higher prevalence of KRAS (p=0.028) and HER2 (p=0.021) mutations was found in invasive mucinous adenocarcinoma (IMA). The frequency of EGFR mutations was positively correlated with acinar predominant tumors (p=0.002). Multivariate analysis revealed that older age at diagnosis (p=0.013) and acinar predominant subtype (p=0.005) were independent predictors of EGFR mutations. Independent predictors of HER2 mutations included younger age (p=0.030) and IMA (p=0.017). IMA (p=0.006) and poor differentiation (p=0.028) were independently associated with KRAS mutations.
Conclusions
The frequency of driver mutations in never-smoking female lung adenocarcinoma varies with histological subtypes and age at diagnosis. These data have implications for both clinical trial design and therapeutic strategies.
doi:10.1158/1078-0432.CCR-11-2511
PMCID: PMC3319848  PMID: 22317764
Lung adenocarcinoma; Female; Never smoker; EGFR mutation; HER2 mutation; Acinar; Mucinous; Age
10.  Driver Mutations Determine Survival in Smokers and Never Smokers with Stage IIIB/IV Lung Adenocarcinomas 
Cancer  2012;118(23):5840-5847.
Background
We previously demonstrated that stage IIIB/IV non-small cell lung cancer (NSCLC) never smokers lived 50% longer than former/current smokers. This observation persisted after adjusting for age, performance status, and gender. We hypothesized that smoking-dependent differences in the distribution of driver mutations might explain differences in prognosis between these subgroups.
Methods
We reviewed 293 never smokers and 382 former/current smokers with lung adenocarcinoma who underwent testing for EGFR and KRAS mutations and rearrangements in ALK between 2009 and 2010. Clinical outcomes and patient characteristics were collected. Survival probabilities were estimated using the Kaplan-Meier method. Group comparison was performed with log-rank tests and Cox proportional hazards methods.
Results
While the overall incidence of these mutations was nearly identical (55% never smokers vs. 57% current/former smokers, p=0.48), there were significant differences in the distribution of mutations between these groups: EGFR mutations- 37% never smokers vs. 14% former/current smokers (p<0.0001); KRAS mutations- 4% never smokers vs. 43% former/current smokers (p<0.0001); ALK rearrangements- 12% never smokers vs. 2% former/current smokers (p<0.0001). Among never smokers and former/current smokers, prognosis differed significantly by genotype. Patients harboring KRAS mutations demonstrated the poorest survival. Smoking status, however, had no influence on survival within each genotype.
Conclusion
Never smokers and former/current smokers with lung adenocarcinomas are not homogeneous subgroups. Each is made up of individuals whose tumors have a unique distribution of driver mutations which are associated with different prognoses, irrespective of smoking history.
doi:10.1002/cncr.27637
PMCID: PMC3424296  PMID: 22605530
non-small cell lung cancer; adenocarcinoma; EGFR; KRAS; ALK; never smoker
11.  Evaluation of the Lung Cancer Risks at Which to Screen Ever- and Never-Smokers: Screening Rules Applied to the PLCO and NLST Cohorts 
PLoS Medicine  2014;11(12):e1001764.
Martin Tammemägi and colleagues evaluate which risk groups of individuals, including nonsmokers and high-risk individuals from 65 to 80 years of age, should be screened for lung cancer using computed tomography.
Please see later in the article for the Editors' Summary
Background
Lung cancer risks at which individuals should be screened with computed tomography (CT) for lung cancer are undecided. This study's objectives are to identify a risk threshold for selecting individuals for screening, to compare its efficiency with the U.S. Preventive Services Task Force (USPSTF) criteria for identifying screenees, and to determine whether never-smokers should be screened. Lung cancer risks are compared between smokers aged 55–64 and ≥65–80 y.
Methods and Findings
Applying the PLCOm2012 model, a model based on 6-y lung cancer incidence, we identified the risk threshold above which National Lung Screening Trial (NLST, n = 53,452) CT arm lung cancer mortality rates were consistently lower than rates in the chest X-ray (CXR) arm. We evaluated the USPSTF and PLCOm2012 risk criteria in intervention arm (CXR) smokers (n = 37,327) of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). The numbers of smokers selected for screening, and the sensitivities, specificities, and positive predictive values (PPVs) for identifying lung cancers were assessed. A modified model (PLCOall2014) evaluated risks in never-smokers. At PLCOm2012 risk ≥0.0151, the 65th percentile of risk, the NLST CT arm mortality rates are consistently below the CXR arm's rates. The number needed to screen to prevent one lung cancer death in the 65th to 100th percentile risk group is 255 (95% CI 143 to 1,184), and in the 30th to <65th percentile risk group is 963 (95% CI 291 to −754); the number needed to screen could not be estimated in the <30th percentile risk group because of absence of lung cancer deaths. When applied to PLCO intervention arm smokers, compared to the USPSTF criteria, the PLCOm2012 risk ≥0.0151 threshold selected 8.8% fewer individuals for screening (p<0.001) but identified 12.4% more lung cancers (sensitivity 80.1% [95% CI 76.8%–83.0%] versus 71.2% [95% CI 67.6%–74.6%], p<0.001), had fewer false-positives (specificity 66.2% [95% CI 65.7%–66.7%] versus 62.7% [95% CI 62.2%–63.1%], p<0.001), and had higher PPV (4.2% [95% CI 3.9%–4.6%] versus 3.4% [95% CI 3.1%–3.7%], p<0.001). In total, 26% of individuals selected for screening based on USPSTF criteria had risks below the threshold PLCOm2012 risk ≥0.0151. Of PLCO former smokers with quit time >15 y, 8.5% had PLCOm2012 risk ≥0.0151. None of 65,711 PLCO never-smokers had PLCOm2012 risk ≥0.0151. Risks and lung cancers were significantly greater in PLCO smokers aged ≥65–80 y than in those aged 55–64 y. This study omitted cost-effectiveness analysis.
Conclusions
The USPSTF criteria for CT screening include some low-risk individuals and exclude some high-risk individuals. Use of the PLCOm2012 risk ≥0.0151 criterion can improve screening efficiency. Currently, never-smokers should not be screened. Smokers aged ≥65–80 y are a high-risk group who may benefit from screening.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the most commonly occurring cancer in the world and the most common cause of cancer-related deaths. Like all cancers, lung cancer occurs when cells acquire genetic changes that allow them to grow uncontrollably and to move around the body (metastasize). The most common trigger for these genetic changes in lung cancer is exposure to cigarette smoke. Symptoms of lung cancer include a persistent cough and breathlessness. If lung cancer is diagnosed when it is confined to the lung (stage I), the tumor can often be removed surgically. Stage II tumors, which have spread into nearby lymph nodes, are usually treated with surgery plus chemotherapy or radiotherapy. For more advanced lung cancers that have spread throughout the chest (stage III) or the body (stage IV), surgery is rarely helpful and these tumors are treated with chemotherapy and radiotherapy alone. Overall, because most lung cancers are not detected until they are advanced, less than 17% of people diagnosed with lung cancer survive for five years.
Why Was This Study Done?
Screening for lung cancer—looking for early disease in healthy people—could save lives. In the US National Lung Screening Trial (NLST), annual screening with computed tomography (CT) reduced lung cancer mortality by 20% among smokers at high risk of developing cancer compared with screening with a chest X-ray. But what criteria should be used to decide who is screened for lung cancer? The US Preventive Services Task Force (USPSTF), for example, recommends annual CT screening of people who are 55–80 years old, have smoked 30 or more pack-years (one pack-year is defined as a pack of cigarettes per day for one year), and—if they are former smokers—quit smoking less than 15 years ago. However, some experts think lung cancer risk prediction models—statistical models that estimate risk based on numerous personal characteristics—should be used to select people for screening. Here, the researchers evaluate PLCOm2012, a lung cancer risk prediction model based on the incidence of lung cancer among smokers enrolled in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Specifically, the researchers use NLST and PLCO screening trial data to identify a PLCOm2012 risk threshold for selecting people for screening and to compare the efficiency of the PLCOm2012 model and the USPSTF criteria for identifying “screenees.”
What Did the Researchers Do and Find?
By analyzing NLST data, the researchers calculated that at PLCOm2012 risk ≥0.0151, mortality (death) rates among NLST participants screened with CT were consistently below mortality rates among NLST participants screened with chest X-ray and that 255 people with a PLCOm2012 risk ≥0.0151 would need to be screened to prevent one lung cancer death. Next, they used data collected from smokers in the screened arm of the PLCO trial to compare the efficiency of the PLCOm2012 and USPSTF criteria for identifying screenees. They found that 8.8% fewer people had a PLCOm2012 risk ≥0.0151 than met USPSTF criteria for screening, but 12.4% more lung cancers were identified. Thus, using PLCOm2012 improved the sensitivity and specificity of the selection of individuals for lung cancer screening over using UPSTF criteria. Notably, 8.5% of PLCO former smokers with quit times of more than 15 years had PLCOm2012 risk ≥0.0151, none of the PLCO never-smokers had PLCOm2012 risk ≥0.0151, and the calculated risks and incidence of lung cancer were greater among PLCO smokers aged ≥65–80 years than among those aged 55–64 years.
What Do These Findings Mean?
Despite the absence of a cost-effectiveness analysis in this study, these findings suggest that the use of the PLCOm2012 risk ≥0.0151 threshold rather than USPSTF criteria for selecting individuals for lung cancer screening could improve screening efficiency. The findings have several other important implications. First, these findings suggest that screening may be justified in people who stopped smoking more than 15 years ago; USPSTF currently recommends that screening stop once an individual's quit time exceeds 15 years. Second, these findings do not support lung cancer screening among never-smokers. Finally, these findings suggest that smokers aged ≥65–80 years might benefit from screening, although the presence of additional illnesses and reduced life expectancy need to be considered before recommending the provision of routine lung cancer screening to this section of the population.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001764.
The US National Cancer Institute provides information about all aspects of lung cancer for patients and health-care professionals, including information on lung cancer screening (in English and Spanish)
Cancer Research UK also provides detailed information about lung cancer and about lung cancer screening
The UK National Health Service Choices website has a page on lung cancer that includes personal stories
MedlinePlus provides links to other sources of information about lung cancer (in English and Spanish)
Information about the USPSTF recommendations for lung cancer screening is available
doi:10.1371/journal.pmed.1001764
PMCID: PMC4251899  PMID: 25460915
12.  Mitochondrial DNA Mutations in Respiratory Complex-I in Never-Smoker Lung Cancer Patients Contribute to Lung Cancer Progression and associated with EGFR gene mutation 
Journal of cellular physiology  2012;227(6):2451-2460.
Mitochondrial DNA (mtDNA) mutations were reported in different cancers. However, the nature and role of mtDNA mutation in never-smoker lung cancer patients including patients with EGFR and KRAS gene mutation are unknown. In the present study, we sequenced entire mitochondrial genome (16.5 kb) in matched normal and tumors obtained from 30 never-smoker and 30 current-smoker lung cancer patients, and determined the mtDNA content. All the patients’ samples were sequenced for KRAS (exon 2) and EGFR (exon 19 and 21) gene mutation. The impact of forced overexpression of a respiratory complex-I gene mutation was evaluated in a lung cancer cell line. We observed significantly higher (P=0.006) mtDNA mutation in the never-smokers compared to the current-smoker lung cancer patients. MtDNA mutation was significantly higher (P=0.026) in the never-smoker Asian compared to the current-smoker Caucasian patients’ population. MtDNA mutation was significantly (P=0.007) associated with EGFR gene mutation in the never-smoker patients. We also observed a significant increase (P=0.037) in mtDNA content among the never-smoker lung cancer patients. The majority of the coding mtDNA mutations targeted respiratory complex-I and forced overexpression of one of these mutations resulted in increased in vitro proliferation, invasion and superoxide production in lung cancer cells. We observed a higher prevalence and new relationship between mtDNA alterations among never-smoker lung cancer patients and EGFR gene mutation. Moreover, a representative mutation produced strong growth effects after forced overexpression in lung cancer cells. Signature mtDNA mutations provide a basis to develop novel biomarkers and therapeutic strategies for never-smoker lung cancer patients.
doi:10.1002/jcp.22980
PMCID: PMC3256258  PMID: 21830212
Lung cancer; never-smokers; MtDNA mutation; Respiratory Complex-I; EGFR mutation
13.  Differences in EGFR and KRAS mutation spectra in lung adenocarcinoma of never and heavy smokers 
Oncology Letters  2013;6(5):1207-1212.
Epidermal growth factor receptor (EGFR) mutations are common in lung adenocarcinomas of never smokers, while KRAS mutations are more frequent among heavy smokers. Different clinicopathological and biological characteristics may, therefore, exist in lung adenocarcinoma according to smoking status. In the present study, a retrospective review was performed using 521 patients with surgically resected lung adenocarcinomas. The clinicopathological factors of age, gender, pathological tumor size, nodal status, lymphatic permeation and blood vessel invasion and the EGFR and KRAS mutation spectra were compared between never and heavy smokers. EGFR mutations were detected in 233 (45%) patients, while KRAS mutations were detected in 56 (11%) patients. EGFR-mutated adenocarcinomas had a higher prevalence of females in the never smokers compared with the heavy smokers (P<0.001). KRAS-mutated adenocarcinomas had a higher prevalence of females (P<0.001) and showed less frequent vascular invasion (P=0.018) in the never smokers compared with the heavy smokers. Minor EGFR mutations, excluding exon 21 L858R and exon 19 deletions, were more common in heavy smokers than never smokers (P=0.055). KRAS G to A transition was more common in never smokers, while KRAS G to T and G to C transversions were more common in heavy smokers (P=0.036). The clinicopathological characteristics and the spectra of the EGFR and KRAS mutations in lung adenocarcinoma were different between the never and heavy smokers. Further large-scale studies are required to evaluate the efficacy of molecular targeting agents with consideration to specific EGFR and KRAS mutations.
doi:10.3892/ol.2013.1551
PMCID: PMC3813793  PMID: 24179496
lung cancer; adenocarcinoma; smoking; epidermal growth factor receptor; KRAS; mutation
14.  Worse disease-free survival in never-smokers with ALK+ lung adenocarcinoma 
Introduction
The EML4–anaplastic lymphoma kinase (ALK) translocation is a recognized oncogenic driver in non-small cell lung cancer. We investigated immunohistochemistry (IHC) screening with fluorescence in-situ hybridization (FISH) confirmation for ALK detection and estimated the prevalence of ALK-positivity in our patient cohort of never smokers, together with differences in clinical outcomes and prognostic factors for patients with ALK-positive and ALK-negative tumors.
Methods
We designed a three-phase study (training, validation, and testing) in 300 never-smokers with lung adenocarcinoma from the observational Mayo Clinic Lung Cancer Cohort. Tumor samples were tested using IHC and FISH, and concordance between the methods was assessed. Clinical outcomes were assessed via 5-year progression or recurrence-free survival from diagnosis. Prognostic factors for ALK-positive tumors and metastases were also investigated.
Results
ALK-positive patients were significantly (p<0·05) younger and had higher-grade tumors than ALK-negative patients. ALK-positivity was 12.2% by IHC and confirmed at 8.2% of tumors by FISH, with complete concordance between IHC 3+/0 and FISH+/− assessments, respectively. Five-year risk of progression or recurrence was doubled for patients with ALK-positive compared with ALK-negative tumors; ALK-positive tumors also appeared to be associated with a higher risk of brain and liver metastases.
Conclusions
Our findings suggest that ALK-positivity is associated with a significantly poor outcome in non-smoking-related adenocarcinoma, and that ALK-positive tumors may be associated with an increased risk of brain and liver metastases compared with ALK-negative disease. Consequently, an unmet medical need exists in ALK-positive lung cancer patients, and effective ALK-specific therapies are needed now.
doi:10.1097/JTO.0b013e31823c5c32
PMCID: PMC3931519  PMID: 22134072
EML4-anaplastic lymphoma kinase (ALK); non small cell lung cancer (NSCLC); immunohistochemistry (IHC); fluorescence in-situ hybridization (FISH); progression and recurrence free survival (PFS/RFS)
15.  Spectrum of Oncogenic Driver Mutations in Lung Adenocarcinomas from East Asian Never Smokers 
PLoS ONE  2011;6(11):e28204.
Purpose
We previously showed that 90% (47 of 52; 95% CI, 0.79 to 0.96) of lung adenocarcinomas from East Asian never-smokers harbored well-known oncogenic mutations in just four genes: EGFR, HER2, ALK, and KRAS. Here, we sought to extend these findings to more samples and identify driver alterations in tumors negative for these mutations.
Experimental Design
We have collected and analyzed 202 resected lung adenocarcinomas from never smokers seen at Fudan University Shanghai Cancer Center. Since mutations were mutually exclusive in the first 52 examined, we determined the status of EGFR, KRAS, HER2, ALK, and BRAF in stepwise fashion as previously described. Samples negative for mutations in these 5 genes were subsequently examined for known ROS1 fusions by RT-PCR and direct sequencing.
Results
152 tumors (75.3%) harbored EGFR mutations, 12 (6%) had HER2 mutations, 10 (5%) had ALK fusions all involving EML4 as the 5′ partner, 4 (2%) had KRAS mutations, and 2 (1%) harbored ROS1 fusions. No BRAF mutation were detected.
Conclusion
The vast majority (176 of 202; 87.1%, 95% CI: 0.82 to 0.91) of lung adenocarcinomas from never smokers harbor mutant kinases sensitive to available TKIs. Interestingly, patients with EGFR mutant patients tend to be older than those without EGFR mutations (58.3 Vs 54.3, P = 0.016) and patient without any known oncogenic driver tend to be diagnosed at a younger age (52.3 Vs 57.9, P = 0.013). Collectively, these data indicate that the majority of never smokers with lung adenocarcinoma could benefit from treatment with a specific tyrosine kinase inhibitor.
doi:10.1371/journal.pone.0028204
PMCID: PMC3227646  PMID: 22140546
16.  Genetic variants and risk of lung cancer in never smokers: a genome-wide association study 
The lancet oncology  2010;11(4):321-330.
Summary
Background
Lung cancer in individuals who have never smoked tobacco products is an increasing medical and public-health issue. We aimed to unravel the genetic basis of lung cancer in never smokers.
Methods
We did a four-stage investigation. First, a genome-wide association study of single nucleotide polymorphisms (SNPs) was done with 754 never smokers (377 matched case-control pairs at Mayo Clinic, Rochester, MN, USA). Second, the top candidate SNPs from the first study were validated in two independent studies among 735 (MD Anderson Cancer Center, Houston, TX, USA) and 253 (Harvard University, Boston, MA, USA) never smokers. Third, further replication of the top SNP was done in 530 never smokers (UCLA, Los Angeles, CA, USA). Fourth, expression quantitative trait loci (eQTL) and gene-expression differences were analysed to further elucidate the causal relation between the validated SNPs and the risk of lung cancer in never smokers.
Findings
44 top candidate SNPs were identified that might alter the risk of lung cancer in never smokers. rs2352028 at chromosome 13q31.3 was subsequently replicated with an additive genetic model in the four independent studies, with a combined odds ratio of 1·46 (95% CI 1·26–1·70, p=5·94×10−6). A cis eQTL analysis showed there was a strong correlation between genotypes of the replicated SNPs and the transcription level of the gene GPC5 in normal lung tissues (p=1·96×10−4), with the high-risk allele linked with lower expression. Additionally, the transcription level of GPC5 in normal lung tissue was twice that detected in matched lung adenocarcinoma tissue (p=6·75×10−11).
Interpretation
Genetic variants at 13q31.3 alter the expression of GPC5, and are associated with susceptibility to lung cancer in never smokers. Downregulation of GPC5 might contribute to the development of lung cancer in never smokers.
doi:10.1016/S1470-2045(10)70042-5
PMCID: PMC2945218  PMID: 20304703
17.  Smoking status impacts microRNA mediated prognosis and lung adenocarcinoma biology 
BMC Cancer  2014;14(1):778.
Background
Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status.
Methods
We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers.
Results
We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner.
Conclusions
We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-778) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2407-14-778
PMCID: PMC4216369  PMID: 25342220
Lung adenocarcinoma; miRNA; Current smoker; Former smoker; Never smoker; Reversible; Survival; Smoking specific
18.  Allelotypes of lung adenocarcinomas featuring ALK fusion demonstrate fewer onco- and suppressor gene changes 
BMC Cancer  2013;13:8.
Background
A subset of lung adenocarcinomas harboring an EML4-ALK fusion gene resulting in dominant oncogenic activity has emerged as a target for specific therapy. EML4-ALK fusion confers a characteristic histology and is detected more frequently in never or light smokers and younger patients.
Methods
To gain insights into etiology and carcinogenic mechanisms we conducted analyses to compare allelotypes of 35 ALK fusion-positive and 95 -negative tumours using single nucleotide polymorphism (SNP) arrays and especially designed software which enabled precise global genomic profiling.
Results
Overall aberration numbers (gains + losses) of chromosomal alterations were 8.42 and 9.56 in tumours with and without ALK fusion, respectively, the difference not being statistically significant, although patterns of gain and loss were distinct. Interestingly, among selected genomic regions, oncogene-related examples such as 1p34.3(MYCL1), 7q11.2(EGFR), 7p21.1, 8q24.21(MYC), 16p13.3, 17q12(ERBB2) and 17q25.1 showed significantly less gain. Also, changes in tumour suppressor gene-related regions, such as 9p21.3 (CDKN2A) 9p23-24.1 (PTPRD), 13q14.2 (RB1), were significantly fewer in tumours with ALK fusion.
Conclusion
Global genomic comparison with SNP arrays showed tumours with ALK fusion to have fewer alterations in oncogenes and suppressor genes despite a similar overall aberration frequency, suggesting very strong oncogenic potency of ALK activation by gene fusion.
doi:10.1186/1471-2407-13-8
PMCID: PMC3599044  PMID: 23289484
Lung adenocarcinoma; ALK fusion; SNP array; Allelotype; Copy number
19.  Identification of Enriched Driver Gene Alterations in Subgroups of Non-Small Cell Lung Cancer Patients Based on Histology and Smoking Status 
PLoS ONE  2012;7(6):e40109.
Background
Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer.
Methods
Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods.
Results
524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%), PTEN (9.1%), PIK3CA (5.2%), c-Met (4.8%), KRAS (4.5%), STK11 (2.7%), and BRAF (1.9%). The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%), STK11 (19.0%), and KRAS (12.0%). We only found EGFR (8.0%), c-Met (2.8%), and PIK3CA (2.6%) alterations in the non-smoker with squamous cell carcinoma (SCC) subgroup. PTEN (16.1%), STK11 (8.3%), and PIK3CA (7.2%) were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively). Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant.
Conclusion
The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies.
doi:10.1371/journal.pone.0040109
PMCID: PMC3387024  PMID: 22768234
20.  Smoking status and self-reported race affect the frequency of clinically-relevant oncogenic alterations in non-small-cell lung cancers at a United States-based academic medical practice 
Introduction
The identification of somatic genomic aberrations in non-small-cell lung cancer (NSCLC) is part of evidence-based practice guidelines for care of patients with NSCLC. We sought to establish the frequency and correlates of these changes in routine patient-tumor sample pairs.
Methods
Clinicopathologic data and tumor genotype were retrospectively compiled and analyzed from an overall cohort of 381 patient-tumor samples.
Results
Of these patients, 75.9% self-reported White race, 13.1% Asian, 6.5% Black, 27.8% were never-smokers, 54.9% former-smokers and 17.3% current-smokers. The frequency of EGFR mutations was 23.9%(86/359), KRAS mutations 34.2%(71/207) and ALK FISH positivity 9.1%(23/252) in tumor samples, and almost all had mutually exclusive results for these oncogenes. In tumors from White, Black and Asian patients, the frequencies of EGFR mutations were 18.4%, 18.2% and 62%, respectively; of ALK FISH positivity 7.81%, 0% and 14.8%, respectively; and of KRAS mutations 41.6%, 20% and 0%. These patterns changed significant with increasing pack-year history of smoking. In White patients, the frequencies of EGFR mutations and ALK FISH positivity decreased with increasing pack-year cohorts; while the frequencies of KRAS mutations increased. Interestingly, in Asian patients the frequencies of EGFR mutations were similar in never smokers and in the cohorts with less then 45pack-year histories of smoking and only decreased in the 45pack-year plus cohort.
Conclusions
The frequencies of somatic EGFR, KRAS, and ALK gene abnormalities using routine lung cancer tissue samples from our United States-based academic medical practice reflect the diverse ethnicity (with a higher frequency of EGFR mutations in Asian patients) and smoking patterns (with an inverse correlation between EGFR mutation and ALK rearrangement) of our tested population. These results may help other medical practices appreciate the expected results from introduction of routine tumor genotyping techniques into their day-to-day care of NSCLC.
doi:10.1016/j.lungcan.2013.07.013
PMCID: PMC3800098  PMID: 23932486
lung cancer; non-small-cell lung cancer; never smokers; epidermal growth factor receptor; EGFR; anaplastic lymphoma kinase; ALK; KRAS; tumor genotype; ethnicipty; Asian; White; Black
21.  EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer 
Purpose
The EML4-ALK fusion gene has been detected in ~7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLCs and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK containing cell lines in vitro and in vivo.
Experimental Design
We screened 305 primary NSCLCs (both US (n=138) and Korean (n=167) patients) and 83 NSCLC cell lines using RT-PCR and by exon array analyses. We evaluated the efficacy of TAE684 against NSCLC cell lines in vitro and in vivo.
Results
We detected 4 different variants, including two novel variants, of EML4-ALK using RT-PCR in 8/305 tumors (3%) and in 3/83 (3.6%) NSCLC cell lines. All EML4-ALK containing tumors and cell lines were adenocarcinomas. EML4-ALK was detected more frequently in NSCLC patients who were never or light (< 10 pack years) cigarette smokers compared to current/former smokers (6% vs. 1%; p=0.049). TAE684 inhibited the growth of 1 of 3 (H3122) EML4-ALK containing cell lines in vitro and in vivo, inhibited Akt phosphorylation and caused apoptosis. In another EML4-ALK cell line, DFCI032, TAE684 was ineffective due to co-activation of EGFR and ERBB2. The combination of TAE684 and CL-387,785 (EGFR/ERBB2 kinase inhibitor), inhibited growth and Akt phosphorylation and led to apoptosis in the DFCI032 cell line.
Conclusions
EML4-ALK is found in the minority of NSCLCs. ALK kinase inhibitors alone or in combination may nevertheless be clinically effective treatments for NSCLC patients whose tumors contain EML4-ALK.
doi:10.1158/1078-0432.CCR-08-0168
PMCID: PMC3025451  PMID: 18594010
Carcinoma, Non-Small-Cell lung; EML4-ALK; ALK; Kinase inhibitor
22.  Lung Adenocarcinoma From East Asian Never-Smokers Is a Disease Largely Defined by Targetable Oncogenic Mutant Kinases 
Journal of Clinical Oncology  2010;28(30):4616-4620.
Purpose
To determine the proportion of lung adenocarcinomas from East Asian never-smokers who harbor known oncogenic driver mutations.
Patients and Methods
In this surgical series, 52 resected lung adenocarcinomas from never-smokers (< 100 cigarettes in a lifetime) at a single institution (Fudan University, Shanghai, China) were analyzed concurrently for mutations in EGFR, KRAS, NRAS, HRAS, HER2, BRAF, ALK, PIK3CA, TP53 and LKB1.
Results
Forty-one tumors harbored EGFR mutations, three harbored EML4-ALK fusions, two harbored HER2 insertions, and one harbored a KRAS mutation. All mutations were mutually exclusive. Thus, 90% (47 of 52; 95% CI, 0.7896 to 0.9625) of lung adenocarcinomas from never-smokers were found to harbor well-known oncogenic mutations in just four genes. No BRAF, NRAS, HRAS, or LKB1 mutations were detected, while 15 had TP53 mutations. Four tumors contained PIK3CA mutations, always together with EGFR mutations.
Conclusion
To our knowledge, this study represents the first comprehensive and concurrent analysis of major recurrent oncogenic mutations found in a large cohort of lung adenocarcinomas from East Asian never-smokers. Since drugs are now available that target mutant EGFR, HER2, and ALK, respectively, this result indicates that prospective mutation testing in these patients should successfully assign a targeted therapy in the majority of cases.
doi:10.1200/JCO.2010.29.6038
PMCID: PMC2974342  PMID: 20855837
23.  Aberrant DNA Methylation of OLIG1, a Novel Prognostic Factor in Non-Small Cell Lung Cancer 
PLoS Medicine  2007;4(3):e108.
Background
Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset.
Methods and Findings
In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels.
Conclusions
Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77–0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Christopher Plass and colleagues find thatOLIG1 expression correlates with survival in lung cancer patients and suggest that it could be used in deciding which patients are likely to benefit from more aggressive therapy.
Editors' Summary
Background.
Lung cancer is the commonest cause of cancer-related death worldwide. Most cases are of a type called non-small cell lung cancer (NSCLC). Like other cancers, treatment of NCSLC depends on the “TNM stage” at which the cancer is detected. Staging takes into account the size and local spread of the tumor (its T classification), whether nearby lymph nodes contain tumor cells (its N classification), and whether tumor cells have spread (metastasized) throughout the body (its M classification). Stage I tumors are confined to the lung and are removed surgically. Stage II tumors have spread to nearby lymph nodes and are treated with a combination of surgery and chemotherapy. Stage III tumors have spread throughout the chest, and stage IV tumors have metastasized around the body; patients with both of these stages are treated with chemotherapy alone. About 70% of patients with stage I or II lung cancer, but only 2% of patients with stage IV lung cancer, survive for five years after diagnosis.
Why Was This Study Done?
TNM staging is the best way to predict the likely outcome (prognosis) for patients with NSCLC, but survival times for patients with stage I and II tumors vary widely. Another prognostic marker—maybe a “molecular signature”—that could distinguish patients who are likely to respond to treatment from those whose cancer will inevitably progress would be very useful. Unlike normal cells, cancer cells divide uncontrollably and can move around the body. These behavioral changes are caused by alterations in the pattern of proteins expressed by the cells. But what causes these alterations? The answer in some cases is “epigenetic changes” or chemical modifications of genes. In cancer cells, methyl groups are aberrantly added to GC-rich gene regions. These so-called “CpG islands” lie near gene promoters (sequences that control the transcription of DNA into mRNA, the template for protein production), and their methylation stops the promoters working and silences the gene. In this study, the researchers have investigated whether aberrant methylation patterns vary between NSCLC subtypes and whether specific aberrant methylations are associated with survival and can, therefore, be used prognostically.
What Did the Researchers Do and Find?
The researchers used “restriction landmark genomic scanning” (RLGS) to catalog global aberrant DNA methylation patterns in human lung tumor samples. In RLGS, DNA is cut into fragments with a restriction enzyme (a protein that cuts at specific DNA sequences), end-labeled, and separated using two-dimensional gel electrophoresis to give a pattern of spots. Because methylation stops some restriction enzymes cutting their target sequence, normal lung tissue and lung tumor samples yield different patterns of spots. The researchers used these patterns to identify 47 DNA methylation targets (many in CpG islands) that together distinguished between adenocarcinomas and squamous cell carcinomas, two major types of NSCLCs. Next, they measured mRNA production from the genes with the greatest difference in methylation between adenocarcinomas and squamous cell carcinomas. OLIG1 (the gene that encodes a protein involved in nerve cell development) had one of the highest differences in mRNA production between these tumor types. Furthermore, three-quarters of NSCLCs had reduced or no expression of OLIG1 protein and, when the researchers analyzed the association between OLIG1 protein expression and overall survival in patients with NSCLC, reduced OLIG1 protein expression was associated with reduced survival.
What Do These Findings Mean?
These findings indicate that different types of NSCLC can be distinguished by examining their aberrant methylation patterns. This suggests that the establishment of different DNA methylation patterns might be related to the cell type from which the tumors developed. Alternatively, the different aberrant methylation patterns might reflect the different routes that these cells take to becoming tumor cells. This research identifies a potential new prognostic marker for NSCLC by showing that OLIG1 protein expression correlates with overall survival in patients with NSCLC. This correlation needs to be tested in a clinical setting to see if adding OLIG1 expression to the current prognostic parameters can lead to better treatment choices for early-stage lung cancer patients and ultimately improve these patients' overall survival.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040108.
Patient and professional information on lung cancer, including staging (in English and Spanish), is available from the US National Cancer Institute
The MedlinePlus encyclopedia has pages on non-small cell lung cancer (in English and Spanish)
Cancerbackup provides patient information on lung cancer
CancerQuest, provided by Emory University, has information about how cancer develops (in English, Spanish, Chinese and Russian)
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence gives background information and the latest news about epigenetics (in several European languages)
doi:10.1371/journal.pmed.0040108
PMCID: PMC1831740  PMID: 17388669
24.  Phase I Metabolic Genes and Risk of Lung Cancer: Multiple Polymorphisms and mRNA Expression 
PLoS ONE  2009;4(5):e5652.
Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs) tested in candidate genes. We analyzed 25 SNPs (some previously untested) in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underling dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS). Our findings emphasize the necessity of post-GWAS fine mapping and SNP functional assessment to further elucidate cancer risk associations.
doi:10.1371/journal.pone.0005652
PMCID: PMC2682568  PMID: 19479063
25.  Ion Channel Gene Expression in Lung Adenocarcinoma: Potential Role in Prognosis and Diagnosis 
PLoS ONE  2014;9(1):e86569.
Ion channels are known to regulate cancer processes at all stages. The roles of ion channels in cancer pathology are extremely diverse. We systematically analyzed the expression patterns of ion channel genes in lung adenocarcinoma. First, we compared the expression of ion channel genes between normal and tumor tissues in patients with lung adenocarcinoma. Thirty-seven ion channel genes were identified as being differentially expressed between the two groups. Next, we investigated the prognostic power of ion channel genes in lung adenocarcinoma. We assigned a risk score to each lung adenocarcinoma patient based on the expression of the differentially expressed ion channel genes. We demonstrated that the risk score effectively predicted overall survival and recurrence-free survival in lung adenocarcinoma. We also found that the risk scores for ever-smokers were higher than those for never-smokers. Multivariate analysis indicated that the risk score was a significant prognostic factor for survival, which is independent of patient age, gender, stage, smoking history, Myc level, and EGFR/KRAS/ALK gene mutation status. Finally, we investigated the difference in ion channel gene expression between the two major subtypes of non-small cell lung cancer: adenocarcinoma and squamous-cell carcinoma. Thirty ion channel genes were identified as being differentially expressed between the two groups. We suggest that ion channel gene expression can be used to improve the subtype classification in non-small cell lung cancer at the molecular level. The findings in this study have been validated in several independent lung cancer cohorts.
doi:10.1371/journal.pone.0086569
PMCID: PMC3900557  PMID: 24466154

Results 1-25 (1420531)