Search tips
Search criteria

Results 1-25 (1035409)

Clipboard (0)

Related Articles

1.  Type Iγ phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with μ1B adaptin 
The Journal of Cell Biology  2007;176(3):343-353.
Assembly of E-cadherin–based adherens junctions (AJ) is obligatory for establishment of polarized epithelia and plays a key role in repressing the invasiveness of many carcinomas. Here we show that type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) directly binds to E-cadherin and modulates E-cadherin trafficking. PIPKIγ also interacts with the μ subunits of clathrin adaptor protein (AP) complexes and acts as a signalling scaffold that links AP complexes to E-cadherin. Depletion of PIPKIγ or disruption of PIPKIγ binding to either E-cadherin or AP complexes results in defects in E-cadherin transport and blocks AJ assembly. An E-cadherin germline mutation that loses PIPKIγ binding and shows disrupted basolateral membrane targeting no longer forms AJs and leads to hereditary gastric cancers. These combined results reveal a novel mechanism where PIPKIγ serves as both a scaffold, which links E-cadherin to AP complexes and the trafficking machinery, and a regulator of trafficking events via the spatial generation of phosphatidylinositol-4,5-bisphosphate.
PMCID: PMC2063960  PMID: 17261850
2.  Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer 
The loss of E-cadherin based cell-cell contacts and tumor cell migration to the vasculature and lymphatic system are hallmarks of metastasis of epithelial cancers. Type I gamma phosphatidylinositol phosphate kinase (PIPKIγ), an enzyme that generates phosphatidylinositol 4,5-bisphosphate (PI4,5P2) a lipid messenger and precursor to many additional second messengers, was found to regulate E-cadherin cell-cell contacts and growth factor-stimulated directional cell migration, indicating that PIPKIγ regulates key steps in metastasis. Here, we assess the expression of PIPKIγ in breast cancers and have shown that expression correlated with disease progression and outcome.
Using a tissue microarray, we analyzed 438 breast carcinomas for the levels of PIPKIγ and investigated the correlation of PIPKIγ expression with patient survival via Kaplan-Meier survival analysis. Moreover, via knockdown of the expression of PIPKIγ in cultured breast cancer cells with siRNA, the roles of PIPKIγ in breast cancer migration, invasion, and proliferation were examined.
Tissue microarray data shows that ~18% of the cohort immunostained showed high expression of PIPKIγ. The Kaplan-Meier survival analysis revealed a significant inverse correlation between strong PIPKIγ expression and overall patient survival. Expression of PIPKIγ correlated positively with epidermal growth factor receptor (EGFR) expression, which regulates breast cancer progression and metastasis. In cultured breast cancer cells, PIPKIγ is required for growth factor stimulated migration, invasion, and proliferation of cells.
The results reveal a significant correlation between PIPKIγ expression and the progression of breast cancer. This is consistent with PIPKIγ 's role in breast cancer cell migration, invasion, and proliferation.
PMCID: PMC2880426  PMID: 20074374
3.  Sec3-containing Exocyst Complex Is Required for Desmosome Assembly in Mammalian Epithelial Cells 
Molecular Biology of the Cell  2010;21(1):152-164.
In epithelial cells, Sec3 associates with Exocyst complexes enriched at desmosomes and centrosomes, distinct from Sec6/8 complexes at the apical junctional complex. RNAi-mediated suppression of Sec3 alters trafficking of desmosomal cadherins and impairs desmosome morphology and function, without noticeable effect on adherens junctions.
The Exocyst is a conserved multisubunit complex involved in the docking of post-Golgi transport vesicles to sites of membrane remodeling during cellular processes such as polarization, migration, and division. In mammalian epithelial cells, Exocyst complexes are recruited to nascent sites of cell–cell contact in response to E-cadherin–mediated adhesive interactions, and this event is an important early step in the assembly of intercellular junctions. Sec3 has been hypothesized to function as a spatial landmark for the development of polarity in budding yeast, but its role in epithelial cells has not been investigated. Here, we provide evidence in support of a function for a Sec3-containing Exocyst complex in the assembly or maintenance of desmosomes, adhesive junctions that link intermediate filament networks to sites of strong intercellular adhesion. We show that Sec3 associates with a subset of Exocyst complexes that are enriched at desmosomes. Moreover, we found that membrane recruitment of Sec3 is dependent on cadherin-mediated adhesion but occurs later than that of the known Exocyst components Sec6 and Sec8 that are recruited to adherens junctions. RNA interference-mediated suppression of Sec3 expression led to specific impairment of both the morphology and function of desmosomes, without noticeable effect on adherens junctions. These results suggest that two different exocyst complexes may function in basal–lateral membrane trafficking and will enable us to better understand how exocytosis is spatially organized during development of epithelial plasma membrane domains.
PMCID: PMC2801709  PMID: 19889837
4.  Myosin-1c regulates the dynamic stability of E-cadherin–based cell–cell contacts in polarized Madin–Darby canine kidney cells 
Molecular Biology of the Cell  2013;24(18):2820-2833.
Myo1c knockdown causes defects in E-cadherin localization, E-cadherin binding, and cell–cell contact of Madin–Darby canine kidney cells. Expression of wild-type Myo1c, but not motor-dead mutants or those unable to bind membrane, reverses the phenotype, evidence that Myo1c modulates the assembly/maintenance of adherens junctions.
Cooperation between cadherins and the actin cytoskeleton controls the formation and maintenance of cell–cell adhesions in epithelia. We find that the molecular motor protein myosin-1c (Myo1c) regulates the dynamic stability of E-cadherin–based cell–cell contacts. In Myo1c-depleted Madin–Darby canine kidney cells, E-cadherin localization was dis­organized and lateral membranes appeared less vertical with convoluted edges versus control cells. In polarized monolayers, Myo1c-knockdown (KD) cells were more sensitive to reduced calcium concentration. Myo1c separated in the same plasma membrane fractions as E-cadherin, and Myo1c KD caused a significant reduction in the amount of E-cadherin recovered in one peak fraction. Expression of green fluorescent protein (GFP)–Myo1c mutants revealed that the phosphatidylinositol-4,5-bisphosphate–binding site is necessary for its localization to cell–cell adhesions, and fluorescence recovery after photobleaching assays with GFP-Myo1c mutants revealed that motor function was important for Myo1c dynamics at these sites. At 18°C, which inhibits vesicle recycling, Myo1c-KD cells accumulated more E-cadherin–positive vesicles in their cytoplasm, suggesting that Myo1c affects E-cadherin endocytosis. Studies with photoactivatable GFP–E-cadherin showed that Myo1c KD reduced the stability of E-cadherin at cell–cell adhesions. We conclude that Myo1c stabilizes E-cadherin at adherens junctions in polarized epithelial cells and that the motor function and ability of Myo1c to bind membrane are critical.
PMCID: PMC3771945  PMID: 23864705
5.  Determinants of phosphatidylinositol-4-phosphate 5-kinase type Iγ90 uropod location in T-lymphocytes and its role in uropod formation 
PeerJ  2013;1:e131.
We have previously identified phosphatidylinositol-4-phosphate 5-kinase type I (PIPKI)γ90 as a T cell uropod component. However, the molecular determinants and functional consequences of its localization remain unknown. In this report, we seek to better understand the mechanisms involved in PIPKIγ90 uropod targeting and the role that PIPKIγ90 plays in T cell uropod formation. During T cell activation, PIPKIγ90 cocaps with the membrane microdomain-associated proteins flotillin-1 and -2 and accumulates in the uropod. We report that the C-terminal 26 amino acid extension of PIPKIγ90 is required for its localization to the uropod. We further use T cells from PIPKIγ90−/− mice and human T cells expressing a kinase-dead PIPKIγ90 mutant to examine the role of PIPKIγ90 in a T cell uropod formation. We find that PIPKIγ90 deficient T cells have elongated uropods on ICAM-1. Moreover, in human T cells overexpression of PIPKIγ87, a naturally occurring isoform lacking the last 26 amino acids, suppresses uropod formation and impairs capping of uropod proteins such as flotillins. Transfection of human T cells with a dominant-negative mutant of flotillin-2 in turn attenuates capping of PIPKIγ90. Our data contribute to the understanding of the molecular mechanisms that regulate T cell uropod formation.
PMCID: PMC3757496  PMID: 24010013
T cell; Phosphatidylinositol-4-phosphate 5-kinase type I (PIPKI)γ90; PIPKIγ87; Uropod; Flotillin
6.  Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions 
The Journal of Cell Biology  1996;132(3):451-463.
We characterized the role of the E-cadherin adhesion system in the formation of epithelial tight junctions using the calcium switch model. In MDCK cells cultured in low (micromolar) calcium levels, the tight junctional protein Zonula Occludens-1 (ZO-1) is distributed intracellularly in granular clusters, the larger of which codistribute with E-cadherin. Two hours after activation of E-cadherin adhesion by transfer to normal (1.8 mM) calcium levels, ZO-1 dramatically redistributed to the cell surface, where it localized in regions rich in E-cadherin. Immunoprecipitation with ZO-1 antibodies of extracts from cells kept in low calcium and 2 h after shifting to 1.8 mM Ca2+ demonstrated the association of ZO-1 with alpha-, beta-, and gamma- catenins. E-cadherin was not detected in the ZO-1 immunoprecipitates but it was found in beta-catenin immunoprecipitates that excluded ZO-1, suggesting that the binding of ZO-1 to catenins may weaken the interaction of these proteins with E-cadherin. Immunofluorescence and immunoelectron microscopy confirmed a close association of beta-catenin and ZO-1 at 0 and 2 h after Ca2+ switch. 48 h after Ca2+ switch, upon complete polarization of the epithelium, most of the ZO-1 had segregated from lateral E-cadherin and formed a distinct, separate apical ring. The ZO-1-catenin complex was not detected in fully polarized monolayers. MDCK cells permanently transformed with Moloney sarcoma virus, which expresses low levels of E-cadherin, displayed clusters of cytoplasmic ZO-1 granules and very little of this protein at the cell surface. Upon transfection with E-cadherin into Moloney sarcoma virus-MDCK cells, ZO-1 redistributed to E-cadherin-rich lateral plasma membrane but later failed to segregate into mature tight junctions. Our experiments suggest that catenins participate in the mobilization of ZO-1 from the cytosol to the cell surface early in the development of tight junctions and that neoplastic transformation may block the formation of tight junctions, either by decreasing the levels of E-cadherin or by preventing a late event: the segregation of tight junction from the zonula adherens.
PMCID: PMC2120728  PMID: 8636221
7.  Type Iγ phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration 
The Journal of Cell Biology  2007;178(2):297-308.
Phosphatidylinositol 4,5-bisphosphate (PI4,5P2) modulates a plethora of cytoskeletal interactions that control the dynamics of actin assembly and, ultimately, cell migration. We show that the type Iγ phosphatidylinositol phosphate kinase 661 (PIPKIγ661), an enzyme that generates PI4,5P2, is required for growth factor but not G protein–coupled receptor–stimulated directional migration. By generating PI4,5P2 and regulating talin assembly, PIPKIγ661 modulates nascent adhesion formation at the leading edge to facilitate cell migration. The epidermal growth factor (EGF) receptor directly phosphorylates PIPKIγ661 at tyrosine 634, and this event is required for EGF-induced migration. This phosphorylation regulates the interaction between PIPKIγ661 and phospholipase Cγ1 (PLCγ1, an enzyme previously shown to be involved in the regulation of EGF-stimulated migration). Our results suggest that phosphorylation events regulating specific PIPKIγ661 interactions are required for growth factor–induced migration. These interactions in turn define the spatial and temporal generation of PI4,5P2 and derived messengers required for directional migration.
PMCID: PMC2064448  PMID: 17635937
8.  PIPKIγ Regulates Focal Adhesion Dynamics and Colon Cancer Cell Invasion 
PLoS ONE  2011;6(9):e24775.
Focal adhesion assembly and disassembly are essential for cell migration and cancer invasion, but the detailed molecular mechanisms regulating these processes remain to be elucidated. Phosphatidylinositol phosphate kinase type Iγ (PIPKIγ) binds talin and is required for focal adhesion formation in EGF-stimulated cells, but its role in regulating focal adhesion dynamics and cancer invasion is poorly understood. We show here that overexpression of PIPKIγ promoted focal adhesion formation, whereas cells expressing either PIPKIγK188,200R or PIPKIγD316K, two kinase-dead mutants, had much fewer focal adhesions than those expressing WT PIPKIγ in CHO-K1 cells and HCT116 colon cancer cells. Furthermore, overexpression of PIPKIγ, but not PIPKIγK188,200R, resulted in an increase in both focal adhesion assembly and disassembly rates. Depletion of PIPKIγ by using shRNA strongly inhibited formation of focal adhesions in HCT116 cells. Overexpression of PIPKIγK188,200R or depletion of PIPKIγ reduced the strength of HCT116 cell adhesion to fibronection and inhibited the invasive capacities of HCT116 cells. PIPKIγ depletion reduced PIP2 levels to ∼40% of control and PIP3 to undetectable levels, and inhibited vinculin localizing to focal adhesions. Taken together, PIPKIγ positively regulates focal adhesion dynamics and cancer invasion, most probably through PIP2-mediated vinculin activation.
PMCID: PMC3171478  PMID: 21931851
9.  Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons 
PLoS Biology  2009;7(11):e1000240.
Imaging cerebellar granule neurons in zebrafish embryos reveals a further role for Cadherin-2 in neurogenesis: regulating cohesive and directional granule cell migration via intra-membranous Cadherin-2 relocalisation and centrosome stabilization.
Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations.
Author Summary
As the vertebrate nervous system develops, neurons migrate from proliferation zones to their later place of function. Adhesion molecules have been implicated as key players in regulating cellular motility. In addition, the centrosome (the main microtubule organizing center of the cell) orients into the direction of neuronal migration. In this study we assign the trans-membrane adhesion molecule Cadherin-2 with an important function in the migration of granule neurons in the cerebellum, by interconnecting adhesion with directionality of migration. Time-lapse analysis in transparent zebrafish embryos revealed that Cadherin-2 enables granule neurons to form ‘chain’-like structures during migration. In addition, this adhesion molecule stabilized the position of the centrosome at the leading edge of the migrating neuron. In vivo tracing of a fluorescent Cadherin-2 reporter molecule showed that during individual migratory steps of a granule neuron, Cadherin-2 is shifted along the cell membrane in contact with chain-migrating neighboring neurons to the front compartment of migrating cells. Cadherin-2 is a crucial component of adherens junctions, which are connected via microtubules to the centrosome. We propose that the forward translocation of Cadherin-2-containing adherens junctions stabilizes the centrosome to the cell's front. Cadherin-2 thus transmits cell-cell contact modulation into directional migration of cerebellar granule neurons.
PMCID: PMC2766073  PMID: 19901980
10.  Rab35 regulates cadherin-mediated adherens junction formation and myoblast fusion 
Molecular Biology of the Cell  2013;24(3):234-245.
The small GTPase Rab35 is identified as a regulator of cadherin trafficking and stabilization at cell–cell contacts. Rab35 function is required for PIP5KIγ accumulation at cell contacts and PI(4,5)P2 production, and hence cadherin stabilization. Rab35 regulates myoblast fusion, a cellular process under the control of cadherin-dependent signaling.
Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion.
PMCID: PMC3564529  PMID: 23197472
11.  The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth 
Molecular Biology of the Cell  2014;25(8):1312-1326.
The Neurospora crassa exocyst presents two distinct localization patterns. EXO-70 and -84 colocalize with a region of the Spitzenkörper occupied by secretory macrovesicles. In contrast, SEC-3, -5, -6, -8, and -15 localize distinctively at the apical plasma membrane.
Fungal hyphae are among the most highly polarized cells. Hyphal polarized growth is supported by tip-directed transport of secretory vesicles, which accumulate temporarily in a stratified manner in an apical vesicle cluster, the Spitzenkörper. The exocyst complex is required for tethering of secretory vesicles to the apical plasma membrane. We determined that the presence of an octameric exocyst complex is required for the formation of a functional Spitzenkörper and maintenance of regular hyphal growth in Neurospora crassa. Two distinct localization patterns of exocyst subunits at the hyphal tip suggest the dynamic formation of two assemblies. The EXO-70/EXO-84 subunits are found at the peripheral part of the Spitzenkörper, which partially coincides with the outer macrovesicular layer, whereas exocyst components SEC-5, -6, -8, and -15 form a delimited crescent at the apical plasma membrane. Localization of SEC-6 and EXO-70 to the plasma membrane and the Spitzenkörper, respectively, depends on actin and microtubule cytoskeletons. The apical region of exocyst-mediated vesicle fusion, elucidated by the plasma membrane–associated exocyst subunits, indicates the presence of an exocytotic gradient with a tip-high maximum that dissipates gradually toward the subapex, confirming the earlier predictions of the vesicle supply center model for hyphal morphogenesis.
PMCID: PMC3982996  PMID: 24523289
12.  PIPKIγ90 negatively regulates LFA-1 mediated adhesion and activation in antigen-induced CD4+ T cells! 
T cell activation requires the formation and maintenance of stable interactions between T cells and antigen presenting cells (APC). The formation of stable T cell-APC contacts depends on the activation of the integrin, LFA-1 (CD11aCD18). Several positive regulators of LFA-1 activation downstream of proximal TCR signaling have been identified including talin; however, negative regulators of LFA-1 activity remain largely unexplored. PIPKIγ90 is a member of the type I phosphatidylinositol phosphate kinase family that has previously been shown to modulate talin activation of integrins through production of phosphatidylinositol (4,5) bisphosphate, PI(4,5)P2, and direct binding to talin. In this study, we show that PIPKIγ90 negatively regulates LFA-1-mediated adhesion and activation of T cells. Using CD4+ T cells from PIPKIγ90-deficient mice, we show that CD4+ T cells exhibit increased LFA-1 dependent adhesion to ICAM-1 and increased rates of T cell-APC conjugate formation with enhanced LFA-1 polarization at the synapse. In addition to increased adhesiveness, PIPKIγ90-deficient T cells exhibit increased proliferation both in vitro and in vivo and increased production of interferon-γ and IL-2. Together, these results demonstrate that PIPKIγ90 is a novel negative regulator of antigen-induced T cell adhesion and activation.
PMCID: PMC3014605  PMID: 20855869
T cells; Cell Proliferation; Cell Activation; Transgenic/Knock Out Mice; Spleen/Lymph Node; Rodent
13.  Phosphatidylinositol 4,5-Bisphosphate Mediates the Targeting of the Exocyst to the Plasma Membrane for Exocytosis in Mammalian Cells 
Molecular Biology of the Cell  2007;18(11):4483-4492.
The exocyst is an evolutionarily conserved octameric protein complex that tethers post-Golgi secretory vesicles at the plasma membrane for exocytosis. To elucidate the mechanism of vesicle tethering, it is important to understand how the exocyst physically associates with the plasma membrane (PM). In this study, we report that the mammalian exocyst subunit Exo70 associates with the PM through its direct interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Furthermore, we have identified key conserved residues at the C-terminus of Exo70 that are crucial for the interaction of Exo70 with PI(4,5)P2. Disrupting Exo70-PI(4,5)P2 interaction abolished the membrane association of Exo70. We have also found that wild-type Exo70 but not the PI(4,5)P2-binding–deficient Exo70 mutant is capable of recruiting other exocyst components to the PM. Using the ts045 vesicular stomatitis virus glycoprotein trafficking assay, we demonstrate that Exo70-PI(4,5)P2 interaction is critical for the docking and fusion of post-Golgi secretory vesicles, but not for their transport to the PM.
PMCID: PMC2043555  PMID: 17761530
14.  Cross Talk between Adhesion Molecules: Control of N-cadherin Activity by Intracellular Signals Elicited by β1 and β3 Integrins in Migrating Neural Crest Cells 
The Journal of Cell Biology  1997;137(7):1663-1681.
During embryonic development, cell migration and cell differentiation are associated with dynamic modulations both in time and space of the repertoire and function of adhesion receptors, but the nature of the mechanisms responsible for their coordinated occurrence remains to be elucidated. Thus, migrating neural crest cells adhere to fibronectin in an integrin-dependent manner while maintaining reduced N-cadherin–mediated intercellular contacts. In the present study we provide evidence that, in these cells, the control of N-cadherin may rely directly on the activity of integrins involved in the process of cell motion. Prevention of neural crest cell migration using RGD peptides or antibodies to fibronectin and to β1 and β3 integrins caused rapid N-cadherin–mediated cell clustering. Restoration of stable intercellular contacts resulted essentially from the recruitment of an intracellular pool of N-cadherin molecules that accumulated into adherens junctions in tight association with the cytoskeleton and not from the redistribution of a preexisting pool of surface N-cadherin molecules. In addition, agents that cause elevation of intracellular Ca2+ after entry across the plasma membrane were potent inhibitors of cell aggregation and reduced the N-cadherin– mediated junctions in the cells. Finally, elevated serine/ threonine phosphorylation of catenins associated with N-cadherin accompanied the restoration of intercellular contacts. These results indicate that, in migrating neural crest cells, β1 and β3 integrins are at the origin of a cascade of signaling events that involve transmembrane Ca2+ fluxes, followed by activation of phosphatases and kinases, and that ultimately control the surface distribution and activity of N-cadherin. Such a direct coupling between adhesion receptors by means of intracellular signals may be significant for the coordinated interplay between cell–cell and cell–substratum adhesion that occurs during embryonic development, in wound healing, and during tumor invasion and metastasis.
PMCID: PMC2137812  PMID: 9199179
15.  Regulation of Cadherin Function by Rho and Rac: Modulation by Junction Maturation and Cellular Context 
Molecular Biology of the Cell  1999;10(1):9-22.
Cadherins are cell–cell adhesion receptors whose adhesive function requires their association with the actin cytoskeleton via proteins called catenins. The small guanosine triphosphatases (GTPases), Rho and Rac, are intracellular proteins that regulate the formation of distinct actin structures in different cell types. In keratinocytes and in other epithelial cells, Rho and Rac activities are required for E-cadherin function. Here we show that the regulation of cadherin adhesiveness by the small GTPases is influenced by the maturation status of the junction and the cellular context. E-cadherin localization was disrupted in mature keratinocyte junctions after inhibition of Rho and Rac. However, an incubation of 2 h was required after GTPase inhibition, when compared with newly established E-cadherin contacts (30 min). Regarding other cadherin receptors, P-cadherin was effectively removed from mature keratinocytes junctions by blocking Rho or Rac. In contrast, VE-cadherin localization at endothelial junctions was independent of Rho/Rac activity. We demontrate that the insensitivity of VE-cadherin to inhibition of Rho and Rac was not due to the maturation status of endothelial junction, but rather the cellular background: when transfected into CHO cells, the localization of VE-cadherin was perturbed by inhibition of Rho proteins. Our results suggest that the same stimuli may have different activity in regulating the paracellular activity in endothelial and epithelial cells. In addition, we uncovered possible roles for the small GTPases during the establishment of E-cadherin–dependent contacts. In keratinocytes, Rac activation by itself cannot promote accumulation of actin at the cell periphery in the absence of cadherin-dependent contacts. Moreover, neither Rho nor Rac activation was sufficient to redistribute cadherin molecules to cell borders, indicating that redistribution results mostly from the homophilic binding of the receptors. Our results point out the complexity of the regulation of cadherin-mediated adhesion by the small GTPases, Rho and Rac.
PMCID: PMC25150  PMID: 9880323
16.  ADP-Ribosylation Factor 6 Mediates E-Cadherin Recovery by Chemical Chaperones 
PLoS ONE  2011;6(8):e23188.
E-cadherin plays a powerful tumor suppressor role. Germline E-cadherin mutations justify 30% of Hereditary Diffuse Gastric Cancer (HDGC) and missense mutations are found in 30% of these families. We found possible to restore in vitro mutant E-cadherin associated to HDGC syndrome by using Chemical Chaperones (CCs). Herein, our aim was to disclose the molecular mechanisms underlying the CCs effects in E-cadherin regulation. Using cells stably expressing WT E-cadherin or two HDGC-associated missense mutations, we show that upon DMSO treatment, not only mutant E-cadherin is restored and stabilized at the plasma membrane (PM), but also Arf6 and PIPKIγ expressions are altered. We show that modulation of Arf6 expression partially mimics the effect of CCs, suggesting that the cellular effects observed upon CCs treatment are mediated by Arf6. Further, we show that E-cadherin expression recovery is specifically linked to Arf6 due to its role on endocytosis and recycling pathways. Finally, we demonstrated that, as DMSO, several others CCs are able to modulate the trafficking machinery through an Arf6 dependent mechanism. Interestingly, the more effective compounds in E-cadherin recovery to PM are those that simultaneously inhibit Arf6 and stimulate PIPKIγ expression and binding to E-cadherin. Here, we present the first evidence of a direct influence of CCs in cellular trafficking machinery and we show that this effect is of crucial importance in the context of juxtamembrane E-cadherin missense mutations associated to HDGC. We propose that this influence should be taken into account when exploring the therapeutic potential of this type of chemicals in genetic diseases associated to protein-misfolding.
PMCID: PMC3154279  PMID: 21853084
17.  Differential Localization of VE- and N-Cadherins in Human Endothelial Cells: VE-Cadherin Competes with N-Cadherin for Junctional Localization  
The Journal of Cell Biology  1998;140(6):1475-1484.
The two major cadherins of endothelial cells are neural (N)-cadherin and vascular endothelial (VE)- cadherin. Despite similar level of protein expression only VE-cadherin is located at cell–cell contacts, whereas N-cadherin is distributed over the whole cell membrane. Cotransfection of VE-cadherin and N-cadherin in CHO cells resulted in the same distribution as that observed in endothelial cells indicating that the behavior of the two cadherins was not cell specific but related to their structural characteristics. Similar amounts of α- and β-catenins and plakoglobin were associated to VE- and N-cadherins, whereas p120 was higher in the VE-cadherin complex. The presence of VE-cadherin did not affect N-cadherin homotypic adhesive properties or its capacity to localize at junctions when cotransfectants were cocultured with cells transfected with N-cadherin only. To define the molecular domain responsible for the VE-cadherin–dominant activity we prepared a chimeric construct formed by VE-cadherin extracellular region linked to N-cadherin intracellular domain. The chimera lost the capacity to exclude N-cadherin from junctions indicating that the extracellular domain of VE-cadherin alone is not sufficient for the preferential localization of the molecule at the junctions. A truncated mutant of VE-cadherin retaining the full extracellular domain and a short cytoplasmic tail (Arg621–Pro702) lacking the catenin-binding region was able to exclude N-cadherin from junctions. This indicates that the Arg621–Pro702 sequence in the VE-cadherin cytoplasmic tail is required for N-cadherin exclusion from junctions. Competition between cadherins for their clustering at intercellular junctions in the same cell has never been described before. We speculate that, in the endothelium, VE- and N-cadherin play different roles; whereas VE-cadherin mostly promotes the homotypic interaction between endothelial cells, N-cadherin may be responsible for the anchorage of the endothelium to other surrounding cell types expressing N-cadherin such as vascular smooth muscle cells or pericytes.
PMCID: PMC2132661  PMID: 9508779
18.  Afadin controls cadherin cluster stability using clathrin-independent mechanism 
Tissue Barriers  2014;2:e28687.
Afadin is an actin-binding protein that interacts with the intracellular region of the transmembrane proteins, nectins. In collaboration with other transmembrane proteins, cadherins, nectins form adherens junctions, a major type of cell-cell adhesive structures in the multicellular organisms. To elucidate the afadin function, we studied adherens junction defects induced by afadin depletion in epithelial A431 cells. We have found that the cells lacking afadin exhibit no abnormalities in morphology or in general dynamics of adherens junctions in the confluent cell cultures. The only observed difference is a slight increase in the rate of cadherin turnover in these junctions. However, afadin depletion strongly affects the assembly of new adherens junctions immediately after two cells touch one another: initiation of new junctions is significantly delayed, the growth of the nascent junctions stagnates, and their lifetime shortens. As a result, the afadin-depleted cells need much more time to establish the mature junctional structures. This defect is not caused by the clathrin-dependent endocytosis of cadherin clusters that was monitored using live-cell imaging of A431 cells co-expressing GFP-tagged E-cadherin and mCherry-tagged clathrin light chain. Taken together our data show that afadin reinforces adherens junctions and that this process is crucial for the fast formation of adherens junctions at the sites of new cell-cell contacts.
PMCID: PMC4092309  PMID: 25045601
adherens junctions; adhesion; afadin; cadherin; nectin
19.  A Polycystin-1 Multiprotein Complex Is Disrupted in Polycystic Kidney Disease CellsD⃞ 
Molecular Biology of the Cell  2004;15(3):1334-1346.
Autosomal dominant polycystic kidney disease (ADPKD) is typified by the accumulation of fluid-filled cysts and abnormalities in renal epithelial cell function. The disease is principally caused by mutations in the gene encoding polycystin-1, a large basolateral plasma membrane protein expressed in kidney epithelial cells. Our studies reveal that, in normal kidney cells, polycystin-1 forms a complex with the adherens junction protein E-cadherin and its associated catenins, suggesting a role in cell adhesion or polarity. In primary cells from ADPKD patients, the polycystin-1/polycystin-2/E-cadherin/β-catenin complex was disrupted and both polycystin-1 and E-cadherin were depleted from the plasma membrane as a result of the increased phosphorylation of polycystin-1. The loss of E-cadherin was compensated by the transcriptional upregulation of the normally mesenchymal N-cadherin. Increased cell surface N-cadherin in the disease cells in turn stabilized the continued plasma membrane localization of β-catenin in the absence of E-cadherin. The results suggest that enhanced phosphorylation of polycystin-1 in ADPKD cells precipitates changes in its localization and its ability to form protein complexes that are critical for the stabilization of adherens junctions and the maintenance of a fully differentiated polarized renal epithelium.
PMCID: PMC363138  PMID: 14718571
20.  Tyrosine phosphorylation of type Iγ phosphatidylinositol phosphate kinase by Src regulates an integrin–talin switch 
The Journal of Cell Biology  2003;163(6):1339-1349.
Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Iγ phosphatidylinositol phosphate kinase (PIPKIγ661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIγ661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIγ661 and Src. The phosphorylation of Y644 results in an ∼15-fold increase in binding affinity to the talin head domain and blocks β-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a “molecular switch” for talin binding between PIPKIγ661 and β-integrin that may regulate dynamic FA turnover.
PMCID: PMC2173703  PMID: 14691141
PIPKIγ661; focal adhesion; phosphotyrosine-binding domain; FAK; β-integrin
21.  Association of Rho-associated protein kinase 1 with E-cadherin complexes is mediated by p120-catenin 
Molecular Biology of the Cell  2012;23(1):99-110.
We show that Rho-associated protein kinase 1 coimmunoprecipitates with p120 and colocalizes to adherens junctions. p120 links ROCK1 to E-cadherin, as ROCK1 associates with wild-type, but not p120-uncoupled, E-cadherin. These data suggest that p120 regulates Rho activity at the cadherin complex via interaction with up- and downstream effectors, including ROCK1.
The dynamic functional linkage of cadherins with the underlying actin cytoskeleton is tightly regulated to achieve proper cell–cell adhesion. p120-catenin (p120) regulates both cadherin stability and actin dynamics, but the relationship between these two functions remains unclear. Using a novel proteomic approach called reversible cross-link immunoprecipitation, or ReCLIP, we previously identified a physical interaction between p120 and Rho-associated protein kinase 1 (ROCK1), a major effector of RhoA. In this paper, we show that a discrete fraction of cellular ROCK1 coimmunoprecipitates with p120 and precisely colocalizes to adherens junctions (AJs). Manipulation of AJs using a calcium-switch assay and cadherin-blocking antibodies indicates direct recruitment of ROCK1 to newly forming junctions. Importantly, we find that p120 links ROCK1 to the cadherin complex, as ROCK1 coimmunoprecipitates with wild-type but not p120-uncoupled E-cadherin. Moreover, depletion of ROCK1 using short-hairpin RNA results in dramatic mislocalization of the cadherin complex and junctional actin. These data are consistent with a model in which p120 dynamically regulates Rho-GTPase activity at the cadherin complex through transient interaction with several of its up- and downstream effectors, including ROCK1.
PMCID: PMC3248908  PMID: 22031287
22.  Association of an A-Kinase-anchoring Protein Signaling Scaffold with Cadherin Adhesion Molecules in Neurons and Epithelial Cells 
Molecular Biology of the Cell  2005;16(8):3574-3590.
A-kinase-anchoring protein (AKAP) 79/150 organizes a scaffold of cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and protein phosphatase 2B/calcineurin that regulates phosphorylation pathways underlying neuronal long-term potentiation and long-term depression (LTD) synaptic plasticity. AKAP79/150 postsynaptic targeting requires three N-terminal basic domains that bind F-actin and acidic phospholipids. Here, we report a novel interaction of these domains with cadherin adhesion molecules that are linked to actin through β-catenin (β-cat) at neuronal synapses and epithelial adherens junctions. Mapping the AKAP binding site in cadherins identified overlap with β-cat binding; however, no competition between AKAP and β-cat binding to cadherins was detected in vitro. Accordingly, AKAP79/150 exhibited polarized localization with β-cat and cadherins in epithelial cell lateral membranes, and β-cat was present in AKAP–cadherin complexes isolated from epithelial cells, cultured neurons, and rat brain synaptic membranes. Inhibition of epithelial cell cadherin adhesion and actin polymerization redistributed intact AKAP–cadherin complexes from lateral membranes to intracellular compartments. In contrast, stimulation of neuronal pathways implicated in LTD that depolymerize postsynaptic F-actin disrupted AKAP–cadherin interactions and resulted in loss of the AKAP, but not cadherins, from synapses. This neuronal regulation of AKAP79/150 targeting to cadherins may be important in functional and structural synaptic modifications underlying plasticity.
PMCID: PMC1182299  PMID: 15930126
23.  Phosphatidylinositol-4-Phosphate 5-Kinases and Phosphatidylinositol 4,5-Bisphosphate Synthesis in the Brain* 
The Journal of Biological Chemistry  2010;285(37):28708-28714.
The predominant pathway for phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) synthesis is thought to be phosphorylation of phosphatidylinositol 4-phosphate at the 5 position of the inositol ring by type I phosphatidylinositol phosphate kinases (PIPK): PIPKIα, PIPKIβ, and PIPKIγ. PIPKIγ has been shown to play a role in PI(4,5)P2 synthesis in brain, and the absence of PIPKIγ is incompatible with postnatal life. Conversely, mice lacking PIPKIα or PIPKIβ (isoforms are referred to according to the nomenclature of human PIPKIs) live to adulthood, although functional effects in specific cell types are observed. To determine the contribution of PIPKIα and PIPKIβ to PI(4,5)P2 synthesis in brain, we investigated the impact of disrupting multiple PIPKI genes. Our results show that a single allele of PIPKIγ, in the absence of both PIPKIα and PIPKIβ, can support life to adulthood. In addition, PIPKIα alone, but not PIPKIβ alone, can support prenatal development, indicating an essential and partially overlapping function of PIPKIα and PIPKIγ during embryogenesis. This is consistent with early embryonic expression of PIPKIα and PIPKIγ but not of PIPKIβ. PIPKIβ expression in brain correlates with neuronal differentiation. The absence of PIPKIβ does not impact embryonic development in the PIPKIγ knock-out (KO) background but worsens the early postnatal phenotype of the PIPKIγ KO (death occurs within minutes rather than hours). Analysis of PIP2 in brain reveals that only the absence of PIPKIγ significantly impacts its levels. Collectively, our results provide new evidence for the dominant importance of PIPKIγ in mammals and imply that PIPKIα and PIPKIβ function in the generation of specific PI(4,5)P2 pools that, at least in brain, do not have a major impact on overall PI(4,5)P2 levels.
PMCID: PMC2937898  PMID: 20622009
Gene Knockout; Neural Metabolism; Neurobiology; Phosphatidylinositol; Phosphatidylinositol Signaling; Phosphatidylinositol 4,5-Bisphosphate; Phosphatidylinositol 4-Phosphate 5-Kinase
24.  Numb controls E-cadherin endocytosis through p120 catenin with aPKC 
Molecular Biology of the Cell  2011;22(17):3103-3119.
We found that Numb directly binds to p120. Numb depletion impaired E-cadherin internalization. aPKC phosphorylated Numb and inhibited its association with p120. In the Numb-depleted cells, the phosphomimetic Numb mutant failed to restore E-cadherin internalization. We propose the mode of action of Numb for intercellular adhesion downstream of aPKC.
Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity.
PMCID: PMC3164458  PMID: 21775625
25.  Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells 
The Journal of Cell Biology  1994;125(6):1341-1352.
The cadherin/catenin complex plays important roles in cell adhesion, signal transduction, as well as the initiation and maintenance of structural and functional organization of cells and tissues. In the preceding study, we showed that the assembly of the cadherin/catenin complex is temporally regulated, and that novel combinations of catenin and cadherin complexes are formed in both Triton X-100-soluble and - insoluble fractions; we proposed a model in which pools of catenins are important in regulating assembly of E-cadherin/catenin and catenin complexes. Here, we sought to determine the spatial distributions of E- cadherin, alpha-catenin, beta-catenin, and plakoglobin, and whether different complexes of these proteins accumulate at steady state in polarized Madin-Darby canine kidney cells. Protein distributions were visualized by wide field, optical sectioning, and double immunofluorescence microscopy, followed by reconstruction of three- dimensional images. In cells that were extracted with Triton X-100 and then fixed (Triton X-100-insoluble fraction), more E-cadherin was concentrated at the apical junction relative to other areas of the lateral membrane. alpha-Catenin and beta-catenin colocalize with E- cadherin at the apical junctional complex. There is some overlap in the distribution of these proteins in the lateral membrane, but there are also areas where the distributions are distinct. Plakoglobin is excluded from the apical junctional complex, and its distribution in the lateral membrane is different from that of E-cadherin. Cells were also fixed and then permeabilized to reveal the total cellular pool of each protein (Triton X-100-soluble and -insoluble fractions). This analysis showed lateral membrane localization of alpha-catenin, beta- catenin, and plakoglobin, and it also revealed that they are distributed throughout the cell. Chemical cross-linking of proteins and analysis with specific antibodies confirmed the presence at steady state of E-cadherin/catenin complexes containing either beta-catenin or plakoglobin, and catenin complexes devoid of E-cadherin. Complexes containing E-cadherin/beta-catenin and E-cadherin/alpha-catenin are present in both the Triton X-100-soluble and -insoluble fractions, but E-cadherin/plakoglobin complexes are not detected in the Triton X-100- insoluble fraction. Taken together, these results show that different complexes of cadherin and catenins accumulate in fully polarized epithelial cells, and that they distribute to different sites. We suggest that cadherin/catenin and catenin complexes at different sites have specialized roles in establishing and maintaining the structural and functional organization of polarized epithelial cells.
PMCID: PMC2290918  PMID: 8207062

Results 1-25 (1035409)