PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (814487)

Clipboard (0)
None

Related Articles

1.  A novel POLG gene mutation in a patient with SANDO 
Journal of experimental and integrative medicine  2012;2(2):10.5455/jeim.200312.cr.001.
The human mitochondrial genome is replicated by DNA polymerase γ, which is encoded by polymerase γ gene (POLG1) on chromosome 15q25. Patients with POLG1 mutations usually present as Alpers’ syndrome or progressive external ophthalmoplegia. Our patient was a 48-year old woman with sensory ataxic neuropathy, dysarthria, ophthalmoplegia, and dysphagia. Sequence analysis revealed that she has two heterozygous missense mutations in the POLG1, a c.1774C>T substitution in exon 10, which results in a p.L591F amino acid change; and a c.3286C>T substitution in exon 21, which results in a p.R1096C amino acid change. The 1774C>T substitution is a novel mutation.
Previously described adult patients with one mutation in exon 10 and the other in exon 21 of POLG1 had presented with progressive external ophthalmoplegia. We now describe a patient with mutations in the same exons but suffering from the more complex clinical syndrome of sensory ataxic neuropathy, dysarthria, ophthalmoplegia.
doi:10.5455/jeim.200312.cr.001
PMCID: PMC3832984  PMID: 24265579
Novel mutation; PEO; POLG1; SANDO
2.  Dopamine-agonist responsive Parkinsonism in a patient with the SANDO syndrome caused by POLG mutation 
BMC Medical Genetics  2013;14:105.
Background
Disorders of oxidative phosphorylation affects 1/5000 individuals and present heterogeneous involvement of tissues highly dependent upon ATP production.
Case presentation
Here we present the case of a 48-year-old woman carrying a homozygous mutation (p.A899T) in mitochondrial polymerase gamma (POLG) and manifesting with a complex neurological phenotype including Dopamine-agonist responsive Parkinsonism.
Conclusion
This case report is further evidence that mitochondrial dysfunction might play a role in Parkinson’s Disease pathogenesis and helps in identification of apparent mutation-specific clinical characteristics. Mutations in POLG should be looked for in cases of Parkinsonism, especially when multisystem neurological involvement is found.
doi:10.1186/1471-2350-14-105
PMCID: PMC3851930  PMID: 24099403
POLG; Parkinsonism; Mitochondrial dysfunction; Ataxia; Progressive external ophthalmoparesis
3.  Encephalomyopathies caused by abnormal nuclear-mitochondrial intergenomic cross-talk 
Acta Myologica  2009;28(1):2-11.
Summary
Autosomal dominant Progressive External Ophthalmoplegias are Mendelian disorders characterized by the accumulation of multiple deletions of mitochondrial DNA in critical tissues. Most of the Autosomal dominant Progressive External Ophthalmoplegias families carry heterozygous mutations in one of three genes: ANT1, encoding the muscle-heart specific mitochondrial adenine nucleotide translocator, Twinkle, encoding the mitochondrial DNA helicase, and POLG1, encoding the catalytic subunit of the mitochondrial DNA-specific polymerase. Mutations in both POLG1 alleles are also found in autosomal recessive Progressive External Ophthalmoplegias sibships with multiple affected members and in apparently sporadic cases. In addition, recessive POLG1 mutations are responsible for three additional diseases: Alpers-Huttenlocher hepatopathic poliodystrophy, Sensory-Ataxic Neuropathy Dysarthria and Ophthalmoplegia and juvenile SpinoCerebellar Ataxia-Epilepsy syndrome. Mitochondrial neuro-gastro-intestinal encephalomyopathy is an autosomal recessive disorder of juvenile onset, caused by mutations in the gene encoding Thymidine Phosphorylase. Thymidine Phosphorylase is involved in the control and maintenance of the pyrimidine nucleoside pool of the cell. Finally, mitochondrial DNA depletion syndrome is a heterogeneous group of disorders characterized by a reduction in mitochondrial DNA copy number. Clinically, they include a myopathic form, a more generalized encephalomyopathic form and a fatal infantile hepato-cerebral syndrome leading to rapidly progressive liver and brain failure. To date, eight genes have been associated with mitochondrial DNA depletion syndrome. Novel disease genes have recently been added to this list, including OPA1 and GFER, and new clinical variants add further complexity to this expanding area of mitochondrial medicine.
PMCID: PMC2859628  PMID: 19772189
Mitochondrial DNA; oxidative phosphorylation; mitochondrial disorders; MtDNA multiple deletions; MtDNA depletion
4.  What is influencing the phenotype of the common homozygous polymerase-γ mutation p.Ala467Thr? 
Brain  2012;135(12):3614-3626.
Polymerase-γ (POLG) is a major human disease gene and may account for up to 25% of all mitochondrial diseases in the UK and in Italy. To date, >150 different pathogenic mutations have been described in POLG. Some mutations behave as both dominant and recessive alleles, but an autosomal recessive inheritance pattern is much more common. The most frequently detected pathogenic POLG mutation in the Caucasian population is c.1399G>A leading to a p.Ala467Thr missense mutation in the linker domain of the protein. Although many patients are homozygous for this mutation, clinical presentation is highly variable, ranging from childhood-onset Alpers-Huttenlocher syndrome to adult-onset sensory ataxic neuropathy dysarthria and ophthalmoparesis. The reasons for this are not clear, but familial clustering of phenotypes suggests that modifying factors may influence the clinical manifestation. In this study, we collected clinical, histological and biochemical data from 68 patients carrying the homozygous p.Ala467Thr mutation from eight diagnostic centres in Europe and the USA. We performed DNA analysis in 44 of these patients to search for a genetic modifier within POLG and flanking regions potentially involved in the regulation of gene expression, and extended our analysis to other genes affecting mitochondrial DNA maintenance (POLG2, PEO1 and ANT1). The clinical presentation included almost the entire phenotypic spectrum of all known POLG mutations. Interestingly, the clinical presentation was similar in siblings, implying a genetic basis for the phenotypic variability amongst homozygotes. However, the p.Ala467Thr allele was present on a shared haplotype in each affected individual, and there was no correlation between the clinical presentation and genetic variants in any of the analysed nuclear genes. Patients with mitochondrial DNA haplogroup U developed epilepsy significantly less frequently than patients with any other mitochondrial DNA haplotype. Epilepsy was reported significantly more frequently in females than in males, and also showed an association with one of the chromosomal markers defining the POLG haplotype. In conclusion, our clinical results show that the homozygous p.Ala467Thr POLG mutation does not cause discrete phenotypes, as previously suggested, but rather there is a continuum of clinical symptoms. Our results suggest that the mitochondrial DNA background plays an important role in modifying the disease phenotype but nuclear modifiers, epigenetic and environmental factors may also influence the severity of disease.
doi:10.1093/brain/aws298
PMCID: PMC3525059  PMID: 23250882
mitochondrial diseases; neuromuscular disorders; genetics; phenotype; molecular biology
5.  The clinical, histochemical, and molecular spectrum of PEO1 (Twinkle)-linked adPEO 
Neurology  2010;74(20):1619-1626.
Background:
Mutations in the Twinkle (PEO1) gene are a recognized cause of autosomal dominant progressive external ophthalmoplegia (adPEO), resulting in the accumulation of multiple mitochondrial DNA (mtDNA) deletions and cytochrome c oxidase (COX)-deficient fibers in skeletal muscle secondary to a disorder of mtDNA maintenance. Patients typically present with isolated extraocular muscle involvement, with little apparent evidence of the clinical heterogeneity documented in other mtDNA maintenance disorders, in particular POLG-related disease.
Methods:
We reviewed the clinical, histochemical, and molecular genetics analysis of 33 unreported patients from 26 families together with all previous cases described in the literature to define the clinical phenotype associated with PEO1 mutations.
Results:
Ptosis and ophthalmoparesis were almost universal clinical features among this cohort, with 52% (17/33) reporting fatigue and 33% (11/33) having mild proximal myopathy. Features consistent with CNS involvement were rarely described; however, in 24% (8/33) of the patients, cardiac abnormalities were reported. Mitochondrial histochemical changes observed in muscle showed remarkable variability, as did the secondary mtDNA deletions, which in some patients were only detected by PCR-based assays and not Southern blotting. Moreover, we report 7 novel PEO1 variants.
Conclusions:
Our data suggest a shared clinical phenotype with variable mild multiorgan involvement, and that the contribution of PEO1 mutations as a cause of adPEO may well be underestimated. Direct sequencing of the PEO1 gene should be considered in adPEO patients prior to muscle biopsy.
GLOSSARY
= autosomal dominant progressive external ophthalmoplegia;
= cytochrome c oxidase;
= infantile-onset spinocerebellar ataxia;
= mitochondrial DNA;
= progressive external ophthalmoplegia;
= sensory ataxic neuropathy, dysarthria, and ophthalmoparesis;
= succinate dehydrogenase.
doi:10.1212/WNL.0b013e3181df099f
PMCID: PMC2875130  PMID: 20479361
6.  Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy 
Brain  2011;134(11):3326-3332.
Mitochondrial neurogastrointestinal encephalomyopathy is a rare multisystemic autosomic recessive disorder characterized by: onset typically before the age of 30 years; ptosis; progressive external ophthalmoplegia; gastrointestinal dysmotility; cachexia; peripheral neuropathy; and leucoencephalopathy. The disease is caused by mutations in the TYMP gene encoding thymidine phosphorylasethymine phosphorylase. Anecdotal reports suggest that allogeneic haematopoetic stem cell transplantation may be beneficial for mitochondrial neurogastrointestinal encephalomyopathy, but is associated with a high mortality. After selecting patients who fulfilled the clinical criteria for mitochondrial neurogastrointestinal encephalomyopathy and had severe thymidine phosphorylase deficiency in the buffy coat (<10% of normal activity), we reviewed their medical records and laboratory studies. We identified 102 patients (50 females) with mitochondrial neurogastrointestinal encephalomyopathy and an average age of 32.4 years (range 11–59 years). We found 20 novel TYMP mutations. The average age-at-onset was 17.9 years (range 5 months to 35 years); however, the majority of patients reported the first symptoms before the age of 12 years. The patient distribution suggests a relatively high prevalence in Europeans, while the mutation distribution suggests founder effects for a few mutations, such as c.866A>G in Europe and c.518T>G in the Dominican Republic, that could guide genetic screening in each location. Although the sequence of clinical manifestations in the disease varied, half of the patients initially had gastrointestinal symptoms. We confirmed anecdotal reports of intra- and inter-familial clinical variability and absence of genotype–phenotype correlation in the disease, suggesting genetic modifiers, environmental factors or both contribute to disease manifestations. Acute medical events such as infections often provoked worsening of symptoms, suggesting that careful monitoring and early treatment of intercurrent illnesses may be beneficial. We observed endocrine/exocrine pancreatic insufficiency, which had not previously been reported. Kaplan–Meier analysis revealed significant mortality between the ages of 20 and 40 years due to infectious or metabolic complications. Despite increasing awareness of this illness, a high proportion of patients had been misdiagnosed. Early and accurate diagnosis of mitochondrial neurogastrointestinal encephalomyopathy, together with timely treatment of acute intercurrent illnesses, may retard disease progression and increase the number of patients eligible for allogeneic haematopoetic stem cell transplantation.
doi:10.1093/brain/awr245
PMCID: PMC3212717  PMID: 21933806
mitochondrial disease; MNGIE; encephalomyopathy; TYMP; BMT
7.  POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype 
BMC Neurology  2010;10:29.
Background
The c.2447G>A (p.R722H) mutation in the gene POLG1 of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease.
Methods
Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the POLG1, POLG2, ANT1 and Twinkle genes were sequenced.
Results
An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and 18F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the POLG1 gene revealed a homozygous c.2447G>A (p.R722H) mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in POLG2, ANT1 and Twinkle genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic.
Conclusions
The recessive c.2447G>A (p.R722H) mutation in the linker region of the POLG1 gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease can be earlier in compound heterozygotes.
doi:10.1186/1471-2377-10-29
PMCID: PMC2873323  PMID: 20438629
8.  Endocarditis in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE) Syndrome: The First in the Literature 
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndromes is a rarely seen multisystem disorder with autosomal recessive inheritance due to thymidine phosphorylase gene mutation. It is characterized by progressive external ophthalmoplegia and/or pitosis, progressive gastrointestinal dismotility and abdominal pain, postprandial emesis, cachexia, demyelinating peripheral neuropathy, symmetrical and distal weakness especially in lower extremities and diffuse leucoencephalopathy in cranial magnetic resonance. Endocarditis is the infectious and inflammatory disease of the endothelial surface of the heart. MNGIE syndrome is a condition in which immune system is suppressed and infection risk increased. Herein we summarized a previously not reported endocarditis case in a patient with MNGIE syndrome who was under follow up for three years. In MNGIE syndrome of acute dyspnea, infective endocarditis should be kept in mind and prompt evaluation for surgical treatment should be done.
doi:10.7860/JCDR/2014/9528.5016
PMCID: PMC4253249  PMID: 25478431
Endocarditis; MNGIE syndrome; Mitral valve
9.  Amyotrophic lateral sclerosis 
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.
doi:10.1186/1750-1172-4-3
PMCID: PMC2656493  PMID: 19192301
10.  Molecular and Clinical Genetics of Mitochondrial Diseases Due to POLG Mutations 
Human mutation  2008;29(9):E150-E172.
Mutations in the POLG gene have emerged as one of the most common causes of inherited mitochondrial disease in children and adults. They are responsible for a heterogeneous group of at least 6 major phenotypes of neurodegenerative disease that include: 1) childhood Myocerebrohepatopathy Spectrum disorders (MCHS), 2) Alpers syndrome, 3) Ataxia Neuropathy Spectrum (ANS) disorders, 4) Myoclonus Epilepsy Myopathy Sensory Ataxia (MEMSA), 5) autosomal recessive Progressive External Ophthalmoplegia (arPEO), and 6) autosomal dominant Progressive External Ophthalmoplegia (adPEO). Due to the clinical heterogeneity, time-dependent evolution of symptoms, overlapping phenotypes, and inconsistencies in muscle pathology findings, definitive diagnosis relies on the molecular finding of deleterious mutations. We sequenced the exons and flanking intron region from approximately 350 patients displaying a phenotype consistent with POLG related mitochondrial disease and found informative mutations in 61 (17%). Two mutant alleles were identified in 31 unrelated index patients with autosomal recessive POLG-related disorders. Among them, 20 (67%) had Alpers syndrome, 4 (13%) had arPEO, and 3 (10%) had ANS. In addition, 30 patients carrying one altered POLG allele were found. A total of 25 novel alterations were identified, including 6 null mutations. We describe the predicted structural/functional and clinical importance of the previously unreported missense variants and discuss their likelihood of being pathogenic. In conclusion, sequence analysis allows the identification of mutations responsible for POLG-related disorders and, in most of the autosomal recessive cases where two mutant alleles are found in trans, finding deleterious mutations can provide an unequivocal diagnosis of the disease.
doi:10.1002/humu.20824
PMCID: PMC2891192  PMID: 18546365
POLG; POLG1; Alpers syndrome; PEO; adPEO; arPEO; SANDO; SCAE; ANS; MEMSA; MCHS; mtDNA depletion; liver failure
11.  Novel POLG1 mutations in a patient with adult-onset progressive external ophthalmoplegia and encephalopathy 
BMJ Case Reports  2010;2010:bcr0120102604.
Mutations in POLG1 are an important cause of human mitochondrial disease. We describe a woman who presented with bilateral ptosis and external ophthalmoplegia at 64 years of age. Neurological examination revealed symptoms of diffuse encephalopathy. The symptoms were progressive and at 67 years she was severely cognitively impaired, had severe bilateral ptosis and complete external ophthalmoplegia. Frequent cytochrome c oxidase-negative fibres were detected in muscle. Electrophysiological examination revealed myopathic changes and axonal neuropathy. Standard laboratory tests were normal. Brain CT showed general, moderate cortical atrophy. Molecular analysis of muscle DNA revealed multiple mitochondrial DNA deletions. Sequencing of the entire POLG1 gene revealed two changes c.2993C>T (p.998S>L) and c.3550G>C (p.1184D>H). Both mutations are previously unreported and confirmed to be compound heterozygous. Late-onset progressive external ophthalmoplegia with severe encephalopathy is an unusual combination in patients with POLG1 mutations. POLG-associated disease should be considered in any patient with unexplained or unusual neurological features.
doi:10.1136/bcr.01.2010.2604
PMCID: PMC3028303  PMID: 22778364
12.  Inherited Mitochondrial Diseases of DNA Replication 
Annual review of medicine  2008;59:131-146.
Mitochondrial genetic diseases can result from defects in mitochondrial DNA (mtDNA) in the form of deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These mutations may be spontaneous, maternally inherited, or a result of inherited nuclear defects in genes that maintain mtDNA. This review focuses on our current understanding of nuclear gene mutations that produce mtDNA alterations and cause mitochondrial depletion syndrome (MDS), progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). To date, all of these etiologic nuclear genes fall into one of two categories: genes whose products function directly at the mtDNA replication fork, such as POLG, POLG2, and TWINKLE, or genes whose products supply the mitochondria with deoxynucleotide triphosphate pools needed for DNA replication, such as TK2, DGUOK, TP, SUCLA2, ANT1, and possibly the newly identified MPV17.
doi:10.1146/annurev.med.59.053006.104646
PMCID: PMC2271032  PMID: 17892433
DNA polymerase γ; nucleotide pools; mitochondrial DNA depletion syndrome; progressive external ophthalmoplegia; ataxia-neuropathy
13.  Defects in Mitochondrial DNA Replication and Human Disease 
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes (MDS) such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.
doi:10.3109/10409238.2011.632763
PMCID: PMC3244805  PMID: 22176657
DNA polymerase γ; mitochondrial DNA replication; nucleotide pools; mitochondrial DNA depletion syndrome; progressive external ophthalmoplegia; ataxia-neuropathy
14.  Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia 
Brain  2014;137(12):3200-3212.
Mitochondrial ophthalmoplegia is a genetically heterogeneous disorder. Horga et al. investigate whether peripheral neuropathy can predict the underlying genetic defect in patients with progressive external ophthalmoplegia. Results indicate that neuropathy is highly predictive of a nuclear DNA defect and that it is rarely associated with single mitochondrial DNA deletions.
Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P < 0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P = 0.002; odds ratio 8.43, 95% confidence interval 2.24–31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy.
doi:10.1093/brain/awu279
PMCID: PMC4240292  PMID: 25281868
mitochondrial DNA; mitochondrial DNA deletion; peripheral neuropathy; POLG; progressive external ophthalmoplegia
15.  Chronic progressive external ophthalmoplegia with inflammatory myopathy 
Chronic progressive external ophthalmoplegia is one of mitochondrial disorders, characterized by ptosis, limitation of eye movement, variably severe bulbar muscle weakness and proximal limb weakness. Chronic progressive external ophthalmoplegia complicated with acquired disease is extremely rare. We report a 44 years old male patient with more than 20 years of chronic progressive bilateral ptosis and limitation of eye movements manifested dysarthria, dysphagia and neck muscle weakness for 3 years. The first muscle biopsy showed red-ragged fibers and cytochrome c oxidase negative fibers as well as inflammatory cells infiltration. Electron microscopy revealed paracrystalline inclusions. Mitochondrial genetic analysis demonstrated a large-scale mtDNA deletion of m.8470_13446del4977. The patient was treated with prednisone. In a three-year follow-up study, the second biopsy was performed. Before the treatment, except bilateral ptosis and external ophthalmopelgia, this patient presented bulbar muscle weakness and neck muscle weakness. After treated with prednisone, the symptoms of dysphagia, dysarthria and neck muscle weakness were significantly improved, and the second biopsy showed only mitochondrial myopathy pathology but the inflammations disappeared. Here, we report a patient with chronic progressive external ophthalmoplegia complicated with inflammatory myopathy and after treated with prednisone as myositis, he had a significant therapeutic effect.
PMCID: PMC4314000
Chronic progressive external ophthalmoplegia; mitochondrial DNA deletions; inflammatory myopathy
16.  Progressive External Ophthalmoplegia and Vision and Hearing Loss in a Patient With Mutations in POLG2 and OPA1 
Archives of neurology  2008;65(1):125-131.
Objective
To describe the clinical features, muscle pathological characteristics, and molecular studies of a patient with a mutation in the gene encoding the accessory subunit (p55) of polymerase γ (POLG2) and a mutation in the OPA1 gene.
Design
Clinical examination and morphological, biochemical, and molecular analyses.
Setting
Tertiary care university hospitals and molecular genetics and scientific computing laboratory.
Patient
A 42-year-old man experienced hearing loss, progressive external ophthalmoplegia (PEO), loss of central vision, macrocytic anemia, and hypogonadism. His family history was negative for neurological disease, and his serum lactate level was normal.
Results
A muscle biopsy specimen showed scattered intensely succinate dehydrogenase–positive and cytochrome-c oxidase–negative fibers. Southern blot of muscle mitochondrial DNA showed multiple deletions. The results of screening for mutations in the nuclear genes associated with PEO and multiple mitochondrial DNA deletions, including those in POLG (polymerase γ gene), ANT1 (gene encoding adenine nucleotide translocator 1), and PEO1, were negative, but sequencing of POLG2 revealed a G1247C mutation in exon 7, resulting in the substitution of a highly conserved glycine with an alanine at codon 416 (G416A). Because biochemical analysis of the mutant protein showed no alteration in chromatographic properties and normal ability to protect the catalytic subunit from N-ethylmaleimide, we also sequenced the OPA1 gene and identified a novel heterozygous mutation (Y582C).
Conclusion
Although we initially focused on the mutation in POLG2, the mutation in OPA1 is more likely to explain the late-onset PEO and multisystem disorder in this patient.
doi:10.1001/archneurol.2007.9
PMCID: PMC2364721  PMID: 18195150
17.  Poor Outcome in a Mitochondrial Neurogastrointestinal Encephalomyopathy Patient with a Novel TYMP Mutation: The Need for Early Diagnosis 
Case Reports in Neurology  2012;4(3):248-253.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating autosomal recessive disorder due to mutations in TYMP, which cause loss of function of thymidine phosphorylase (TP), nucleoside accumulation in plasma and tissues and mitochondrial dysfunction. The clinical picture includes progressive gastrointestinal dysmotility, cachexia, ptosis and ophthalmoparesis, peripheral neuropathy and diffuse leukoencephalopathy, which usually lead to death in early adulthood. Therapeutic options are currently available in clinical practice (allogeneic hematopoietic stem cell transplantation and carrier erythrocyte entrapped TP therapy) and newer, promising therapies are expected in the near future. However, successful treatment is strictly related to early diagnosis. We report on an incomplete MNGIE phenotype in a young man harboring the novel heterozygote c.199 C>T (Q67X) mutation in exon 2, and the previously reported c.866 A>C (E289A) mutation in exon 7 in TYMP. The correct diagnosis was achieved many years after the onset of symptoms and unfortunately, the patient died soon after diagnosis because of multiorgan failure due to severe malnutrition and cachexia before any therapeutic option could be tried. To date, early diagnosis is essential to ensure that patients have the opportunity to be treated. MNGIE should be suspected in all patients who present with both gastrointestinal and nervous system involvement, even if the classical complete phenotype is lacking.
doi:10.1159/000346260
PMCID: PMC3551392  PMID: 23341816
Mitochondrial neurogastrointestinal encephalomyopathy; Thymidine phosphorylase; TYMP
18.  Mitochondrial DNA Depletion Syndromes: Review and Updates of Genetic Basis, Manifestations, and Therapeutic Options 
Neurotherapeutics  2013;10(2):186-198.
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a genetically and clinically heterogeneous group of autosomal recessive disorders that are characterized by a severe reduction in mtDNA content leading to impaired energy production in affected tissues and organs. MDS are due to defects in mtDNA maintenance caused by mutations in nuclear genes that function in either mitochondrial nucleotide synthesis (TK2, SUCLA2, SUCLG1, RRM2B, DGUOK, and TYMP) or mtDNA replication (POLG and C10orf2). MDS are phenotypically heterogeneous and usually classified as myopathic, encephalomyopathic, hepatocerebral or neurogastrointestinal. Myopathic MDS, caused by mutations in TK2, usually present before the age of 2 years with hypotonia and muscle weakness. Encephalomyopathic MDS, caused by mutations in SUCLA2, SUCLG1, or RRM2B, typically present during infancy with hypotonia and pronounced neurological features. Hepatocerebral MDS, caused by mutations in DGUOK, MPV17, POLG, or C10orf2, commonly have an early-onset liver dysfunction and neurological involvement. Finally, TYMP mutations have been associated with mitochondrial neurogastrointestinal encephalopathy (MNGIE) disease that typically presents before the age of 20 years with progressive gastrointestinal dysmotility and peripheral neuropathy. Overall, MDS are severe disorders with poor prognosis in the majority of affected individuals. No efficacious therapy is available for any of these disorders. Affected individuals should have a comprehensive evaluation to assess the degree of involvement of different systems. Treatment is directed mainly toward providing symptomatic management. Nutritional modulation and cofactor supplementation may be beneficial. Liver transplantation remains controversial. Finally, stem cell transplantation in MNGIE disease shows promising results.
Electronic supplementary material
The online version of this article (doi:10.1007/s13311-013-0177-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s13311-013-0177-6
PMCID: PMC3625391  PMID: 23385875
Mitochondrial myopathy; Mitochondrial encephalomyopathy; Hepatocerebral syndrome; Mitochondrial neurogastrointestinal (MNGIE) disease; Alpers-Huttenlocher syndrome
19.  Complete Deletion of a POLG1 Allele in a Patient with Alpers Syndrome 
JIMD Reports  2011;4:67-73.
Mutations in the gene encoding the catalytic subunit of polymerase γ (POLG1) are a major cause of human mitochondrial disease. More than 150 different point mutations in the gene have been reported to be disease causing, resulting in a large range of clinical symptoms. Depending on the mutation or combination of mutations, disease onset can occur in early infancy or late in adult life. Here, we describe the use of multiplex ligation-dependent probe amplification (MLPA) analysis to detect deletions within POLG1, which could otherwise go undetected by solely sequencing of the gene. We present a case where an entire POLG1 allele is deleted, with a known pathogenic mutation (W748S) on the remaining allele. The deletion was found in a boy with Alpers syndrome, presenting at 18 months of age with slightly retarded motor development, balance problems, and seizures. Administration of valproic acid (VPA) led to rapidly progressive fatal liver failure in our patient, and we would like to highlight the need to carry out complete POLG1 gene analysis before administration of VPA in cases of pediatric seizure disorders of unknown origin. Debut and severity of the disease in this patient was unique when compared to homozygous or heterozygous patients with the W748S mutation, leading to the conclusion that gene dosage plays a role in the clinical phenotype of this disease.
doi:10.1007/8904_2011_73
PMCID: PMC3509876  PMID: 23430898
20.  POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders 
Purpose
To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures.
Methods
Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing.
Results
Four patients of multiple different ethnicities, age 3–18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intrac partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers–Huttenlocher syndrome.
Conclusion
Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers–Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.
doi:10.1016/j.seizure.2010.01.002
PMCID: PMC3099441  PMID: 20138553
POLG; Idiosyncratic hepatotoxicity; Valproic acid; Alpers–Huttenlocher syndrome; Seizures
21.  mip1 containing mutations associated with mitochondrial disease causes mutagenesis and depletion of mtDNA in Saccharomyces cerevisiae 
Human Molecular Genetics  2010;19(11):2123-2133.
DNA polymerase γ (pol γ) is responsible for replication and repair of mitochondrial DNA (mtDNA). Over 150 mutations in POLG (which encodes pol γ) have been discovered in patients with mitochondrial disorders including Alpers, progressive external ophthalmoplegia and ataxia-neuropathy syndrome. However, the severity and dominance of many POLG disease-associated mutations are unclear, because they have been reported in sporadic cases. To understand the consequences of pol γ disease-associated mutations in vivo, we identified dominant and recessive changes in mtDNA mutagenesis, depletion and mitochondrial dysfunction caused by 31 mutations in the conserved regions of the gene, MIP1, which encodes the Saccharomyces cerevisiae ortholog of human pol γ. Twenty mip1 mutant enzymes were shown to disrupt mtDNA replication and may be sufficient to cause disease. Previously uncharacterized sporadic mutations, Q308H, R807C, G1076V, R1096H and S1104C, caused decreased polymerase activity leading to mtDNA depletion and mitochondrial dysfunction. We present evidence showing a limited role of point mutagenesis by these POLG mutations in mitochondrial dysfunction and disease progression. Instead, most mitochondrial defective mip1 mutants displayed reduced or depleted mtDNA. We also determined that the severity of the phenotype of the mip1 mutant strain correlates with the age of onset of disease associated with the human ortholog. Finally, we demonstrated that increasing nucleotide pools by overexpression of ribonucleotide reductase (RNR1) suppressed mtDNA replication defects caused by several dominant mip1 mutations, and the orthologous human mutations revealed severe nucleotide binding defects.
doi:10.1093/hmg/ddq089
PMCID: PMC2865372  PMID: 20185557
22.  Mutations at codons 178, 200-129, and 232 contributed to the inherited prion diseases in Korean patients 
Background
Polymorphisms of the human prion protein gene (PRNP) contribute to the genetic determinants of Creutzfeldt-Jakob disease (CJD). Numerous polymorphisms in the promoter regions as well as the open reading frame of PRNP were investigated. Greater than 90% of Korean, Chinese, and Japanese carry the homozygote 129 MM codon. In Korea, polymorphisms have not been comprehensively studied, except codons 129 and 219 in PRNP among Korean CJD cases. Although polymorphisms at codons 129 and 219 play an important role in susceptibility to sporadic CJD, patients with other polymorphisms in PRNP exhibited critical distinctions of clinical symptoms.
Methods
The genetic analyses of PRNP were carried out among probable CJD patients in comparison with the results from magnetic resonance imaging (MRI) and electroencephalogram (EEG).
Results
The molecular analyses revealed that three mutations at codons D178N, E200K, and M232R in heterozygosity. Patients with the D178N and M232R mutations had a 129MM codon, whereas the patient with the E200K mutation showed 129MV heterozygosity. They all revealed strong 14-3-3 positive signals. The 67-year-old patient with the D178N-129M mutation showed progressive gait disturbance and dysarthria was in progress. The 58-year-old patient with the E200K mutation coupled to the 129MV codon had gait disturbance, dysarthria, agitation, and ataxic gait, and progressed rapidly to death 3 months from the first onset of symptoms. The 65-year-old patient with the M232R mutation showed rapidly progressive memory decline and gait disturbance, and died within 16 months after onset of symptoms.
Conclusion
Despite differences in ethnicity, the clinical and pathological outcomes were similar to the respective mutations around the world, except absence of insomnia in D178N-129M subject.
doi:10.1186/1471-2334-9-132
PMCID: PMC2749045  PMID: 19698114
23.  Late Onset Atypical Pantothenate-Kinase-Associated Neurodegeneration 
Introduction. Pantothenate-kinase-associated neurodegeneration (PKAN) is a rare genetic disease and a form of neurodegeneration with brain iron accumulation (NBIA). It most commonly begins in the first two decades of life but should be considered in the differential diagnosis of patients at any age with an atypical progressive extrapyramidal disorder and cognitive impairment. Few late-adult cases have been reported. Case Report. A 50-year-old woman presented with a history of progressive dysarthria and dysphagia secondary to orolingual dystonia. Initial work-up was normal. There was no family history. Her initial symptoms were followed by the onset of blepharospasm, cervical dystonia, Parkinsonism, and cognitive impairment. Follow-up MRI four years after presentation revealed the diagnostic “eye-of-the-tiger” sign. Genetic testing confirmed a homozygous missense mutation consistent with the diagnosis of PKAN. Conclusion. Although PKAN is a rare genetic disorder most commonly seen in childhood, it should be considered in adult patients with a history of progressive focal dystonia or atypical Parkinsonism. As the radiographic findings are quite characteristic, genetic testing should be performed if the MRI shows evidence of iron accumulation. Optimal treatment strategies are not known, and at the current time therapies should be directed at the specific manifestations of the disease.
doi:10.1155/2013/860201
PMCID: PMC3619544  PMID: 23634310
24.  Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations 
DNA polymerase γ (pol γ), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol γ. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol γ assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations.
doi:10.1007/s00018-010-0530-4
PMCID: PMC3046768  PMID: 20927567
Mitochondria; mtDNA replication; DNA polymerase gamma; POLG; DNA repair
25.  Limited dCTP Availability Accounts for Mitochondrial DNA Depletion in Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE) 
PLoS Genetics  2011;7(3):e1002035.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a severe human disease caused by mutations in TYMP, the gene encoding thymidine phosphorylase (TP). It belongs to a broader group of disorders characterized by a pronounced reduction in mitochondrial DNA (mtDNA) copy number in one or more tissues. In most cases, these disorders are caused by mutations in genes involved in deoxyribonucleoside triphosphate (dNTP) metabolism. It is generally accepted that imbalances in mitochondrial dNTP pools resulting from these mutations interfere with mtDNA replication. Nonetheless, the precise mechanistic details of this effect, in particular, how an excess of a given dNTP (e.g., imbalanced dTTP excess observed in TP deficiency) might lead to mtDNA depletion, remain largely unclear. Using an in organello replication experimental model with isolated murine liver mitochondria, we observed that overloads of dATP, dGTP, or dCTP did not reduce the mtDNA replication rate. In contrast, an excess of dTTP decreased mtDNA synthesis, but this effect was due to secondary dCTP depletion rather than to the dTTP excess in itself. This was confirmed in human cultured cells, demonstrating that our conclusions do not depend on the experimental model. Our results demonstrate that the mtDNA replication rate is unaffected by an excess of any of the 4 separate dNTPs and is limited by the availability of the dNTP present at the lowest concentration. Therefore, the availability of dNTP is the key factor that leads to mtDNA depletion rather than dNTP imbalances. These results provide the first test of the mechanism that accounts for mtDNA depletion in MNGIE and provide evidence that limited dNTP availability is the common cause of mtDNA depletion due to impaired anabolic or catabolic dNTP pathways. Thus, therapy approaches focusing on restoring the deficient substrates should be explored.
Author Summary
Mitochondria are subcellular organelles that constitute the main energy supply within the cell. They contain their own DNA, which should be continuously replicated to ensure the correct mitochondrial function. Several mitochondrial diseases are caused by genetic defects that compromise this replication and result in mitochondrial DNA depletion. In most cases, these genetic defects block the synthesis of dATP, dGTP, dCTP, and dTTP, the 4 nucleotides needed for mitochondrial DNA replication. However, for one of these disorders (mitochondrial neurogastrointestinal encephalomyopathy, MNGIE), the biochemical pathways needed to synthesize them are intact, but degradation of dTTP is genetically blocked, leading to dTTP accumulation. We investigated the biochemical mechanisms through which the dTTP excess leads to mitochondrial DNA depletion in MNGIE, and we found that the delay of mitochondrial DNA replication rate observed when dTTP is in excess is not caused by this excess in itself. Instead, the dTTP overload produces a secondary dCTP depletion that actually delays mitochondrial DNA replication. Therefore, the common factor accounting for mitochondrial DNA depletion in these disorders is the limited availability of one or more nucleotides. This indicates that strategies to provide nucleotides to patients' mitochondria should be explored as a possible treatment for these fatal disorders.
doi:10.1371/journal.pgen.1002035
PMCID: PMC3069123  PMID: 21483760

Results 1-25 (814487)