PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1481839)

Clipboard (0)
None

Related Articles

1.  Cultivable Anaerobic Microbiota of Severe Early Childhood Caries▿¶ 
Journal of Clinical Microbiology  2011;49(4):1464-1474.
Severe early childhood caries (ECC), while strongly associated with Streptococcus mutans using selective detection (culture, PCR), has also been associated with a widely diverse microbiota using molecular cloning approaches. The aim of this study was to evaluate the microbiota of severe ECC using anaerobic culture. The microbial composition of dental plaque from 42 severe ECC children was compared with that of 40 caries-free children. Bacterial samples were cultured anaerobically on blood and acid (pH 5) agars. Isolates were purified, and partial sequences for the 16S rRNA gene were obtained from 5,608 isolates. Sequence-based analysis of the 16S rRNA isolate libraries from blood and acid agars of severe ECC and caries-free children had >90% population coverage, with greater diversity occurring in the blood isolate library. Isolate sequences were compared with taxon sequences in the Human Oral Microbiome Database (HOMD), and 198 HOMD taxa were identified, including 45 previously uncultivated taxa, 29 extended HOMD taxa, and 45 potential novel groups. The major species associated with severe ECC included Streptococcus mutans, Scardovia wiggsiae, Veillonella parvula, Streptococcus cristatus, and Actinomyces gerensceriae. S. wiggsiae was significantly associated with severe ECC children in the presence and absence of S. mutans detection. We conclude that anaerobic culture detected as wide a diversity of species in ECC as that observed using cloning approaches. Culture coupled with 16S rRNA identification identified over 74 isolates for human oral taxa without previously cultivated representatives. The major caries-associated species were S. mutans and S. wiggsiae, the latter of which is a candidate as a newly recognized caries pathogen.
doi:10.1128/JCM.02427-10
PMCID: PMC3122858  PMID: 21289150
2.  An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome 
Microbiome  2013;1:25.
Background
Our knowledge of microbial diversity in the human oral cavity has vastly expanded during the last two decades of research. However, much of what is known about the behavior of oral species to date derives from pure culture approaches and the studies combining several cultivated species, which likely does not fully reflect their function in complex microbial communities. It has been shown in studies with a limited number of cultivated species that early oral biofilm development occurs in a successional manner and that continuous low pH can lead to an enrichment of aciduric species. Observations that in vitro grown plaque biofilm microcosms can maintain similar pH profiles in response to carbohydrate addition as plaque in vivo suggests a complex microbial community can be established in the laboratory. In light of this, our primary goal was to develop a robust in vitro biofilm-model system from a pooled saliva inoculum in order to study the stability, reproducibility, and development of the oral microbiome, and its dynamic response to environmental changes from the community to the molecular level.
Results
Comparative metagenomic analyses confirmed a high similarity of metabolic potential in biofilms to recently available oral metagenomes from healthy subjects as part of the Human Microbiome Project. A time-series metagenomic analysis of the taxonomic community composition in biofilms revealed that the proportions of major species at 3 hours of growth are maintained during 48 hours of biofilm development. By employing deep pyrosequencing of the 16S rRNA gene to investigate this biofilm model with regards to bacterial taxonomic diversity, we show a high reproducibility of the taxonomic carriage and proportions between: 1) individual biofilm samples; 2) biofilm batches grown at different dates; 3) DNA extraction techniques and 4) research laboratories.
Conclusions
Our study demonstrates that we now have the capability to grow stable oral microbial in vitro biofilms containing more than one hundred operational taxonomic units (OTU) which represent 60-80% of the original inoculum OTU richness. Previously uncultivated Human Oral Taxa (HOT) were identified in the biofilms and contributed to approximately one-third of the totally captured 16S rRNA gene diversity. To our knowledge, this represents the highest oral bacterial diversity reported for an in vitro model system so far. This robust model will help investigate currently uncultivated species and the known virulence properties for many oral pathogens not solely restricted to pure culture systems, but within multi-species biofilms.
doi:10.1186/2049-2618-1-25
PMCID: PMC3971625  PMID: 24451062
In vitro model; Biofilm; Oral microbiome; Saliva; Streptococcus; Lactobacillus; Uncultivated bacteria
3.  Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis 
PLoS ONE  2012;7(10):e47722.
Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have implications for bacterial community resilience and the restoration of oral health.
doi:10.1371/journal.pone.0047722
PMCID: PMC3472979  PMID: 23091642
4.  Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities 
mBio  2014;5(4):e01157-14.
ABSTRACT
Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes.
IMPORTANCE
The ability to identify genes based on function, instead of sequence homology, allows the discovery of genes that would not be identified through sequence alone. This is arguably the most powerful application of metagenomics for the recovery of novel genes and a natural partner of the stable-isotope-probing approach for targeting active-yet-uncultured microorganisms. We expanded on previous efforts to combine stable-isotope probing and metagenomics, enriching microorganisms from multiple soils that were active in degrading plant-derived carbohydrates, followed by construction of a cellulose-based metagenomic library and recovery of glycoside hydrolases through functional metagenomics. The major advance of our study was the discovery of active-yet-uncultivated soil microorganisms and enrichment of their glycoside hydrolases. We recovered positive cosmid clones in a higher frequency than would be expected with direct metagenomic analysis of soil DNA. This study has generated an invaluable metagenomic resource that future research will exploit for genetic and enzymatic potential.
doi:10.1128/mBio.01157-14
PMCID: PMC4161255  PMID: 25028422
5.  Plaque Bacterial Microbiome Diversity in Children Younger than 30 Months with or without Caries Prior to Eruption of Second Primary Molars 
PLoS ONE  2014;9(2):e89269.
Objective
Our primary objective is to phylogenetically characterize the supragingival plaque bacterial microbiome of children prior to eruption of second primary molars by pyrosequencing method for studying etiology of early childhood caries.
Methods
Supragingival plaque samples were collected from 10 caries children and 9 caries-free children. Plaque DNA was extracted, used to generate DNA amplicons of the V1–V3 hypervariable region of the bacterial 16S rRNA gene, and subjected to 454-pyrosequencing.
Results
On average, over 22,000 sequences per sample were generated. High bacterial diversity was noted in the plaque of children with caries [170 operational taxonomical units (OTU) at 3% divergence] and caries-free children (201 OTU at 3% divergence) with no significant difference. A total of 8 phyla, 15 classes, 21 orders, 30 families, 41 genera and 99 species were represented. In addition, five predominant phyla (Firmicute, Fusobacteria, Proteobacteria, Bacteroidetes and Actinobacteria) and seven genera (Leptotrichia, Streptococcus, Actinomyces, Prevotella, Porphyromonas, Neisseria, and Veillonella) constituted a majority of contents of the total microbiota, independent of the presence or absence of caries. Principal Component Analysis (PCA) presented that caries-related genera included Streptococcus and Veillonella; while Leptotrichia, Selenomonas, Fusobacterium, Capnocytophaga and Porphyromonas were more related to the caries-free samples. Neisseria and Prevotella presented approximately in between. In both groups, the degree of shared organism lineages (as defined by species-level OTUs) among individual supragingival plaque microbiomes was minimal.
Conclusion
Our study represented for the first time using pyrosequencing to elucidate and monitor supragingival plaque bacterial diversity at such young age with second primary molar unerrupted. Distinctions were revealed between caries and caries-free microbiomes in terms of microbial community structure. We observed differences in abundance for several microbial groups between the caries and caries-free host populations, which were consistent with the ecological plaque hypothesis. Our approach and findings could be extended to correlating microbiomic changes after occlusion establishment and caries treatment.
doi:10.1371/journal.pone.0089269
PMCID: PMC3938432  PMID: 24586647
6.  Oral Arginine Metabolism May Decrease the Risk for Dental Caries in Children 
Journal of Dental Research  2013;92(7):604-608.
Arginine metabolism by oral bacteria via the arginine deiminase system (ADS) increases the local pH, which can neutralize the effects of acidification from sugar metabolism and reduce the cariogenicity of oral biofilms. To explore the relationship between oral arginine metabolism and dental caries experience in children, we measured ADS activity in oral samples from 100 children and correlated it with their caries status and type of dentition. Supragingival dental plaque was collected from tooth surfaces that were caries-lesion-free (PF) and from dentinal (PD) and enamel (PE) caries lesions. Regardless of children’s caries status or type of dentition, PF (378.6) had significantly higher ADS activity compared with PD (208.4; p < .001) and PE (194.8; p = .005). There was no significant difference in the salivary arginolytic activity among children with different caries status. Mixed-model analysis showed that plaque caries status is significantly associated with ADS activity despite children’s age, caries status, and dentition (p < .001), with healthy plaque predicting higher ADS activity compared with diseased plaque. Plaque arginine metabolism varies greatly among children and tooth sites, which may affect their susceptibility to caries.
doi:10.1177/0022034513487907
PMCID: PMC3684231  PMID: 23640952
oral biolfim; dental plaque; dental caries; bacteria; arginine; risk factor
7.  Saliva microbiomes distinguish caries-active from healthy human populations 
The ISME Journal  2011;6(1):1-10.
The etiology of dental caries remains elusive because of our limited understanding of the complex oral microbiomes. The current methodologies have been limited by insufficient depth and breadth of microbial sampling, paucity of data for diseased hosts particularly at the population level, inconsistency of sampled sites and the inability to distinguish the underlying microbial factors. By cross-validating 16S rRNA gene amplicon-based and whole-genome-based deep-sequencing technologies, we report the most in-depth, comprehensive and collaborated view to date of the adult saliva microbiomes in pilot populations of 19 caries-active and 26 healthy human hosts. We found that: first, saliva microbiomes in human population were featured by a vast phylogenetic diversity yet a minimal organismal core; second, caries microbiomes were significantly more variable in community structure whereas the healthy ones were relatively conserved; third, abundance changes of certain taxa such as overabundance of Prevotella Genus distinguished caries microbiota from healthy ones, and furthermore, caries-active and normal individuals carried different arrays of Prevotella species; and finally, no ‘caries-specific' operational taxonomic units (OTUs) were detected, yet 147 OTUs were ‘caries associated', that is, differentially distributed yet present in both healthy and caries-active populations. These findings underscored the necessity of species- and strain-level resolution for caries prognosis, and were consistent with the ecological hypothesis where the shifts in community structure, instead of the presence or absence of particular groups of microbes, underlie the cariogenesis.
doi:10.1038/ismej.2011.71
PMCID: PMC3246229  PMID: 21716312
caries; metagenomics; oral-microbiome; Prevotella; saliva
8.  Molecular Analysis of Bacterial Species Associated with Childhood Caries 
Journal of Clinical Microbiology  2002;40(3):1001-1009.
Although substantial epidemiologic evidence links Streptococcus mutans to caries, the pathobiology of caries may involve more complex communities of bacterial species. Molecular methods for bacterial identification and enumeration now make it possible to more precisely study the microbiota associated with dental caries. The purpose of this study was to compare the bacteria found in early childhood caries (ECC) to those found in caries-free children by using molecular identification methods. Cloning and sequencing of bacterial 16S ribosomal DNAs from a healthy subject and a subject with ECC were used for identification of novel species or uncultivated phylotypes and species not previously associated with dental caries. Ten novel phylotypes were identified. A number of species or phylotypes that may play a role in health or disease were identified and warrant further investigation. In addition, quantitative measurements for 23 previously known bacterial species or species groups were obtained by a reverse capture checkerboard assay for 30 subjects with caries and 30 healthy controls. Significant differences were observed for nine species: S. sanguinis was associated with health and, in order of decreasing cell numbers, Actinomyces gerencseriae, Bifidobacterium, S. mutans, Veillonella, S. salivarius, S. constellatus, S. parasanguinis, and Lactobacillus fermentum were associated with caries. These data suggest that A. gerencseriae and other Actinomyces species may play an important role in caries initiation and that a novel Bifidobacterium may be a major pathogen in deep caries. Further investigation could lead to the identification of targets for biological interventions in the caries process and thereby contribute to improved prevention of and treatment for this significant public health problem.
doi:10.1128/JCM.40.3.1001-1009.2002
PMCID: PMC120252  PMID: 11880430
9.  The oral metagenome in health and disease 
The ISME Journal  2011;6(1):46-56.
The oral cavity of humans is inhabited by hundreds of bacterial species and some of them have a key role in the development of oral diseases, mainly dental caries and periodontitis. We describe for the first time the metagenome of the human oral cavity under health and diseased conditions, with a focus on supragingival dental plaque and cavities. Direct pyrosequencing of eight samples with different oral-health status produced 1 Gbp of sequence without the biases imposed by PCR or cloning. These data show that cavities are not dominated by Streptococcus mutans (the species originally identified as the ethiological agent of dental caries) but are in fact a complex community formed by tens of bacterial species, in agreement with the view that caries is a polymicrobial disease. The analysis of the reads indicated that the oral cavity is functionally a different environment from the gut, with many functional categories enriched in one of the two environments and depleted in the other. Individuals who had never suffered from dental caries showed an over-representation of several functional categories, like genes for antimicrobial peptides and quorum sensing. In addition, they did not have mutans streptococci but displayed high recruitment of other species. Several isolates belonging to these dominant bacteria in healthy individuals were cultured and shown to inhibit the growth of cariogenic bacteria, suggesting the use of these commensal bacterial strains as probiotics to promote oral health and prevent dental caries.
doi:10.1038/ismej.2011.85
PMCID: PMC3246241  PMID: 21716308
metagenomics; human microbiome; dental caries; Streptococcus mutans; pyrosequencing; probiotics
10.  Clonal Analysis of the Microbiota of Severe Early Childhood Caries 
Caries Research  2010;44(5):485-497.
Background/Aims
Severe early childhood caries is a microbial infection that severely compromises the dentition of young children. The aim of this study was to characterize the microbiota of severe early childhood caries.
Methods
Dental plaque samples from 2- to 6-year-old children were analyzed using 16S rRNA gene cloning and sequencing, and by specific PCR amplification for Streptococcus mutans and Bifidobacteriaceae species.
Results
Children with severe caries (n = 39) had more dental plaque and gingival inflammation than caries-free children (n = 41). Analysis of phylotypes from operational taxonomic unit analysis of 16S rRNA clonal metalibraries from severe caries and caries-free children indicated that while libraries differed significantly (p < 0.0001), there was increased diversity than detected in this clonal analysis. Using the Human Oral Microbiome Database, 139 different taxa were identified. Within the limits of this study, caries-associated taxa included Granulicatella elegans (p < 0.01) and Veillonella sp. HOT-780 (p < 0.01). The species associated with caries-free children included Capnocytophaga gingivalis (p < 0.01), Abiotrophia defectiva (p < 0.01), Lachnospiraceae sp. HOT-100 (p < 0.05), Streptococcus sanguinis (p < 0.05) and Streptococcus cristatus (p < 0.05). By specific PCR, S. mutans (p < 0.005) and Bifidobacteriaceae spp. (p < 0.0001) were significantly associated with severe caries.
Conclusion
Clonal analysis of 80 children identified a diverse microbiota that differed between severe caries and caries-free children, but the association of S. mutans with caries was from specific PCR analysis, not from clonal analysis, of samples.
doi:10.1159/000320158
PMCID: PMC2975730  PMID: 20861633
Bifidobacteria; Clonal analysis; PCR; Severe early childhood caries; Streptococcus mutans
11.  Correlation Network Analysis Applied to Complex Biofilm Communities 
PLoS ONE  2011;6(12):e28438.
The complexity of the human microbiome makes it difficult to reveal organizational principles of the community and even more challenging to generate testable hypotheses. It has been suggested that in the gut microbiome species such as Bacteroides thetaiotaomicron are keystone in maintaining the stability and functional adaptability of the microbial community. In this study, we investigate the interspecies associations in a complex microbial biofilm applying systems biology principles. Using correlation network analysis we identified bacterial modules that represent important microbial associations within the oral community. We used dental plaque as a model community because of its high diversity and the well known species-species interactions that are common in the oral biofilm. We analyzed samples from healthy individuals as well as from patients with periodontitis, a polymicrobial disease. Using results obtained by checkerboard hybridization on cultivable bacteria we identified modules that correlated well with microbial complexes previously described. Furthermore, we extended our analysis using the Human Oral Microbe Identification Microarray (HOMIM), which includes a large number of bacterial species, among them uncultivated organisms present in the mouth. Two distinct microbial communities appeared in healthy individuals while there was one major type in disease. Bacterial modules in all communities did not overlap, indicating that bacteria were able to effectively re-associate with new partners depending on the environmental conditions. We then identified hubs that could act as keystone species in the bacterial modules. Based on those results we then cultured a not-yet-cultivated microorganism, Tannerella sp. OT286 (clone BU063). After two rounds of enrichment by a selected helper (Prevotella oris OT311) we obtained colonies of Tannerella sp. OT286 growing on blood agar plates. This system-level approach would open the possibility of manipulating microbial communities in a targeted fashion as well as associating certain bacterial modules to clinical traits (e.g.: obesity, Crohn's disease, periodontal disease, etc).
doi:10.1371/journal.pone.0028438
PMCID: PMC3233593  PMID: 22163302
12.  Microbial community succession on developing lesions on human enamel 
Journal of Oral Microbiology  2012;4:10.3402/jom.v4i0.16125.
Background
Dental caries is one of the most common diseases in the world. However, our understanding of how the microbial community composition changes in vivo as caries develops is lacking.
Objective
An in vivo model was used in a longitudinal cohort study to investigate shifts in the microbial community composition associated with the development of enamel caries.
Design
White spot lesions were generated in vivo on human teeth predetermined to be extracted for orthodontic reasons. The bacterial microbiota on sound enamel and on developing carious lesions were identified using the Human Oral Microbe Identification Microarray (HOMIM), which permits the detection of about 300 of the approximate 600 predominant bacterial species in the oral cavity.
Results
After only seven weeks, 75% of targeted teeth developed white spot lesions (8 individuals, 16 teeth). The microbial community composition of the plaque over white spot lesions differed significantly as compared to sound enamel. Twenty-five bacterial taxa, including Streptococcus mutans, Atopobium parvulum, Dialister invisus, and species of Prevotella and Scardovia, were significantly associated with initial enamel lesions. In contrast, 14 bacterial taxa, including species of Fusobacterium, Campylobacter, Kingella, and Capnocytophaga, were significantly associated with sound enamel.
Conclusions
The bacterial community composition associated with the progression of enamel lesions is specific and much more complex than previously believed. This investigation represents one of the first longitudinally-derived studies for caries progression and supports microbial data from previous cross-sectional studies on the development of the disease. Thus, the in vivo experiments of generating lesions on teeth destined for extraction in conjunction with HOMIM analyses represent a valid model to study succession of supragingival microbial communities associated with caries development and to study efficacy of prophylactic and restorative treatments.
doi:10.3402/jom.v4i0.16125
PMCID: PMC3307376  PMID: 22432048
white spot lesions; caries; HOMIM; molecular microbiology
13.  Oral Microbiota of Children in a School-based Dental Clinic 
Anaerobe  2009;16(3):278-282.
Objectives
Dental caries disproportionately affects disadvantaged subjects. This study hypothesized that there were greater caries extent and higher levels of caries-associated and anaerobic subgingival bacterial species in oral samples of Hispanic and immigrant children compared with non-Hispanic and US born children.
Methods
Children from a school-based dental clinic serving a community with a large Hispanic component were examined, and the extent of caries was recorded. Microbial samples were taken from teeth and the tongues of children. Samples were analyzed using DNA probes to 18 oral bacterial species.
Results
Seventy five children were examined. Extent of caries increased with child age in immigrant, but not in US born or Hispanic children. There were no differences in the microbiota based on ethnicity or whether the child was born in US or not. There was a higher species detection frequency from teeth than tongue samples. Levels of Streptococcus mutans and other Streptococcus species increased with caries extent. Prevotella intermedia, Tannerella forsythia and Selenomonas species were detected at low levels in these children.
Conclusions
We conclude that, while there was a high rate of dental caries in disadvantaged school children, there were no differences in the caries-associated microbiota, including S. mutans, based on ethnicity or immigration status. Furthermore, while anaerobic subgingival, periodontal pathogens were also detected in children, there was no difference in species detection based on ethnicity or immigration status. Increased levels of streptococci, including S. mutans, however, were detected with high caries levels. This suggested that while it is beneficial to target preventive and treatment programs to disadvantaged populations, there is likely no additional benefit to focus on subgroups within a population already at high risk for dental disease.
doi:10.1016/j.anaerobe.2009.10.007
PMCID: PMC2881591  PMID: 19879369
Dental Caries; School Children; Hispanic; Streptococcus mutans; Prevotella intermedia
14.  Molecular Epidemiology of Oral Treponemes Associated with Periodontal Disease 
Journal of Clinical Microbiology  1998;36(5):1399-1403.
Periodontitis, a disease responsible for tooth loss worldwide, is characterized by chronic inflammation of the periodontium, eventually leading to destruction of periodontal ligaments and supporting alveolar bone. Spirochetes, identified by dark-field microscopy as being the most predominant bacteria in advanced lesions, are thought to play a causative role. Various spirochetal morphotypes were observed, but most of these morphotypes are as yet uncultivable. To assess the role of these organisms we designed oligonucleotide probes for the identification of both cultivable and so far uncultivable spirochetes in periodontitis patients. Subgingival plaque specimens taken from diseased sites (n = 200) and healthy control sites (n = 44) from 53 patients with rapidly progressive periodontitis (RPP) were submitted to direct in situ hybridization or dot blot hybridization after prior amplification with eubacterial primers. Spirochetes were found in all patients, but their distributions varied considerably. Parallel use of oligonucleotide probes specific for cultivable or so far uncultivable treponemes suggested the presence of novel yet unknown organisms at a high frequency. These uncultivable treponemes were visualized by fluorescence in situ hybridization, and their morphologies, sizes, and numbers could be estimated. All RPP patients included in this study harbored oral treponemes that represent either novel species, e.g., Treponema maltophilum, or uncultivable phylotypes. Therefore, it is necessary to include these organisms in etiologic considerations and to strengthen efforts to cultivate these as yet uncultivable treponemes.
PMCID: PMC104836  PMID: 9574713
15.  Functional expression of dental plaque microbiota 
Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota.
doi:10.3389/fcimb.2014.00108
PMCID: PMC4132376  PMID: 25177549
caries; oral microbiota; dental plaque; biofilm; transcriptome
16.  RNA-oligonucleotide quantification technique (ROQT) for the enumeration of uncultivated bacterial species in subgingival biofilms 
Molecular oral microbiology  2011;26(2):127-139.
SUMMARY
Approximately 35% of the species present in subgingival biofilms are as yet uncultivated, so their role in periodontal pathogenesis is unknown. The aim of the present study was to develop a high throughput method to quantify a wide range of cultivated and uncultivated taxa in subgingival biofilm samples associated with periodontal disease or health. Oligonucleotides targeting the 16S ribosomal DNA gene were designed, synthesized and labeled with digoxigenin. These probes were hybridized with the total nucleic acids of pure cultures or subgingival biofilm samples. Target species included cultivated taxa associated with periodontal health and disease, as well as uncultivated species, such as TM7 sp OT 346, Mitsuokella sp. OT 131 and Desulfobulbus sp. OT 041. Sensitivity and specificity of the probes were determined. A Universal probe was used to assess total bacterial load. Sequences complementary to the probes were used as standards for quantification. Chemiluminescent signals were visualized after film exposure or using a CCD camera. In a pilot clinical study, 266 subgingival plaque samples from eight periodontally healthy people and 11 patients with periodontitis were examined. Probes were specific and sensitivity reached 104 cells. Fusobacterium nucleatum ss polymorphum and Actinomyces gerencseriae were the most abundant cultivated taxa in clinical samples. Among uncultivated/unrecognized species, Mitsuokella sp. OT 131 and Prevotella sp. OT 306 were the most numerous. Porphyromonas gingivalis and Desulfobulbus sp. OT 041 were only detected in patients with periodontitis. Direct hybridization of total nucleic acids using oligonucleotide probes permitted the quantification of multiple cultivated and uncultivated taxa in mixed species biofilm samples.
doi:10.1111/j.2041-1014.2010.00603.x
PMCID: PMC3073708  PMID: 21375703
bacteria; biofilms; oral; periodontal; uncultivated
17.  Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis 
BMC Oral Health  2011;11:33.
Background
Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing.
Methods
Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males) were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI). Plaque (sampled separately from four different oral sites) and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR.
Results
The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial abundance validated the pyrosequencing-based results.
Conclusions
This methods study suggests that oral samples from this patient population of gingivitis can be characterized via plaque microbiome by pyrosequencing the 16 S rDNA genes. Further studies that characterize serial samples from subjects (longitudinal study design) with a larger population size may provide insight into the temporal and ecological features of oral microbial communities in clinically-defined states of gingivitis.
doi:10.1186/1472-6831-11-33
PMCID: PMC3254127  PMID: 22152152
oral microbiota; gingivitis; saliva; plaque; pyrosequencing
18.  Microbial Co-occurrence Relationships in the Human Microbiome 
PLoS Computational Biology  2012;8(7):e1002606.
The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.
Author Summary
The human body is a complex ecosystem where microbes compete, and cooperate. These interactions can support health or promote disease, e.g. in dental plaque formation. The Human Microbiome Project collected and sequenced ca. 5,000 samples from 18 different body sites, including the airways, gut, skin, oral cavity and vagina. These data allowed the first assessment of significant patterns of co-presence and exclusion among human-associated bacteria. We combined sparse regression with an ensemble of similarity measures to predict microbial relationships within and between body sites. This captured known relationships in the dental plaque, vagina, and gut, and also predicted novel interactions involving members of under-characterized phyla such as TM7. We detected relationships necessary for plaque formation and differences in community composition among dominant members of the gut and vaginal microbiomes. Most relationships were strongly niche-specific, with only a few hub microorganisms forming links across multiple body areas. We also found that phylogenetic distance had a strong impact on the interaction type: closely related microorganisms co-occurred within the same niche, whereas most exclusive relationships occurred between more distantly related microorganisms. This establishes both the specific organisms and general principles by which microbial communities associated with healthy humans are assembled and maintained.
doi:10.1371/journal.pcbi.1002606
PMCID: PMC3395616  PMID: 22807668
19.  Bacterial 16S Sequence Analysis of Severe Caries in Young Permanent Teeth ▿  
Journal of Clinical Microbiology  2010;48(11):4121-4128.
Previous studies have confirmed the association of the acid producers Streptococcus mutans and Lactobacillus spp. with childhood caries, but they also suggested these microorganisms are not sufficient to explain all cases of caries. In addition, health-associated bacterial community profiles are not well understood, including the importance of base production and acid catabolism in pH homeostasis. The bacterial community composition in health and in severe caries of the young permanent dentition was compared using Sanger sequencing of the ribosomal 16S rRNA genes. Lactobacillus species were dominant in severe caries, and levels rose significantly as caries progressed from initial to deep lesions. S. mutans was often observed at high levels in the early stages of caries but also in some healthy subjects and was not statistically significantly associated with caries progression in the overall model. Lactobacillus or S. mutans was found either at low levels or not present in several samples. Other potential acid producers observed at high levels in these subjects included strains of Selenomonas, Neisseria, and Streptococcus mitis. Propionibacterium FMA5 was significantly associated with caries progression but was not found at high levels. An overall loss of community diversity occurred as caries progressed, and species that significantly decreased included the Streptococcus mitis-S. pneumoniae-S. infantis group, Corynebacterium matruchotii, Streptococcus gordonii, Streptococcus cristatus, Capnocytophaga gingivalis, Eubacterium IR009, Campylobacter rectus, and Lachnospiraceae sp. C1. The relationship of acid-base metabolism to 16S rRNA gene-based species assignments appears to be complex, and metagenomic approaches that would allow functional profiling of entire genomes will be helpful in elucidating the microbial pathogenesis of caries.
doi:10.1128/JCM.01232-10
PMCID: PMC3020839  PMID: 20826648
20.  Microbial Risk Indicators of Early Childhood Caries 
Journal of Clinical Microbiology  2005;43(11):5753-5759.
The aim of this study was to use molecular identification methods, such as 16S RNA gene sequence and reverse-capture checkerboard hybridization, for identification of the bacteria associated with dental caries and with dental health in a subset of 204 twins aged 1.5 to 7 years old. A total of 448 plaque samples (118 collected from caries-free subjects and 330 from caries-active subjects) were used for analysis. We compared the bacteria found in biofilms of children exhibiting severe dental caries, with different degrees of lesion severity, with those found in biofilms of caries-free children. A panel of 82 bacterial species was selected, and a PCR-based reverse-capture checkerboard method was used for detection. A simple univariate test was used to determine the overabundance and underabundance of bacterial species in the diseased and in the healthy groups. Features identified with this univariate test were used to construct a probabilistic disease prediction model. Furthermore, a method for the analysis of global patterns of gene expression was performed to permit simultaneous analysis of the abundance of significant species by allowing cross-bacterial comparisons of abundance profiles between caries-active and caries-free subjects. Our results suggested that global patterns of microbial abundance in this population are very distinctive. The top bacterial species found to be overabundant in the caries-active group were Actinomyces sp. strain B19SC, Streptococcus mutans, and Lactobacillus spp., which exhibited an inverse relationship to beneficial bacterial species, such as Streptococcus parasanguinis, Abiotrophia defectiva, Streptococcus mitis, Streptococcus oralis, and Streptococcus sanguinis.
doi:10.1128/JCM.43.11.5753-5759.2005
PMCID: PMC1287835  PMID: 16272513
21.  As-yet-uncultivated oral bacteria: breadth and association with oral and extra-oral diseases 
Journal of Oral Microbiology  2013;5:10.3402/jom.v5i0.21077.
It has been shown that 40–60% of the bacteria found in different healthy and diseased oral sites still remain to be grown in vitro, phenotypically characterized, and formally named as species. The possibility exists that these as-yet-uncultivated bacteria play important ecological roles in oral bacterial communities and may participate in the pathogenesis of several oral infectious diseases. There is also a potential for these as-yet-uncultivated oral bacteria to take part in extra-oral infections. For a comprehensive characterization of physiological and pathogenic properties as well as antimicrobial susceptibility of individual bacterial species, strains need to be grown in pure culture. Advances in culturing techniques have allowed the cultivation of several oral bacterial taxa only previously known by a 16S rRNA gene sequence signature, and novel species have been proposed. There is a growing need for developing improved methods to cultivate and characterize the as-yet-uncultivated portion of the oral microbiome so as to unravel its role in health and disease.
doi:10.3402/jom.v5i0.21077
PMCID: PMC3664057  PMID: 23717756
uncultivated bacteria; oral microbiology; molecular biology methods; taxonomy
22.  Drinking Habits Are Associated with Changes in the Dental Plaque Microbial Community▿  
Journal of Clinical Microbiology  2009;48(2):347-356.
Caries and gingivitis are the most prevalent oral infectious diseases of humans and are due to the accumulation of dental plaque (a microbial biofilm) on the tooth surface and at the gingival margin, respectively. Several in vitro and in vivo studies have shown that many natural components of foods and beverages inhibit the adhesion of and/or exert activity against oral bacteria. These biological activities have mainly been attributed to the polyphenol fraction. In order to explore the possibility that diet can alter the dental plaque community, in this study we evaluated the composition of the microbiota of supra- and subgingival plaque samples collected from 75 adult subjects with different drinking habits (drinkers of coffee, red wine, or water for at least 2 years) by analyzing the microbial population through the separation of PCR-amplified fragments using the denaturing gradient gel electrophoresis (DGGE) technique. The mean numbers of bands of the DGGE profiles from all three categories were evaluated. There were no significant differences between the two kinds of plaque collected from the control group (water drinkers), and this group showed the highest number of bands (supragingival plaque, 18.98 ± 3.16 bands; subgingival plaque, 18.7 ± 3.23 bands). The coffee and wine drinker groups generated the lowest numbers of bands for both supragingival plaque (coffee drinkers, 8.25 ± 3.53 bands; wine drinkers, 7.93 ± 2.55 bands) and subgingival plaque (coffee drinkers, 8.3 ± 3.03 bands; wine drinkers, 7.65 ± 1.68 bands). The differences between coffee drinkers or wine drinkers and the control group (water drinkers) were statistically significant. A total of 34 microorganisms were identified, and the frequency of their distribution in the three subject categories was analyzed. A greater percentage of subjects were positive for facultative aerobes when supragingival plaque was analyzed, while anaerobes were more frequent in subgingival plaque samples. It is noteworthy that the frequency of identification of anaerobes was significantly reduced when the frequencies for coffee and wine drinkers were compared with the frequencies for subjects in the control group. The DGGE profiles of the organisms in both plaque samples from all groups were generated and were used to construct dendrograms. A number of distinct clusters of organisms from water, coffee, and wine drinkers were formed. The clustering of some of the DGGE results into cohort-specific clusters implies similarities in the microbiotas within these groups and relevant differences in the microbiotas between cohorts. This supports the notion that the drinking habits of the subjects may influence the microbiota at both the supragingival and the subgingival levels.
doi:10.1128/JCM.00932-09
PMCID: PMC2815592  PMID: 19955272
23.  The Dental Plaque Microbiome in Health and Disease 
PLoS ONE  2013;8(3):e58487.
Dental decay is one of the most prevalent chronic diseases worldwide. A variety of factors, including microbial, genetic, immunological, behavioral and environmental, interact to contribute to dental caries onset and development. Previous studies focused on the microbial basis for dental caries have identified species associated with both dental health and disease. The purpose of the current study was to improve our knowledge of the microbial species involved in dental caries and health by performing a comprehensive 16S rDNA profiling of the dental plaque microbiome of both caries-free and caries-active subjects. Analysis of over 50,000 nearly full-length 16S rDNA clones allowed the identification of 1,372 operational taxonomic units (OTUs) in the dental plaque microbiome. Approximately half of the OTUs were common to both caries-free and caries-active microbiomes and present at similar abundance. The majority of differences in OTU’s reflected very low abundance phylotypes. This survey allowed us to define the population structure of the dental plaque microbiome and to identify the microbial signatures associated with dental health and disease. The deep profiling of dental plaque allowed the identification of 87 phylotypes that are over-represented in either caries-free or caries-active subjects. Among these signatures, those associated with dental health outnumbered those associated with dental caries by nearly two-fold. A comparison of this data to other published studies indicate significant heterogeneity in study outcomes and suggest that novel approaches may be required to further define the signatures of dental caries onset and progression.
doi:10.1371/journal.pone.0058487
PMCID: PMC3592792  PMID: 23520516
24.  Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology 
The ISME Journal  2013;7(10):1877-1885.
The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes (13C, 15N, 36S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.
doi:10.1038/ismej.2013.78
PMCID: PMC3965309  PMID: 23677009
quantitative metaproteomics; label-free quantification; spectral counting; stable isotope probing; protein-SIP; functional microbial community
25.  Study of inter- and intra-individual variations in the salivary microbiota 
BMC Genomics  2010;11:523.
Background
Oral bacterial communities contain species that promote health and others that have been implicated in oral and/or systemic diseases. Culture-independent approaches provide the best means to assess the diversity of oral bacteria because most of them remain uncultivable.
Results
The salivary microbiota from five adults was analyzed at three time-points by means of the 454 pyrosequencing technology. The V1-V3 region of the bacterial 16S rRNA genes was amplified by PCR using saliva lysates and broad-range primers. The bar-coded PCR products were pooled and sequenced unidirectionally to cover the V3 hypervariable region. Of 50,708 obtained sequences, 31,860 passed the quality control. Non-bacterial sequences (2.2%) were removed leaving 31,170 reads. Samples were dominated by seven major phyla: members of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and candidate division TM7 were identified in all samples; Fusobacteria and Spirochaetes were identified in all individuals, but not at all time-points. The dataset was represented by 3,011 distinct sequences (100%-ID phylotypes) of ~215 nucleotides and 583 phylotypes defined at ≥97% identity (97%-ID phylotypes). We compared saliva samples from different individuals in terms of the phylogeny of their microbial communities. Based on the presence and absence of phylotypes defined at 100% or 97% identity thresholds, samples from each subject formed separate clusters. Among individual taxa, phylum Bacteroidetes and order Clostridiales (Firmicutes) were the best indicators of intraindividual similarity of the salivary flora over time. Fifteen out of 81 genera constituted 73 to 94% of the total sequences present in different samples. Of these, 8 were shared by all time points of all individuals, while 15-25 genera were present in all three time-points of different individuals. Representatives of the class Sphingobacteria, order Sphingobacteriales and family Clostridiaceae were found only in one subject.
Conclusions
The salivary microbial community appeared to be stable over at least 5 days, allowing for subject-specific grouping using UniFrac. Inclusion of all available samples from more distant time points (up to 29 days) confirmed this observation. Samples taken at closer time intervals were not necessarily more similar than samples obtained across longer sampling times. These results point to the persistence of subject-specific taxa whose frequency fluctuates between the time points. Genus Gemella, identified in all time-points of all individuals, was not defined as a core-microbiome genus in previous studies of salivary bacterial communities. Human oral microbiome studies are still in their infancy and larger-scale projects are required to better define individual and universal oral microbiome core.
doi:10.1186/1471-2164-11-523
PMCID: PMC2997015  PMID: 20920195

Results 1-25 (1481839)