Search tips
Search criteria

Results 1-25 (951606)

Clipboard (0)

Related Articles

1.  Decreased cholesteryl ester transfer protein (CETP) mRNA and protein and increased high density lipoprotein following lipopolysaccharide administration in human CETP transgenic mice. 
Journal of Clinical Investigation  1995;95(4):1587-1594.
The plasma cholesteryl ester transfer protein (CETP) mediates the exchange of HDL cholesteryl esters (CE) and VLDL triglycerides leading to catabolism of HDL. There is some evidence that HDL ameliorates the toxicity of LPS, and LPS is known to influence several enzymes affecting HDL metabolism. Therefore, the effects of LPS on CETP and plasma lipoproteins were examined in human CETP transgenic mice. Administration of LPS to mice expressing a CETP transgene linked to its natural flanking sequences (NFR-CETP Tg) resulted in a rapid marked decrease in hepatic CETP mRNA and plasma CETP concentration. Corticosteroid injection produced a similar decrease in hepatic CETP mRNA and adrenalectomy abolished this response to LPS. LPS caused disproportionate reductions in plasma CETP activity compared to mass, and was found to be a potent inhibitor of CETP activity when added directly to plasma. LPS was injected into mice expressing (A) a human apoA-I transgene, (B) apoA-I and NFR-CETP transgenes, or (C) apoA-I and LPS-inducible metallothionein promoter-driven CETP transgenes, producing (A) minimal changes in HDL cholesterol, (B) decreased plasma CETP and increased HDL cholesterol, and (C) increased plasma CETP and decreased HDL cholesterol. Thus, LPS administration produces a profound decrease in hepatic CETP mRNA, primarily as a result of adrenal corticosteroid release. The decrease in plasma CETP activity after LPS administration may reflect both this effect as well as a direct interaction between CETP and LPS. The decrease of CETP in response to LPS has major effects on HDL levels, and may represent an adaptive response to preserve or increase HDL and thereby modify the response to LPS.
PMCID: PMC295654  PMID: 7706465
2.  Profound induction of hepatic cholesteryl ester transfer protein transgene expression in apolipoprotein E and low density lipoprotein receptor gene knockout mice. A novel mechanism signals changes in plasma cholesterol levels. 
Journal of Clinical Investigation  1996;97(1):154-161.
The plasma cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters from HDL to other lipoproteins and is a key regulated component of reverse cholesterol transport. Dietary hypercholesterolemia results in increased hepatic CETP gene transcription and higher plasma CETP levels. To investigate the mechanisms by which the liver senses hypercholesterolemia, mice containing a natural flanking region CETP transgene (NFR-CETP transgene) were bred with apo E or LDL receptor gene knockout mice (E0 or LDLr0 mice). Compared to NFR-CETP transgenic (Tg) mice with intact apo E genes, in NFR-CETP Tg/E0 mice there was an eightfold induction of plasma CETP levels and a parallel increase in hepatic CETP mRNA levels. Other sterol-responsive genes (LDL receptor and hydroxymethyl glutaryl CoA reductase) also showed evidence of altered regulation with decreased abundance of their mRNAs in the E0 background. A similar induction of plasma CETP and hepatic CETP mRNA levels resulted from breeding the NFR-CETP transgene into the LDL receptor gene knockout background. When placed on a high cholesterol diet, there was a further increase in CETP levels in both E0 and LDLr0 backgrounds. In CETP Tg, CETP Tg/E0, and CETP Tg/LDLr0 mice on different diets, plasma CETP and CETP mRNA levels were highly correlated with plasma cholesterol levels. The results indicate that hepatic CETP gene expression is driven by a mechanism which senses changes in plasma cholesterol levels independent of apo E and LDL receptors. Hepatic sterol-sensitive genes have mechanisms to sense hypercholesterolemia that do not require classical receptor-mediated lipoprotein uptake.
PMCID: PMC507074  PMID: 8550828
3.  Dietary cholesterol increases transcription of the human cholesteryl ester transfer protein gene in transgenic mice. Dependence on natural flanking sequences. 
Journal of Clinical Investigation  1992;90(4):1290-1295.
To investigate the regulation of expression of the human cholesteryl ester transfer protein (CETP) gene, transgenic mice were prepared using a CETP minigene linked to the natural flanking sequences of the human CETP gene. By using a transgene containing 3.2 kb of upstream and 2.0 kb of downstream flanking sequence, five different lines of transgenic mice were generated. The abundance of CETP mRNA in various tissues was determined on standard laboratory diet or high fat, high cholesterol diets. In three lines of transgenic mice the tissues expressing the human CETP mRNA were similar to those in humans (liver, spleen, small intestine, kidney, and adipose tissue); in two lines expression was more restricted. There was a marked (4-10-fold) induction of liver CETP mRNA in response to a high fat, high cholesterol diet. The increase in hepatic CETP mRNA was accompanied by a fivefold increase in transcription rate of the CETP transgene, and a 2.5-fold increase in plasma CETP mass and activity. In contrast, CETP transgenic mice, in which the CETP minigene was linked to a metallothionein promoter rather than to its own flanking sequences, showed no change in liver CETP mRNA in response to a high cholesterol diet. Thus (a) the CETP minigene or natural flanking sequences contain elements directing authentic tissue-specific expression; (b) a high cholesterol diet induces CETP transgene transcription, causing increased hepatic CETP mRNA and plasma CETP; (c) this cholesterol response requires DNA sequences contained in the natural flanking regions of the human CETP gene.
PMCID: PMC443172  PMID: 1401066
4.  Endotoxin and cytokines decrease serum levels and extra hepatic protein and mRNA levels of cholesteryl ester transfer protein in syrian hamsters. 
Journal of Clinical Investigation  1996;97(11):2585-2592.
Endotoxin alters the metabolism of lipoproteins, including that of high density lipoprotein (HDL). Cholesteryl ester transfer protein (CETP) facilitates exchange of HDL cholesterol for very low density lipoprotein (VLDL) triglyceride, leading to catabolism of HDL. We investigated the effects of endotoxin and cytokines on CETP in Syrian hamsters. Endotoxin induced a rapid and progressive decrease in serum CETP levels, by 48 h CETP had decreased to < 20% of control levels. Endotoxin also decreased CETP mRNA and protein levels in adipose tissue, heart, and muscle, the tissues with highest levels of CETP mRNA, providing a plausible mechanism for the endotoxin-induced decrease in circulating CETP. Dexamethasone did not mimic the effects of endotoxin on CETP, but the combination of tumor necrosis factor and interleukin-1 did, indicating that these cytokines may in part mediate the effects of endotoxin on CETP. The endotoxin-induced decrease in CETP may help maintain HDL cholesterol levels during infection and inflammation when increased triglyceride levels could drive the exchange of HDL cholesteryl ester for VLDL triglyceride. Maintaining circulating HDL may be important because HDL protects against the toxic effects of endotoxin and provides cholesterol for peripheral cells involved in the immune response and tissue repair.
PMCID: PMC507345  PMID: 8647952
5.  Cholesteryl ester transfer protein protects against insulin resistance in obese female mice★ 
Molecular Metabolism  2013;2(4):457-467.
Cholesteryl ester transfer protein (CETP) shuttles lipids between lipoproteins, culminating in cholesteryl ester delivery to liver and increased secretion of cholesterol as bile. Since gut bile acids promote insulin sensitivity, we aimed to define if CETP improves insulin sensitivity with high-fat feeding. CETP and nontransgenic mice of both sexes became obese. Female but not male CETP mice had increased ileal bile acid levels versus nontransgenic littermates. CETP expression protected female mice from insulin resistance but had a minimal effect in males. In liver, female CETP mice showed activation of bile acid-sensitive pathways including Erk1/2 phosphorylation and Fxr and Shp gene expression. In muscle, CETP females showed increased glycolysis, increased mRNA for Dio2, and increased Akt phosphorylation, known effects of bile acid signaling. These results suggest that CETP can ameliorate insulin resistance associated with obesity in female mice, an effect that correlates with increased gut bile acids and known bile-signaling pathways.
PMCID: PMC3854988  PMID: 24327961
Insulin resistance; Obesity; Cholesterol; Bile; Glucose; Sex-differences
6.  CETP Polymorphism (TaqIB) Associates with Risk in Postinfarction Patients with High HDL Cholesterol and High CRP Levels 
To investigate roles of inflammation and a cholesteryl ester transfer protein (CETP) polymorphism potentially related to recent findings demonstrating coronary risk with increasing HDL cholesterol (HDL-C).
Methods and Results
A novel graphical exploratory data analysis tool allowed examination of coronary risk in postinfarction patients relating to HDL-C and C-reactive protein (CRP). Results demonstrated a high-risk subgroup defined by high HDL-C and CRP exhibiting larger HDL particles and lower lipoprotein-associated phospholipaseA2 (Lp-PLA2) levels than lower-risk patients. Subgroup CETP-associated risk was probed using a functional CETP polymorphism (TaqIB, rs708272). Multivariable modeling revealed in the high-risk subgroup greater risk for B2 allele-carriers (less CETP activity) versus B1 homozygotes (hazard ratio 2.41, 95% CI 1.04-5.60, p=0.041). Within the high-risk subgroup, B2 allele-carriers had higher serum amyloid A levels than B1 homozygotes. Evidence is also presented demonstrating CETP genotypic differences in HDL subfraction distributions regarding nonHDL-C and Lp-PLA2 potentially relating to impaired HDL remodeling.
Postinfarction patients with high HDL-C and CRP levels demonstrate increased risk for recurrent events. Future studies should aim at characterizing altered HDL particles from such patients and elucidating mechanistic details related to inflammation and HDL particle remodeling. Such patients should be considered in drug trials involving raising HDL-C.
PMCID: PMC3051187  PMID: 20489166
Atherosclerosis; cardiovascular diseases; inflammation; cholesteryl ester transfer protein; TaqIB
7.  A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins. 
Journal of Clinical Investigation  1993;92(4):2060-2064.
Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric.
PMCID: PMC288375  PMID: 8408659
8.  Atherogenic diet increases cholesteryl ester transfer protein messenger RNA levels in rabbit liver. 
Journal of Clinical Investigation  1990;85(2):357-363.
Cholesteryl ester transfer activity is increased in plasma of cholesterol-fed rabbits. To investigate the mechanisms leading to changes in activity, we measured cholesteryl ester transfer protein (CETP) mass by RIA and CETP mRNA abundance by Northern and slot blot analysis using a human CETP cDNA probe in control (n = 8) and cholesterol-fed rabbits (n = 10). Cholesterol feeding (chow plus 0.5% cholesterol, 10% corn oil) for 30 d increased CETP mass in plasma 3.2-fold in the cholesterol-fed rabbits (12.45 +/- 0.82 micrograms/ml) compared with controls (3.86 +/- 0.38 micrograms/ml). In the hypercholesterolemic rabbit, liver CETP mRNA levels were increased 2.8 times control mRNA levels. Actin, apo E, lecithin-cholesterol acyltransferase, and albumin mRNA abundances were unchanged. In contrast to the widespread tissue distribution in humans, CETP mRNA was not detected in extrahepatic tissues of either control or cholesterol-fed animals. Using a sensitive RNase protection assay, the increase in liver CETP mRNA was detectable within 3 d of beginning the high cholesterol diet. Thus, in response to the atherogenic diet there is an early increase in liver CETP mRNA, probably causing increased CETP synthesis and secretion, and increased plasma CETP. The results indicate that the CETP gene may be regulated by diet-induced changes in lipid metabolism.
PMCID: PMC296432  PMID: 2298910
9.  Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr−/− mice 
Journal of Lipid Research  2013;54(10):2647-2657.
Due to their ability to promote positive effects across all of the lipoprotein classes, cholesteryl ester transfer protein (CETP) inhibitors are currently being developed as therapeutic agents for cardiovascular disease. In these studies, we compared an antisense oligonucleotide (ASO) inhibitor of CETP to the CETP small molecule inhibitor anacetrapib. In hyperlipidemic CETP transgenic (tg) mice, both drugs provided comparable reductions in total plasma cholesterol, decreases in CETP activity, and increases in HDL cholesterol. However, only mice treated with the antisense inhibitor showed an enhanced effect on macrophage reverse cholesterol transport, presumably due to differences in HDL apolipoprotein composition and decreases in plasma triglyceride. Additionally, the ASO-mediated reductions in CETP mRNA were associated with less accumulation of aortic cholesterol. These preliminary findings suggest that CETP ASOs may represent an alternative means to inhibit that target and to support their continued development as a treatment for cardiovascular disease in man.
PMCID: PMC3770078  PMID: 23801661
cholesteryl ester transfer protein; cardiovascular disease; low density lipoprotein; lipoprotein metabolism
10.  Cholesteryl Ester Transfer Protein Gene and Effectiveness of Lipid Lowering of Atorvastatin 
Cholesteryl ester transfer protein (CETP) plays a key role in lipid metabolism. Thus, variations in the CETP gene may be clinically relevant.
Newly started atorvastatin users (n=212) were genotyped for CETP genetic variants (TaqIB and I405V). Homozygotes for B1 allele of TaqIB polymorphism had lower plasma high density lipoprotein cholesterol (HDL-C) compared with B1B2 or B2B2 genotypes (p=0.03, for each). Homozygotes for I allele of I405V polymorphism had lower plasma HDL-C compared with IV or VV genotypes (p=0.001, for each). In the whole population, the B1 carriers increased HDL-C levels by 4% after atorvastatin treatment, compared with B2 carriers, where a 4% decrease occurred (p=0.03). Also homozygotes for B1 allele decreased triglyceride levels to a lesser, though not significant, degree compared to B1B2 or B2B2 genotypes.
CETP TaqIB or I405V polymorphisms seem to modify the lipid lowering response to atorvastatin treatment. This knowledge may help design more effective hypolipidaemic treatment.
PMCID: PMC3111735  PMID: 21673838
Atorvastatin; cholesteryl ester transfer protein; genetic polymorphisms; lipid profile.
11.  Cholesteryl ester transfer protein (CETP) expression enhances HDL cholesteryl ester liver delivery, which is independent of scavenger receptor BI, LDL receptor related protein and possibly LDL receptor 
Biochimica et biophysica acta  2006;1761(12):1482-1488.
Cholesteryl ester transfer protein (CETP) is a hydrophobic plasma glycoprotein that mediates the transfer and exchange of cholesteryl ester (CE) and triglyceride (TG) between plasma lipoproteins, and also plays an important role in HDL metabolism. Previous studies have indicated that, compared to wild type mice, human CETP transgenic mice had significantly lower plasma HDL CE levels, which was associated with enhancement of HDL CE uptake by the liver. However, the mechanism of this process is still unknown. To evaluate the possibility that this might be directly mediated by CETP, we utilized CETP transgenic (CETPTg) mice with liver scavenger receptor BI (SR-BI) deficiency [i.e., PDZK1 gene knockout (PDZK1O)], and with receptor associated protein (RAP) overexpression, to block LDL receptor-related protein (LRP) and LDL receptor (LDLR). We found that 1) CETPTg/PDZK1O mice have significantly lower HDL-C than that of PDZK1 KO mice (36%, P<0.01); 2) CETPTg and CETPTg/PDZK1O mice have same HDL-C levels; 3) CETPTg/PDZK1O/RAP mice had significant lower plasma HDL-C levels than that of PDZK1O/RAP ones (50%, p<0.001); 4) there is no incremental transfer of HDL CE radioactivity to the apoB-containing lipoprotein fraction in mice expressing CETP; and 5) CETPTg/PDZK1O/RAP mice had significant higher plasma and liver [3H]CEt-HDL turnover rates than that of PDZK1O/RAP ones (50% and 53%, p<0.01, respectively). These results suggest that CETP expression in mouse increases direct removal of HDL CE in the liver and this process is independent of SR-BI, LRP, and possibly LDLR.
PMCID: PMC1876826  PMID: 17055779
12.  Association of CETP Taq1B and -629C > A polymorphisms with coronary artery disease and lipid levels in the multi-ethnic Singaporean population 
Hyperlipidaemia is a major risk factor for coronary artery disease (CAD) and cholesteryl ester transfer protein (CETP) gene polymorphisms are known to be associated with lipid profiles.
In this study, we investigated the association of two polymorphisms in the CETP, Taq1B (rs708272) and -629C > A (rs1800775), with CAD and lipid levels HDL-C in 662 CAD + cases and 927 controls from the Singapore population comprising Chinese, Malays and Indians.
TaqB2 frequency was significantly lowest in the Malays (0.43) followed by Chinese (0.47) and highest in the Indians (0.56) in the controls. The B2 allele frequency was significantly lower in the Chinese CAD + cases compared to the controls (p = 0.002). The absence of the B2 allele was associated with CAD with an OR 2.0 (95% CI 1.2 to 3.4) after adjustment for the confounding effects of age, smoking, BMI, gender, hypertension, dyslipidemia and diabetes mellitus. The B2 allele was significantly associated with higher plasma HDL-C levels in the Chinese men after adjusting for confounders. Associations with plasma apoA1 levels were significant only in the Chinese men for Taq1B and -629C > A. In addition, the Taq1B polymorphism was only associated with plasma Apo B and Lp(a) in the Malay men. Significant associations were only found in non-smoking subjects with BMI <50th percentile. In this study, the LD coefficients between the Taq1B and -629C > A polymorphisms seemed to be weak.
The absence the Taq1B2 allele was associated with CAD in the Chinese population only and the minor allele of the Taq1B polymorphism of the CETP gene was significantly associated with higher plasma HDL-C levels in Chinese men.
PMCID: PMC3699414  PMID: 23758630
Cholesteryl ester transfer protein; -629C > A polymorphism; TaqB1 polymorphism; HDL-cholesterol; Coronary artery disease
13.  Plasma lipid transfer protein as a determinant of the atherogenicity of monkey plasma lipoproteins. 
Journal of Clinical Investigation  1991;87(5):1559-1566.
This study was undertaken to determine potential tissue sources of plasma cholesteryl ester transfer protein (CETP), and to assess the influence of CETP on lipoprotein concentrations and atherosclerosis. In a group of 28 cynomolgus monkeys fed high fat, high cholesterol diets, plasma CETP concentration was strongly correlated with the abundance of CETP mRNA in liver and in adipose tissue, and with the output of CETP in liver perfusates. Plasma CETP concentration showed a strong inverse correlation with HDL cholesterol concentrations (r = -0.62, P less than 0.001) and a positive correlation with LDL cholesterol concentration (r = 0.54, P less than 0.005) and molecular weight (r = 0.57, P less than 0.001). The extent of coronary artery atherosclerosis was positively correlated with LDL cholesterol concentration and molecular weight, and with plasma CETP concentration. Thus, in monkeys fed an atherogenic diet, individual variation in CETP mRNA abundance in liver and adipose tissue probably plays a major role in the determination of plasma CETP levels. In plasma, CETP influences the distribution of cholesteryl esters between LDL and HDL, and CETP concentration appears to be a key determinant of the relative atherogenicity of the plasma lipoproteins.
PMCID: PMC295238  PMID: 2022728
14.  Cholesteryl Ester Transfer Protein Gene Polymorphisms and Longevity Syndrome 
High levels of high density lipoprotein (HDL) cholesterol are associated with a decreased risk of coronary heart disease (CHD). Subjects with high levels of HDL cholesterol (>70 mg/dl; 1.79 mmol/l) as well as high levels of low density lipoprotein (LDL) cholesterol, could represent a group with longevity syndrome (LS). Since HDL particles are influenced by cholesteryl ester transfer protein (CETP) activity, it is worth studying the CETP polymorphism. The aim of the study was to detect whether 2 genetic variants of the CETP are associated with the LS.
Subjects and Methods:
The study population consisted of 136 unrelated men and women with no personal and family history of CHD; 69 met the criteria for LS and 67 did not meet these criteria and had “normal” HDL cholesterol (>40 and <70 mg/dl; >1.03 and <1.79 mmol/l). All patients were genotyped for the TaqIB and I405V polymorphisms.
The B2 allele frequency of TaqIB polymorphism was higher in the LS in comparison with the non-LS group (p=0.03) whereas B1 allele frequency was higher in the non-LS group (p=0.03).
Gene polymorphisms could help decide whether individuals who have increased levels of both LDL cholesterol and HDL cholesterol require treatment. Some of the prerequisites could include that subjects with LS should not only have very high levels of HDL cholesterol but also favorable gene polymorphisms. However, further investigations with a larger sample and including other gene polymorphisms, are needed.
PMCID: PMC2831192  PMID: 20200605
Coronary heart disease; high density lipoprotein-cholesterol; longevity syndrome; TaqIB and I405V polymorphisms.
15.  Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. 
Journal of Clinical Investigation  1995;96(4):2071-2074.
The human cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester from HDL to triglyceride-rich lipoproteins. The activity of CETP results in a reduction in HDL cholesterol levels, but CETP may also promote reverse cholesterol transport. Thus, the net impact of CETP expression on atherogenesis is uncertain. The influence of hypertriglyceridemia and CETP on the development of atherosclerotic lesions in the proximal aorta was assessed by feeding transgenic mice a high cholesterol diet for 16 wk. 13 out of 14 (93%) hypertriglyceridemic human apo CIII (HuCIII) transgenic (Tg) mice developed atherosclerotic lesions, compared to 18 out of 29 (62%) controls. In HuCIII/CETPTg, human apo AI/CIIITg and HuAI/CIII/CETPTg mice, 7 of 13 (54%), 5 of 10 (50%), and 5 of 13 (38%), respectively, developed lesions in the proximal aorta (P < .05 compared to HuCIIITg). The average number of aortic lesions per mouse in HuCIIITg and controls was 3.4 +/- 0.8 and 2.7 +/- 0.6, respectively in HuCIII/CETPTg, HuAI/CIIIg, and HuAI/CIII/CETPTg mice the number of lesions was significantly lower than in HuCIIITg and control mice: 0.9 +/- 0.4, 1.5 +/- 0.5, and 0.9 +/- 0.4, respectively. There were parallel reductions in mean lesion area. In a separate study, we found an increased susceptibility to dietary atherosclerosis in nonhypertriglyceridemic CETP transgenic mice compared to controls. We conclude that CETP expression inhibits the development of early atherosclerotic lesions but only in hypertriglyceridemic mice.
PMCID: PMC185846  PMID: 7560101
16.  Distribution and concentration of cholesteryl ester transfer protein in plasma of normolipemic subjects. 
A MAb (TP-2) directed against human cholesteryl ester transfer protein (CETP) has been applied to the development of a competitive solid-phase RIA. Experiments with immobilized CETP have shown that upon incubation with plasma or HDL in the presence of Tween (0.05%) apo A-I (but not apo A-II) binds to CETP while TP-2 binding to CETP is concomitantly decreased. With high detergent concentration (0.5% Triton), the interference is eliminated and a specific RIA in which all plasma CETP fractions have the same affinity can be obtained. Plasma levels of CETP, apo A-I, lipids, and lipoproteins were measured in 50 normolipemic, healthy subjects of both sexes. CETP levels varied nearly fourfold with a mean value of 1.7 micrograms/ml. CETP was positively correlated only with apo A-I (r = 0.38) and HDL-triglyceride (r = 0.39). In 29 other normolipemic subjects, where several apolipoproteins were also measured, significant correlations of CETP with apo A-I (0.41), apo E (0.43), and HDL-cholesterol (0.41) were observed, but there was no significant relationship between CETP and either apo A-II, B, or D. In other experiments CETP was shown to be present mostly in HDL3 and VHDL, to display exclusively an alpha 2-electrophoretic migration, and to occur within discrete particles ranging in size from 129 to 154 kD. In conclusion, the association of CETP with apo A-I-containing lipoproteins probably explains the correlation between CETP and apo A-I levels. The relationship between CETP and apo E suggests either a common metabolism or a specific cooperative role in cholesterol ester transport for these proteins.
PMCID: PMC296380  PMID: 2295691
17.  Modulating cholesteryl ester transfer protein activity maintains efficient pre-β-HDL formation and increases reverse cholesterol transport[S] 
Journal of Lipid Research  2010;51(12):3443-3454.
The mechanism by which cholesteryl ester transfer protein (CETP) activity affects HDL metabolism was investigated using agents that selectively target CETP (dalcetrapib, torcetrapib, anacetrapib). In contrast with torcetrapib and anacetrapib, dalcetrapib requires cysteine 13 to decrease CETP activity, measured as transfer of cholesteryl ester (CE) from HDL to LDL, and does not affect transfer of CE from HDL3 to HDL2. Only dalcetrapib induced a conformational change in CETP, when added to human plasma in vitro, also observed in vivo and correlated with CETP activity. CETP-induced pre-β-HDL formation in vitro in human plasma was unchanged by dalcetrapib ≤3 µM and increased at 10 µM. A dose-dependent inhibition of pre-β-HDL formation by torcetrapib and anacetrapib (0.1 to 10 µM) suggested that dalcetrapib modulates CETP activity. In hamsters injected with [3H]cholesterol-labeled autologous macrophages, and given dalcetrapib (100 mg twice daily), torcetrapib [30 mg once daily (QD)], or anacetrapib (30 mg QD), only dalcetrapib significantly increased fecal elimination of both [3H]neutral sterols and [3H]bile acids, whereas all compounds increased plasma HDL-[3H]cholesterol. These data suggest that modulation of CETP activity by dalcetrapib does not inhibit CETP-induced pre-β-HDL formation, which may be required to increase reverse cholesterol transport.
PMCID: PMC2975716  PMID: 20861162
dalcetrapib; torcetrapib; anacetrapib; high density lipoprotein-functionality; apolipoproteins; bile acids and salts/metabolism; lipoproteins/metabolism; CETP
18.  Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. 
Journal of Clinical Investigation  1996;97(12):2917-2923.
Plasma high density lipoprotein (HDL) levels are strongly genetically determined and show a general inverse relationship with coronary heart disease (CHD). The cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters from HDL to other lipoproteins and is a key participant in the reverse transport of cholesterol from the periphery to the liver. A high prevalence of two different CETP gene mutations (D442G, 5.1%; intron 14G:A, 0.5%), was found in 3,469 men of Japanese ancestry in the Honolulu Heart Program and mutations were associated with decreased CETP (-35%) and increased HDL chol levels (+10% for D442G). However, the overall prevalence of definite CHD was 21% in men with mutations and 16% in men without mutations. The relative risk (RR) of CHD was 1.43 in men with mutations (P < .05); after adjustment for CHD risk factors, the RR was 1.55 (P = .02); after additional adjustment for HDL levels, the RR was 1.68 (P = .008). Similar RR values were obtained for the D442G mutation alone. Increased CHD in men with mutations was primarily observed for HDL chol 41-60 mg/dl; for HDL chol > 60 mg/dl men with and without mutations had low CHD prevalence. Thus, genetic CETP deficiency appears to be an independent risk factor for CHD, primarily due to increased CHD prevalence in men with the D442G mutation and HDL cholesterol between 41 and 60 mg/dl. The findings suggest that both HDL concentration and the dynamics of cholesterol transport through HDL (i.e., reverse cholesterol transport) determine the anti-atherogenicity of the HDL fraction.
PMCID: PMC507389  PMID: 8675707
19.  Genetic Variation in Cholesterol Ester Transfer Protein (CETP), Serum CETP Activity, and Coronary Artery Disease (CAD) Risk in Asian Indian Diabetic Cohort 
Pharmacogenetics and Genomics  2012;22(2):95-104.
The role of cholesteryl ester transfer protein (CETP) in the metabolism of HDL cholesterol (HDL-C) is well studied but still controversial. More recently, GWAS and metaanalyses reported the association of a promoter variant (rs3764261) with HDL-C in Caucasians and other ethnic groups. In this study, we have examined the role of genetic variation in the promoter region of CETP with HDL-C, CETP activity, coronary artery disease (CAD), CAD risk factors, and the interaction of genetic factors with environment in a unique diabetic cohort of Asian Indian Sikhs.
Methods and Results
We genotyped four variants; three tagSNPs from promoter (rs3764261, rs12447924, rs4783961) and one intronic variant (rs708272 Taq1B) on 2,431 individuals from the Sikh Diabetes Study. Two variants (rs3764261 and rs708272) exhibited a strong associations with HDL-C in both normo-glycemic (NG) controls (β= 0.12; p= 9.35 ×10−7 for rs3764261; β= 0.10, p= 0.002 for rs708272) and diabetic cases (β= 0.07, p= 0.016 for rs3764261; β= 0.08, p= 0.005 for rs708272) with increased levels among minor homozygous ‘AA’ carriers. In addition, the same ‘A’ allele carriers in rs376426 showed a significant decrease in systolic blood pressure (β= −0.08, p= 0.002) in NG controls. Haplotype analysis of rs3764261, rs12447924, rs4783961, and rs708272 further revealed a significant association of ‘ATAA’ haplotype with increased HDL-C (β= 2.71, p= 6.38 ×10−5) and ‘CTAG’ haplotype with decreased HDL–C levels (β= −1.78, p= 2.5×10−2). Although there was no direct association of CETP activity and CETP polymorphisms, low CETP activity was associated with increased risk to CAD (age, BMI and gender adjusted odds ratio 2.2 95% CI (1.4–3.4, p= 0.001) in this study. Our data revealed a strong interaction of rs3764261 and rs708272 for affecting the association between CETP activity and HDL–C levels; p= 2.2 × 10−6, and p= 4.4 × 10−4, respectively.
Our results, in conjunction with earlier reports confirm low CETP activity to be associated with higher CAD risk. Although there was no direct association of CETP activity with CETP polymorphisms, our findings revealed a significant interaction between CETP SNPs and CETP activity for affecting HDL-C levels. These results urge a deeper evaluation of the individual genetic variation in the CETP before implementing pharmaceutical intervention of blocking CETP for preventing CAD events.
PMCID: PMC3269125  PMID: 22143414
20.  Cholesteryl Ester Transfer Protein (CETP) Genotype and Reduced CETP Levels Associated With Decreased Prevalence of Hypertension 
Mayo Clinic Proceedings  2010;85(6):522-526.
OBJECTIVES: To clarify whether reduced cholesteryl ester transfer protein (CETP) activity carries inherent blood pressure risks and to infer whether the increased blood pressure and elevated mortality associated with torcetrapib are idiosyncratic or characteristic of this class of drugs.
PATIENTS AND METHODS: We examined the associations among CETP genotype, phenotype, and blood pressure in a cohort of 521 older adults (who have complete data for the variables required in our primary analysis) enrolled between November 1, 1998, and June 30, 2003, in our ongoing studies of genes associated with longevity, including a cohort with a high prevalence of a genotype coding for a reduced activity variant of CETP and low levels of CETP.
RESULTS: The prevalence of hypertension was actually lower among homozygotes for the variant CETP (48% vs 60% among those with wild-type and 65% among heterozygotes; P=.03). Low levels of CETP were associated with reduced prevalence of hypertension (65% in highest tertile, 59% in middle tertile, and 55% in lowest tertile; P=.04) and lower systolic blood pressure (140.8, 138.1, 136.2 mm Hg, respectively; P=.03).
CONCLUSION: Reduced levels of CETP are associated with lower, not higher, blood pressure. The adverse results with torcetrapib, if mediated through blood pressure, are likely to represent effects of this specific drug, rather than a result of lower CETP levels.
In this cohort study of 521 older adults, reduced levels of cholesteryl ester transfer protein were associated with lower, not higher, blood pressure; the adverse results with torcetrapib, if mediated through blood pressure, are likely to represent effects of this specific drug, rather than a result of lower cholesteryl ester transfer protein levels.
PMCID: PMC2878255  PMID: 20511482
21.  Separating the mechanism-based and off-target actions of CETP-inhibitors using CETP gene polymorphisms 
Circulation  2009;121(1):52-62.
Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-cholesterol but torcetrapib, the first-in-class inhibitor tested in a large outcome trial caused unexpected blood pressure elevation and increased cardiovascular events. Whether the hypertensive effect resulted from CETP-inhibition or an off-target action of torcetrapib has been debated. We hypothesised that common single nucleotide polymorphisms (SNPs) in the CETP-gene could help distinguish mechanism-based from off-target actions of CETP-inhibitors to inform on the validity of CETP as a therapeutic target.
Methods and Results
We compared the effect of CETP SNPs and torcetrapib treatment on lipid fractions, blood pressure and electrolytes in up to 67,687 individuals from genetic studies and 17,911 from randomised trials. CETP SNPs and torcetrapib treatment reduced CETP activity and had directionally concordant effect on eight lipid and lipoprotein traits (total-, LDL- and HDL-cholesterol, HDL2, HDL3, apolipoproteins A-I, -B, and triglycerides), with the genetic effect on HDL-cholesterol (0.13 mmol/L; 95% CI: 0.11, 0.14) being consistent with that expected of a 10 mg dose of torcetrapib (0.13 mmol/L; 0.10, 0.15). In trials, 60mg torcetrapib elevated systolic and diastolic blood pressure by 4.47mmHg (4.10, 4.84) and 2.08mmHg (1.84, 2.31) respectively. However, the effect of CETP SNPs on systolic 0.16mmHg (−0.28, 0.60) and diastolic blood pressure −0.04mmHg (−0.36, 0.28) was null and significantly different from that expected of 10 mg torcetrapib.
Discordance in the effects of CETP SNPs and torcetrapib treatment on blood pressure despite the concordant effects on lipids indicates the hypertensive action of torcetrapib is unlikely to be due to CETP-inhibition, or shared by chemically dissimilar CETP inhibitors. Genetic studies could find use in drug development programmes as a new source of randomised evidence for drug target validation in man.
PMCID: PMC2811869  PMID: 20026784
genetics; pharmacology; epidemiology
22.  The I405V and Taq1B polymorphisms of the CETP gene differentially affect sub-clinical carotid atherosclerosis 
Cholesteryl ester transfer protein (CETP) plays a major role in lipid metabolism, but studies on the association of CETP polymorphisms with risks of cardiovascular disease are inconsistent. This study investigated whether the CETP gene I405V and Taq1B polymorphisms modified subclinical atherosclerosis in an asymptomatic Brazilian population sample.
The polymorphisms were analyzed using polymerase chain reaction in 207 adult volunteers. Serum lipid profiles, oxLDL Ab titers, C-reactive protein and tumor necrosis factor-α concentrations and CETP and phospholipid transfer protein (PLTP) activities were determined, and common carotid artery intima-media thickness (cIMT) was measured using ultrasonography.
No differences in cIMT were observed between the presence or absence of the minor B2 and V alleles in either polymorphism. However, inverse correlations between mean cIMT and CETP activity in the presence of these polymorphisms were observed, and positive correlations of these polymorphisms with PLTP activity and oxLDL Ab titers were identified. Moreover, logistic multivariate analysis revealed that the presence of the B2 allele was associated with a 5.1-fold (CI 95%, OR: 1.26 – 21.06) increased risk for cIMT, which was equal and above the 66th percentile and positively interacted with age. However, no associations with the V allele or CETP and PLTP activities were observed.
None of the studied parameters, including CETP activity, explained the different relationships between these polymorphisms and cIMT, suggesting that other non-determined factors were affected by the genotypes and related to carotid atherosclerotic disease.
PMCID: PMC3503625  PMID: 23039379
Carotid atherosclerosis; Carotid intima-media thickness; Cholesteryl ester transfer protein; Genetic polymorphism
23.  Cholesteryl Ester Transfer Protein Genetic Polymorphisms, HDL Cholesterol, and Subclinical Cardiovascular Disease in the Multi-Ethnic Study of Atherosclerosis 
Atherosclerosis  2008;200(2):359-367.
The cholesteryl ester transport protein (CETP) plays a key role in high-density lipoprotein (HDL) metabolism. Genetic variants that alter CETP activity and concentration may cause significant alterations in HDL-cholesterol (HDL-C) concentration; however, controversies remain about whether these genetic variants are associated with atherosclerosis. We genotyped the CETP R451Q, A373P, -629C/A, Taq1B, and -2505C/A polymorphisms in a cohort of Caucasian, Chinese, African-American, and Hispanic individuals within the Multi-Ethnic Study of Atherosclerosis. Genotypes were examined in relationship to HDL-C, CETP activity, CETP concentration, and three measures of subclinical cardiovascular disease (CVD): coronary artery calcium (CAC) measured by fast CT scanning, and carotid intimal-medial thickness (IMT) and carotid artery plaque, measured by ultrasonography. Carriers of the 451Q and 373P alleles have significantly higher CETP concentration (22.4% and 19.5%, respectively; p<0.001) and activity (13.1% and 9.4%, respectively; p<0.01) and lower HDL-C (5.6% and 6.0%, respectively; p<0.05). The minor alleles of the R451Q and A373P polymorphisms are associated with the presence of CAC, even after adjusting for CVD risk factors and HDL-C (p=0.006 and p=0.01, respectively). The R451Q polymorphism is also associated with presence of carotid artery plaque (p=0.036). Neither polymorphism is associated with common or internal carotid IMT. We confirmed that the -629A, Taq1B B2, and -2505A alleles are significantly associated with lower CETP concentration (20.8%, 25.0%, and 23.7%, respectively; p<0.001) and activity (14.8%, 19.8%, and 18.4%, respectively; p<0.001) and higher HDL-C concentration (9.7%, 11.5%, and 10.4%, respectively; p<0.01). However, we did not find any associations between these non-coding polymorphisms and subclinical CVD.
PMCID: PMC3612981  PMID: 18243217
24.  Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice. 
Journal of Clinical Investigation  1994;94(6):2457-2467.
The plasma cholesteryl ester transfer protein (CETP) mediates the exchange of HDL cholesteryl esters with triglycerides of other lipoproteins. Subsequent lipolysis of the triglyceride-enriched HDL by hepatic lipase leads to reductions of HDL size and apoA-I content. To investigate a possible modulation of the effects of CETP by apoA-II, human CETP transgenic mice were cross-bred with transgenic mice expressing human apoA-II and, in some cases, human apoA-I and apoC-III (with human-like HDL and hypertriglyceridemia). CETP expression resulted in reductions of HDL and increases in VLDL cholesteryl ester in mice expressing human apoA-II, alone or in combination with apoA-I and apoC-III, indicating that apoA-II does not inhibit the cholesteryl ester transfer activity of CETP. However, CETP expression resulted in more prominent increases in HDL triglyceride in mice expressing both apoA-II and CETP, especially in CETP/apoA-II/apoAI-CIII transgenic mice. CETP expression caused dramatic reductions in HDL size and apoA-I content in apoAI-CIII transgenic mice, but not in apoA-II/AI-CIII transgenic mice. HDL prepared from mice of various genotypes showed inhibition of emulsion-based hepatic lipase activity in proportion to the apoA-II/apoA-I ratio of HDL. The presence of human apoA-II also inhibited mouse plasma hepatic lipase activity on HDL triglyceride. Thus, apoA-II does not inhibit the lipid transfer activity of CETP in vivo. However, coexpression of apoA-II with CETP results in HDL particles that are more triglyceride enriched and resistant to reductions in size and apoA-I content, reflecting inhibition of hepatic lipase by apoA-II. The inhibition of HDL remodeling by apoA-II could explain the relatively constant levels of HDL containing both apoA-I and apoA-II in human populations.
PMCID: PMC330078  PMID: 7989603
25.  Trans-Ethnical Shift of the Risk Genotype in the CETP I405V with Longevity: A Chinese Case-Control Study and Meta-Analysis 
PLoS ONE  2013;8(8):e72537.
The I405V polymorphism of the cholesteryl ester transfer protein gene (CETP) has been suggested to be a protective factor conferring longevity in Ashkenazi Jews, although findings in other races are not supportive. This paper describes a case-control study and a meta-analysis conducted to derive a more precise estimation of the association between CETP 405V and longevity.
We enrolled 1,021 ethnic Han Chinese participants (506 in the longevity group and 515 controls), then performed a meta-analysis that integrated the current study and previously published ones. Pooled odds ratios (OR) were calculated for allele contrasts, dominant and recessive inheritance models to assess the association between CETP 405V and longevity according to the ethnic stratification.
Our case-control data indicated that CETP 405V is a longevity risk allele in all genetic models (Padditive=0.008; Pdominant=0.008, ORdominant=0.673; Precessive=0.017, ORrecessive=0.654) after adjustment for the apolipoprotein E (APOE) ε4 allele, body mass index and high-density lipoprotein cholesterol. A synergy was detected between 405V and APOE ε4 (P=0.001, OR=0.530). Eight studies were eligible for meta-analysis, which confirmed 405V is the risky allele against longevity in all genetic models: allele contrasts (OR=0.81, 95%CI=0.74-0.88), dominant model (OR=0.72, 95%CI=0.64-0.82) and recessive model (OR=0.80, 95%CI=0.67-0.96). After ethnic stratification, 405V remained a risk allele in East Asians but no significant association was found in Europeans or white Americans.
Our case-control study suggests CETP 405V as a risk allele against longevity in Chinese. The meta-analysis suggests the involvement of CETP 405V is protective in Ashkenazi Jews but is a risk allele against longevity in the East Asian (Chinese) population.
PMCID: PMC3744487  PMID: 23977315

Results 1-25 (951606)