Search tips
Search criteria

Results 1-25 (830266)

Clipboard (0)

Related Articles

1.  Association of six YFP-myosin XI-tail fusions with mobile plant cell organelles 
BMC Plant Biology  2007;7:6.
Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2), which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins.
We investigated 6 of the 13 class XI Arabidopsis myosins. cDNAs corresponding to the tail region of 6 myosin genes were generated and incorporated into a vector to encode YFP-myosin tail fusion proteins lacking the motor domain. Chimeric genes incorporating tail regions of myosin XI-5 (At MYA1), myosin XI-6 (At MYA2), myosin XI-8 (At XI-B), myosin XI-15 (At XI-I), myosin XI-16 (At XI-J) and myosin XI-17 (At XI-K) were expressed transiently. All YFP-myosin-tail fusion proteins were targeted to small organelles ranging in size from 0.5 to 3.0 μm. Despite the absence of a motor domain, the fluorescently-labeled organelles were motile in most cells. Tail cropping experiments demonstrated that the coiled-coil region was required for specific localization and shorter tail regions were inadequate for targeting. Myosin XI-6 (At MYA2), previously reported to localize to peroxisomes by immunofluorescence, labeled both peroxisomes and vesicles when expressed as a YFP-tail fusion. None of the 6 YFP-myosin tail fusions interacted with chloroplasts, and only one YFP-tail fusion appeared to sometimes co-localize with fluorescent proteins targeted to Golgi and mitochondria.
6 myosin XI tails, extending from the coiled-coil region to the C-terminus, label specific vesicles and/or organelles when transiently expressed as YFP fusions in plant cells. Although comparable constructs lacking the motor domain result in a dominant negative effect on organelle motility in animal systems, the plant organelles remained motile. YFP-myosin tail fusions provide specific labeling for vesicles of unknown composition, whose identity can be investigated in future studies.
PMCID: PMC1802837  PMID: 17288617
2.  Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control 
Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database.
Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms.
MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.
PMCID: PMC1322226  PMID: 16288662
3.  Coiled-Coil–Mediated Dimerization Is Not Required for Myosin VI to Stabilize Actin during Spermatid Individualization in Drosophila melanogaster 
Molecular Biology of the Cell  2009;20(1):358-367.
Myosin VI is a pointed-end–directed actin motor that is thought to function as both a transporter of cargoes and an anchor, capable of binding cellular components to actin for long periods. Dimerization via a predicted coiled coil was hypothesized to regulate activity and motor properties. However, the importance of the coiled-coil sequence has not been tested in vivo. We used myosin VI's well-defined role in actin stabilization during Drosophila spermatid individualization to test the importance in vivo of the predicted coiled coil. If myosin VI functions as a dimer, a forced dimer should fully rescue myosin VI loss of function defects, including actin stabilization, actin cone movement, and cytoplasmic exclusion by the cones. Conversely, a molecule lacking the coiled coil should not rescue at all. Surprisingly, neither prediction was correct, because each rescued partially and the molecule lacking the coiled coil functioned better than the forced dimer. In extracts, no cross-linking into higher molecular weight forms indicative of dimerization was observed. In addition, a sequence required for altering nucleotide kinetics to make myosin VI dimers processive is not required for myosin VI's actin stabilization function. We conclude that myosin VI does not need to dimerize via the predicted coiled coil to stabilize actin in vivo.
PMCID: PMC2613128  PMID: 19005209
4.  Coupling of Lever Arm Swing and Biased Brownian Motion in Actomyosin 
PLoS Computational Biology  2014;10(4):e1003552.
An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5–11 nm displacement due to the biased Brownian motion and the 3–5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.
Author Summary
Myosin II is a molecular motor that is fueled by ATP hydrolysis and generates mechanical force by interacting with actin filament. Comparison among various myosin structures obtained by X-ray and electron microscope analyses has led to the hypothesis that structural change of myosin in ATP hydrolysis cycle is the driving mechanism of force generation. However, single-molecule experiments have suggested an alternative mechanism in which myosin moves stochastically in a biased direction along actin filament. Computer simulation serves as a platform for assessing these hypotheses by revealing the prominent features of the dynamically changing landscape of actin-myosin interaction. The calculated results show that myosin binds to actin at different locations of actin filament in the weak- and strong-binding states and that the free energy has a global gradient from the weak-binding site to the strong-binding site. Myosin relaxing into the strong-binding state therefore necessarily shows the biased Brownian motion toward the strong-binding site. Lever-arm swing is induced during this relaxation process; therefore, lever-arm swing and the biased Brownian motion are coupled to contribute to the net displacement of myosin. This coupling should affect the dynamical behaviors of muscle and cardiac systems.
PMCID: PMC3998885  PMID: 24762409
5.  Glycine 699 is pivotal for the motor activity of skeletal muscle myosin 
The Journal of Cell Biology  1996;134(4):895-909.
Myosin couples ATP hydrolysis to the translocation of actin filaments to power many forms of cellular motility. A striking feature of the structure of the muscle myosin head domain is a 9-nm long "lever arm" that has been postulated to produce a 5-10-nm power stroke. This motion must be coupled to conformational changes around the actin and nucleotide binding sites. The linkage of these sites to the lever arm has been analyzed by site-directed mutagenesis of a conserved glycine residue (G699) found in a bend joining two helices containing the highly reactive and mobile cysteine residues, SH1 and SH2. Alanine mutagenesis of this glycine (G699A) dramatically alters the motor activity of skeletal muscle myosin, inhibiting the velocity of actin filament movement by > 100-fold. Analysis of the defect in the G699A mutant myosin is consistent with a marked slowing of the transition within the motor domain from a strong binding to a weak binding interaction with actin. This result is interpreted in terms of the role of this residue (G699) as a pivot point for motion of the lever arm. The recombinant myosin used in these experiments has been produced in a unique expression system. A shuttle vector containing a regulated muscle-specific promoter has been developed for the stable expression of recombinant myosin in C2C12 cells. The vector uses the promoter/enhancer region, the first two and the last five exons of an embryonic rat myosin gene, to regulate the expression of an embryonic chicken muscle myosin cDNA. Stable cell lines transfected with this vector express the unique genetically engineered myosin after differentiation into myotubes. The myosin assembles into myofibrils, copurifies with the endogenous myosin, and contains a complement of muscle-specific myosin light chains. The functional activity of the recombinant myosin is readily analyzed with an in vitro motility assay using a species-specific anti-S2 mAb to selectively assay the recombinant protein. This expression system has facilitated manipulation and analysis of the skeletal muscle myosin motor domain and is also amenable to a wide range of structure-function experiments addressing questions unique to the muscle-specific cytoarchitecture and myosin isoforms.
PMCID: PMC2120956  PMID: 8769415
6.  Alternative S2 hinge regions of the myosin rod differentially affect muscle function, myofibril dimensions and myosin tail length 
Journal of molecular biology  2007;367(5):1312-1329.
Muscle myosin heavy chain (MHC) rod domains intertwine to form alpha-helical coiled-coil dimers; these subsequently multimerize into thick filaments via electrostatic interactions. The subfragment 2/light meromyosin “hinge” region of the MHC rod, located in the C-terminal third of heavy meromyosin, may form a less stable coiled-coil than flanking regions. Partial “melting” of this region has been proposed to result in a helix to random-coil transition. A portion of the Drosophila melanogaster MHC hinge is encoded by mutually exclusive alternative exons 15a and 15b, the use of which correlates with fast (hinge A) or slow (hinge B) muscle physiological properties. To test the functional significance of alternative hinge regions, we constructed transgenic fly lines in which fast muscle isovariant hinge A was switched for slow muscle hinge B in the MHC isoforms of indirect flight and jump muscles. Substitution of the slow muscle hinge B impaired flight ability, increased sarcomere lengths by approximately 13% and resulted in minor disruption to indirect flight muscle sarcomeric structure compared with a transgenic control. With age, residual flight ability decreased rapidly and myofibrils developed peripheral defects. Computational analysis indicates that hinge B has a greater coiled-coil propensity and thus reduced flexibility compared to hinge A. Intriguingly, the MHC rod with hinge B was ~5 nm longer than myosin with hinge A, consistent with the more rigid coiled-coil conformation predicted for hinge B. Our study demonstrates that hinge B cannot functionally substitute for hinge A in fast muscle types, likely as a result of differences in the molecular structure of the rod, subtle changes in myofibril structure and decreased ability to maintain sarcomere structure in indirect flight muscle myofibrils. Thus alternative hinges are important in dictating the distinct functional properties of myosin isoforms and the muscles in which they are expressed.
PMCID: PMC1965590  PMID: 17316684
myosin; S2 hinge; indirect flight muscle; myofibril; Drosophila
7.  A Myo6 Mutation Destroys Coordination between the Myosin Heads, Revealing New Functions of Myosin VI in the Stereocilia of Mammalian Inner Ear Hair Cells 
PLoS Genetics  2008;4(10):e1000207.
Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or ‘gating’ in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI–impaired hair cells, and ultimately leading to deafness.
Author Summary
Human deafness is extremely heterogeneous, with mutations in over 50 genes known to be associated with this common form of sensory loss. Among them, mutations in five myosins are associated with human hereditary hearing impairment, demonstrating that this family of proteins is essential for the proper function of the inner ear. Myosins, motor proteins found in eukaryotic cells, are responsible for actin-based motility. Composed of a motor domain and a tail, the former binds filamentous actin and uses ATP hydrolysis to generate force and move along the filaments, while the latter binds to cargos in the cell. Myosin VI is unique among myosins due to its movement along actin towards the minus or pointed end, rather than the positive or barbed end. Mutations in this myosin are associated with human deafness. Much of our information regarding myosin VI comes from studies in cell culture or mouse mutants with mutations leading to deafness. Here, we describe a deaf mouse mutant, Tailchaser, with a mutation in myosin VI. Our data describe new functions for myosin VI in the hair cells of the inner ear, showing how alterations in this motor can lead to a human sensory disorder.
PMCID: PMC2543112  PMID: 18833301
8.  Structure of the S100A4/myosin-IIA complex 
S100A4, a member of the S100 family of Ca2+-binding proteins, modulates the motility of both non-transformed and cancer cells by regulating the localization and stability of cellular protrusions. Biochemical studies have demonstrated that S100A4 binds to the C-terminal end of the myosin-IIA heavy chain coiled-coil and disassembles myosin-IIA filaments; however, the mechanism by which S100A4 mediates myosin-IIA depolymerization is not well understood.
We determined the X-ray crystal structure of the S100A4Δ8C/MIIA1908-1923 peptide complex, which showed an asymmetric binding mode for the myosin-IIA peptide across the S100A4 dimer interface. This asymmetric binding mode was confirmed in NMR studies using a spin-labeled myosin-IIA peptide. In addition, our NMR data indicate that S100A4Δ8C binds the MIIA1908-1923 peptide in an orientation very similar to that observed for wild-type S100A4. Studies of complex formation using a longer, dimeric myosin-IIA construct demonstrated that S100A4 binding dissociates the two myosin-IIA polypeptide chains to form a complex composed of one S100A4 dimer and a single myosin-IIA polypeptide chain. This interaction is mediated, in part, by the instability of the region of the myosin-IIA coiled-coil encompassing the S100A4 binding site.
The structure of the S100A4/MIIA1908-1923 peptide complex has revealed the overall architecture of this assembly and the detailed atomic interactions that mediate S100A4 binding to the myosin-IIA heavy chain. These structural studies support the idea that residues 1908–1923 of the myosin-IIA heavy chain represent a core sequence for the S100A4/myosin-IIA complex. In addition, biophysical studies suggest that structural fluctuations within the myosin-IIA coiled-coil may facilitate S100A4 docking onto a single myosin-IIA polypeptide chain.
PMCID: PMC3924328  PMID: 24252706
X-ray crystallography; NMR; S100A4; Myosin-II; Cytoskeleton; Coiled-coil
9.  Multiple actin-based motor genes in Dictyostelium. 
Cell Regulation  1989;1(1):55-63.
Dictyostelium cells, devoid of conventional myosin, display a variety of motile activities, consistent with the presence of other molecular motors. The Dictyostelium genome was probed at low stringency with a gene fragment containing the conserved conventional myosin head domain sequences to identify other actin-based motors that may play a role in the observed motility of these mutant cells. One gene (abmA) has been characterized and encodes a polypeptide of approximately 135 kDa with a head region homologous to other myosin head sequences and a tail region that is not predicted to form either an alpha-helical structure of coiled-coil interactions. Comparisons of the amino acid sequences of the tail regions of abmA, Dictyostelium myosin I, and Acanthamoeba myosins IB and IL reveal an area of sequence similarity in the amino terminal half of the tail that may be a membrane-binding domain. The abmA gene, however, does not contain an unusual Gly, Pro, Ala stretch typical of many of the previously described myosin Is. Two additional genes (abmB and abmC) were identified using this approach and also found to contain sequences that encode proteins with typical conserved myosin head sequences. The abm genes may be part of a large family of actin-based motors that play various roles in diverse aspects of cellular motility.
PMCID: PMC361425  PMID: 2519618
10.  Structure of the Rigor Actin-Tropomyosin-Myosin Complex 
Cell  2012;150(2):327-338.
The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. Myosin converts the chemical energy stored in ATP into force and movement along actin filaments. Myosin binding to actin induces conformational changes that are coupled to the nucleotide-binding pocket and amplified by a specialized region of the motor domain for efficient force generation. Tropomyosin plays a key role in regulating the productive interaction between myosins and actin. Here, we report the 8 Å resolution structure of the actin-tropomyosin-myosin complex determined by cryo electron microscopy. The pseudo-atomic model of the complex obtained from fitting crystal structures into the map defines the large actin-myosin-tropomyosin interface and the molecular interactions between the proteins in detail and allows us to propose a structural model for tropomyosin dependent myosin binding to actin and actin-induced nucleotide release from myosin.
PMCID: PMC4163373  PMID: 22817895
actin; myosin; tropomyosin; cryo electron microscopy
11.  The Origin of Minus-end Directionality and Mechanochemistry of Ncd Motors 
PLoS Computational Biology  2012;8(11):e1002783.
Adaptation of molecular structure to the ligand chemistry and interaction with the cytoskeletal filament are key to understanding the mechanochemistry of molecular motors. Despite the striking structural similarity with kinesin-1, which moves towards plus-end, Ncd motors exhibit minus-end directionality on microtubules (MTs). Here, by employing a structure-based model of protein folding, we show that a simple repositioning of the neck-helix makes the dynamics of Ncd non-processive and minus-end directed as opposed to kinesin-1. Our computational model shows that Ncd in solution can have both symmetric and asymmetric conformations with disparate ADP binding affinity, also revealing that there is a strong correlation between distortion of motor head and decrease in ADP binding affinity in the asymmetric state. The nucleotide (NT) free-ADP (φ-ADP) state bound to MTs favors the symmetric conformation whose coiled-coil stalk points to the plus-end. Upon ATP binding, an enhanced flexibility near the head-neck junction region, which we have identified as the important structural element for directional motility, leads to reorienting the coiled-coil stalk towards the minus-end by stabilizing the asymmetric conformation. The minus-end directionality of the Ncd motor is a remarkable example that demonstrates how motor proteins in the kinesin superfamily diversify their functions by simply rearranging the structural elements peripheral to the catalytic motor head domain.
Author Summary
Proteins belonging to the kinesin superfamily are responsible for vesicle or organelle transport, spindle morphogenesis, and chromosome sorting during cell division. Interestingly, while most proteins in kinesin superfamily that share the common catalytic motor head domain have plus-end directionality along microtubules, kinesin-14 (Ncd) exhibits minus-end directionality. Despite the several circumstantial evidences on the determining factors for the motor directionality in the last decade, a comprehensive understanding of the mechanism governing the Ncd minus-end directionality is still missing. Our studies provide a clear explanation for this minus-end directionality and the associated mechanochemical cycle. Here, we modeled an Ncd motor by employing structural details available in the literature to simulate its conformational dynamics. Simulations using our structure-based model of Ncd assert that the dynamics due to a simple rearrangement of structural elements, peripheral to the catalytic motor domain, is the key player in determining both the directionality and mechanochemistry unique to Ncd motors. Although Ncd has a different directionality, it uses a similar strategy to kinesin-1 of structural adaptation of the catalytic motor domain. Therefore using the same physical principle of protein folding and very similar structural elements, motors in the kinesin superfamily are able to achieve a variety of biological function.
PMCID: PMC3499263  PMID: 23166486
12.  Four signature motifs define the first class of structurally related large coiled-coil proteins in plants. 
BMC Genomics  2002;3:9.
Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants.
We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms.
Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.
PMCID: PMC102765  PMID: 11972898
13.  Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin 
PLoS Biology  2011;9(4):e1001031.
Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed “strokes”; the “power stroke” is the force-generating swinging of the myosin light chain–binding “neck” domain relative to the motor domain “head” while bound to actin; the “recovery stroke” is the necessary initial motion that primes, or “cocks,” myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a “hand over hand” mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥5 kBT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va.
Author Summary
Myosin Va is a “two-legged” ATP-dependent linear molecular motor that transports cellular organelles by “stepping” along actin filaments in a processive manner analogous to human walking, the two “feet” alternating between forward and backward positions. During stepping, the lifted leg undergoes rotational Brownian movements around a free joint at the leg–leg junction. Although these movements are random, the lifted foot lands preferentially on forward sites and rarely steps backward. This directional bias arises in part from the forward movement of the junction bending the “ankle” of the attached leg. Here, we show that the lifted foot also plays a role in the direction of stepping by controlling the orientation of its actin-binding site (the “sole”), which dictates the accessibility of potential stepping positions. We observed the ATP-dependent foot orientation and its stabilizing on individual myosin Va molecules in real time under an optical microscope; we show that the lifted foot of walking myosin Va is oriented in a “toe-down” conformation so that binding to a forward site on actin is preferred largely over backward or adjacent sites. Thus, the great kinetic and energetic stability of the myosin Va lifted foot conformation contributes to unidirectional stepping along actin filaments.
PMCID: PMC3075224  PMID: 21532738
14.  Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence 
Genome Biology  2001;2(7):research0024.1-research0024.17.
Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants.
Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication.
Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.
PMCID: PMC55321  PMID: 11516337
15.  Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains 
BMC Genomics  2006;7:183.
Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks.
The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins.
The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree.
Dictyostelium contains thirteen myosins together with 6–8 MLCs (myosin light chain) to assist in a variety of actin-based processes in the cell. Although they are homologous to myosins of higher eukaryotes, the myosins of Dictyostelium should be considered with care as models for specific functions of vertebrate myosins.
PMCID: PMC1634994  PMID: 16857047
16.  Push and Pull of Tropomyosin’s Opposite Effects on Myosin Attachment to Actin. A Chimeric Tropomyosin Host-guest Study† 
Biochemistry  2010;49(51):10873-10880.
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory, and is due to tropomyosin’s statistically preferred positions on actin that sterically interfere with actin’s strong attachment site for myosin. Contrastingly, tropomyosin’s other influence is activating. It increases myosin’s overall actin affinity ~4-fold. Stoichiometric considerations cause this activating effect to equate to a ~ 47- fold effect of myosin on the actin-affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if S. cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38 residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled-coils to allow functional study. The two chimeras differed from TPM1, but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin-affinity of chimera 7, which contained muscle tropomyosin residues 228–265. On the other hand, myosin S1 increased by an order of magnitude the actin-affinity of chimera 3, which contained muscle tropomyosin residues 74–111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.
PMCID: PMC3683317  PMID: 21114337
17.  Mutating the converter-relay interface of Drosophila myosin perturbs ATPase activity, actin motility, myofibril stability and flight ability 
Journal of molecular biology  2010;398(5):625-632.
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (Vmax) by ~60% compared to wild-type myosin, but there is no change in apparent actin affinity (Km). While ATP or AMP-PNP binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence ~15% or ~8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by ~35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional “cracking” of the crystal-like array of myofilaments. Fibers from one-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in two-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In one-week-old adults, flight capability is lost. Thus altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle.
PMCID: PMC2902547  PMID: 20362584
myosin; muscle; Drosophila; ATPase; myofibril
18.  Biochemical kinetic characterization of the Acanthamoeba myosin-I ATPase 
The Journal of Cell Biology  1996;132(6):1053-1060.
Acanthamoeba myosin-IA and myosin-IB are single-headed molecular motors that may play an important role in membrane-based motility. To better define the types of motility that myosin-IA and myosin IB can support, we determined the rate constants for key steps on the myosin-I ATPase pathway using fluorescence stopped-flow, cold-chase, and rapid-quench techniques. We determined the rate constants for ATP binding, ATP hydrolysis, actomyosin-I dissociation, phosphate release, and ADP release. We also determined equilibrium constants for myosin-I binding to actin filaments, ADP binding to actomyosin-I, and ATP hydrolysis. These rate constants define an ATPase mechanism in which (a) ATP rapidly dissociates actomyosin-I, (b) the predominant steady-state intermediates are in a rapid equilibrium between actin-bound and free states, (c) phosphate release is rate limiting and regulated by heavy- chain phosphorylation, and (d) ADP release is fast. Thus, during steady- state ATP hydrolysis, myosin-I is weakly bound to the actin filament like skeletal muscle myosin-II and unlike the microtubule-based motor kinesin. Therefore, for myosin-I to support processive motility or cortical contraction, multiple myosin-I molecules must be specifically localized to a small region on a membrane or in the actin-rich cell cortex. This conclusion has important implications for the regulation of myosin-I via localization through the unique myosin-I tails. This is the first complete transient kinetic characterization of a member of the myosin superfamily, other than myosin-II, providing the opportunity to obtain insights about the evolution of all myosin isoforms.
PMCID: PMC2120754  PMID: 8601584
19.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin 
Nature  1996;380(6574):550-555.
Kinesin is the founding member of a superfamily of microtubule-based motor proteins that perform force-generating tasks such as organelle transport and chromosome segregation1,2. It has two identical ~960-amino-acid chains containing an amino-terminal globular motor domain, a central α-helical region that enables dimer formation through a coiled-coil, and a carboxy-terminal tail domain that binds light chains and possibly an organelle receptor1. The kinesin motor domain of ~340 amino acids, which can produce movement in vitro3, is much smaller than that of myosin (~850 amino acids) and dynein (1,000 amino acids), and is the smallest known molecular motor. Here, we report the crystal structure of the human kinesin motor domain with bound ADP determined to 1.8-Å resolution by X-ray crystallography. The motor consists primarily of a single α/β arrowhead-shaped domain with dimensions of 70 × 45 × 45 Å. Unexpectedly, it has a striking structural similarity to the core of the catalytic domain of the actin-based motor myosin. Although kinesin and myosin have virtually no amino-acid sequence identity, and exhibit distinct enzymatic4–6 and motile7–10 properties, our results suggest that these two classes of mechanochemical enzymes evolved from a common ancestor and share a similar force-generating strategy.
PMCID: PMC2851642  PMID: 8606779
20.  Allosteric Communication in Myosin V: From Small Conformational Changes to Large Directed Movements 
PLoS Computational Biology  2008;4(8):e1000129.
The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn–Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central β-sheet in the rigor to post-rigor transition is described.
Author Summary
Myosins are molecular motor proteins that interact with actin filaments to perform a wide range of cellular functions. They use the universal energy storage molecule adenosine triphosphate (ATP). The functional cycle involves myosin binding to actin, a “powerstroke” leading to directed movement, and myosin release in preparation for the next step. A fundamental question concerns the mechanism by which the local structural changes due to ATP binding, hydrolysis, and products release can generate the large myosin changes of conformation required for this cycle. Here, we focus on the rigor to post-rigor transition of myosin V, which results in the release of myosin from actin. Starting from the X-ray structures of the two states, we have used the optimal superposition of normal modes to determine the transition path. The path shows the allosteric mechanism by which ATP binding leads to the opening of the U50/L50 cleft, the essential step in the unbinding of myosin from actin. More generally, the new normal-mode superposition model can be useful for describing large-amplitude conformational transitions encoded in protein structures by evolution.
PMCID: PMC2497441  PMID: 18704171
21.  MHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge 
PLoS ONE  2008;3(1):e1496.
Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood.
Methodology/Principal Findings
Here we examine mechanisms controlling filament assembly of non-muscle myosin IIB heavy chain (MHC-IIB). We show that in vitro the entire C-terminus region of net positive charge, found in myosin II rods, is important for self-assembly of MHC-IIB fragments. In contrast, no particular sequences in the rod region with net negative charge were identified as important for self-assembly, yet a minimal area from this region is necessary. Proper paracrystal formation by MHC-IIB fragments requires the 196aa charge periodicity along the entire coiled-coil region. In vivo, in contrast to self-assembly in vitro, negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB.
A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB.
PMCID: PMC2204051  PMID: 18231583
22.  Myosinome: A Database of Myosins from Select Eukaryotic Genomes to Facilitate Analysis of Sequence-Structure-Function Relationships 
Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms (Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from
PMCID: PMC3503467  PMID: 23189029
myosin; Myosinome; myosin II; myosin V; myosin VI; myosin database
23.  Drosophila melanogaster Myosin-18 Represents a Highly Divergent Motor with Actin Tethering Properties* 
The Journal of Biological Chemistry  2011;286(24):21755-21766.
The gene encoding Drosophila myosin-18 is complex and can potentially yield six alternatively spliced mRNAs. One of the major features of this myosin is an N-terminal PDZ domain that is included in some of the predicted alternatively spliced products. To explore the biochemical properties of this protein, we engineered two minimal motor domain (MMD)-like constructs, one that contains the N-terminal PDZ (myosin-18 M-PDZ) domain and one that does not (myosin-18 M-ΔPDZ). These two constructs were expressed in the baculovirus/Sf9 system. The results suggest that Drosophila myosin-18 is highly divergent from most other myosins in the superfamily. Neither of the MMD constructs had an actin-activated MgATPase activity, nor did they even bind ATP. Both myosin-18 M-PDZ and M-ΔPDZ proteins bound to actin with Kd values of 2.61 and 1.04 μm, respectively, but only about 50–75% of the protein bound to actin even at high actin concentrations. Unbound proteins from these actin binding assays reiterated the 60% saturation maximum, suggesting an equilibrium between actin-binding and non-actin-binding conformations of Drosophila myosin-18 in vitro. Neither the binding affinity nor the substoichiometric binding was significantly affected by ATP. Optical trapping of single molecules in three-bead assays showed short lived interactions of the myosin-18 motors with actin filaments. Combined, these data suggest that this highly divergent motor may function as an actin tethering protein.
PMCID: PMC3122231  PMID: 21498886
Actin; ATPases; Cytoskeleton; Molecular Motors; Myosin
24.  Molecular structure of the cell-attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence-based predictions. 
Journal of Virology  1990;64(6):2990-3000.
The receptor-recognition interaction that initiates reovirus infection is mediated by the sigma 1 protein, located at the vertices of the icosahedral virion. We have applied computer-based image-averaging techniques to electron micrographs of negatively stained preparations of sigma 1 purified from virions (serotype 2 Jones). Combining these results with inferences based on the amino acid sequence has led to a molecular model in which the overall folding of the chains is described; its conformation embodies motifs, coiled-coil alpha-helices and nodular multichain elements rich in beta-sheets, previously detected in the corresponding proteins of other viruses, but with some novel variations. Sigma 1 is a filamentous lollipop-shaped molecule with an overall length of approximately 48 nm; it has a flexible "tail," approximately 40 nm long by 4 to 6 nm wide, terminating at its distal end in a globular "head," approximately 9.5 nm in diameter. The purified protein is a tetramer (4 by 50 kilodaltons) consisting of two similarly oriented dimers bonded side by side and in register. For each chain, a cluster of hydrophobic residues at its amino terminus resides at the proximal end of the tail; next, an alpha-helical domain (residues 25 to 172) participates in a two-chained coiled coil, 22 nm long, with two such coiled coils pairing laterally to form the proximal half of the tail. The remainder of the tail (residues 173 to approximately 316) is less uniform in width and is expected to be rich in beta-sheet; the interdimer bonding is evidently sustained through this portion of the molecule. Finally, the globular head consists of the carboxy-terminal domains (which contain the receptor-binding sites) folded into compact globular conformations; in appropriate side views, the head is resolved into two subunits, presumably contributed by the respective dimers. This model for how the four sigma 1 polypeptide chains are threaded in parallel through the fiber is supported by the observed match between an empirical curvature profile, which identifies the locations of relatively flexible sites along the tail, and the flexibility profile predicted on the basis of the model. Appraisal of the interactions that stabilize the coiled coils suggests that (i) the alpha-helices are individually only marginally stable, a property that may be of significance with regard to the retracted conformation in which sigma 1 is accommodated in the intact virion, and (ii) the predominant interactions between the two coiled coils are likely to involve hydrogen bonding between patches of uncharged residues.
PMCID: PMC249483  PMID: 2335824
25.  Definite Differences between In Vitro Actin-Myosin Sliding and Muscle Contraction as Revealed Using Antibodies to Myosin Head 
PLoS ONE  2014;9(6):e93272.
Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures.
PMCID: PMC4053314  PMID: 24918754

Results 1-25 (830266)