Search tips
Search criteria

Results 1-25 (1307916)

Clipboard (0)

Related Articles

1.  Characterization of T cell receptors directed against HLA-A*01 and C*07 restricted epitopes of MAGE-A3 and MAGE-A12 
The ability of T cells that have been genetically engineered to express T cell receptors (TCRs) directed against tumor antigens to mediate tumor regression has been demonstrated in several clinical trials. These TCRs have primarily targeted HLA-A*0201 restricted TCRs, as approximately 50% of Caucasians, who represent the predominant population of patients who develop melanomas, expresses this HLA class I allele. These therapies could be extended to additional patients through the use of TCRs that target epitopes that are presented by additional class I alleles that are prevalent in this population such as HLA-C*07 and HLA-A*01, which are expressed by approximately 50% and 30% of patients, respectively. Therefore, two TCRs that recognize an epitope of MAGE-A12 in the context of HLA-C*07, as well as two TCRs that recognize an epitope of MAGE-A3 in the context of HLA-A*01 were isolated from tumor reactive T cell clones and cloned in a recombinant retroviral expression vector. Comparative studies indicated that one of the two MAGE-A3 reactive TCRs and one of the two MAGE-A12 reactive TCRs were superior to the additional TCRs in conferring transduced PBMC with the capacity to recognize a broad array of antigen and MHC positive target cells. These results provide support the use of these TCRs in cancer adoptive immunotherapy trials.
PMCID: PMC3489490  PMID: 23090077
T cell receptors; cancer/germline antigens; T cell epitopes; cancer immunotherapy
2.  Structure-Based, Rational Design of T Cell Receptors 
Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157–165 cancer-testis epitope. Fifty-four percent of the designed sequence replacements exhibited improved pMHC binding as compared to the native TCR, with up to 150-fold increase in affinity, while preserving specificity. Genetically engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity, KD = ∼1 − 5 μM. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function, in line with the “half-life” model of T cell activation. Our computer-aided protein-engineering approach requires the 3D-structure of the TCR-pMHC complex of interest, which can be obtained from X-ray crystallography. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes when experimental data is not available. Since the accuracy of the models depends on the prediction of the TCR orientation over pMHC, we have complemented the approach with a simplified rigid method to predict this orientation and successfully assessed it using all non-redundant TCR-pMHC crystal structures available. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of stage IV melanoma.
PMCID: PMC3770923  PMID: 24062738
molecular modeling; protein-engineering; TCR; TCR-pMHC; immunotherapy; adoptive transfer; cancer
3.  Computational Design of the Affinity and Specificity of a Therapeutic T Cell Receptor 
PLoS Computational Biology  2014;10(2):e1003478.
T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities.
Author Summary
T cell receptors (TCRs) play a major role in immunity, recognizing peptide antigens presented by major histocompatibility complex proteins. Due to their capacity to target intracellularly produced proteins and initiate cell killing, there is significant interest developing TCR-based therapeutic strategies, particularly towards cancer. A concern with TCRs is their weak-to-moderate affinities, which limits therapeutic potential. While in vitro evolution has been used to enhance TCR affinity, with sometimes spectacular results, these techniques can reduce peptide specificity and offer little control over affinity enhancements. Here we explored the use of structure-based computational design to enhance TCR affinity, which in principle can permit control over both specificity and affinity gains. We examined a clinically relevant TCR recently used in melanoma immunotherapy, identifying and characterizing mutations which enhanced affinity with no detectable impacts on binding specificity. We solved a crystal structure of our highest affinity designed TCR in complex with antigen, which indicated high accuracy of the structural modeling during the design process, and we critically evaluated several design protocols and functions to further improve design success. These results provide valuable insights into the use of computational design for TCRs. Lastly, the enhanced affinity variants identified may be of potential clinical benefit.
PMCID: PMC3923660  PMID: 24550723
4.  Evolutionary History of the Cancer Immunity Antigen MAGE Gene Family 
PLoS ONE  2011;6(6):e20365.
The evolutionary mode of a multi-gene family can change over time, depending on the functional differentiation and local genomic environment of family members. In this study, we demonstrate such a change in the melanoma antigen (MAGE) gene family on the mammalian X chromosome. The MAGE gene family is composed of ten subfamilies that can be categorized into two types. Type I genes are of relatively recent origin, and they encode epitopes for human leukocyte antigen (HLA) in cancer cells. Type II genes are relatively ancient and some of their products are known to be involved in apoptosis or cell proliferation. The evolutionary history of the MAGE gene family can be divided into four phases. In phase I, a single-copy state of an ancestral gene and the evolutionarily conserved mode had lasted until the emergence of eutherian mammals. In phase II, eight subfamily ancestors, with the exception for MAGE-C and MAGE-D subfamilies, were formed via retrotransposition independently. This would coincide with a transposition burst of LINE elements at the eutherian radiation. However, MAGE-C was generated by gene duplication of MAGE-A. Phase III is characterized by extensive gene duplication within each subfamily and in particular the formation of palindromes in the MAGE-A subfamily, which occurred in an ancestor of the Catarrhini. Phase IV is characterized by the decay of a palindrome in most Catarrhini, with the exception of humans. Although the palindrome is truncated by frequent deletions in apes and Old World monkeys, it is retained in humans. Here, we argue that this human-specific retention stems from negative selection acting on MAGE-A genes encoding epitopes of cancer cells, which preserves their ability to bind to highly divergent HLA molecules. These findings are interpreted with consideration of the biological factors shaping recent human MAGE-A genes.
PMCID: PMC3112145  PMID: 21695252
5.  Induction of antigen-specific tumor immunity by genetic and cellular vaccines against MAGE: enhanced tumor protection by coexpression of granulocyte-macrophage colony-stimulating factor and B7-1. 
Molecular Medicine  1996;2(5):545-555.
BACKGROUND: A number of tumors express antigens that are recognized by specific cytotoxic T cells. The normal host immune responses, however, are not usually sufficient to cause tumor rejection. Using appropriate immunization strategies, tumor-specific antigens may serve as targets against which tumor-destructive immune responses can be generated. MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis. Here, we have investigated whether DNA and cellular vaccines against MAGE-1 and MAGE-3 can induce antigen-specific anti-tumor immunity and cause rejection of MAGE-expressing tumors. MATERIALS AND METHODS: Mice were immunized against MAGE-1 and MAGE-3 by subcutaneous injection of genetically modified embryonic fibroblasts or intramuscular injection of purified DNA. Mice were injected with lethal doses of B16 melanoma cells expressing the corresponding MAGE antigens or the unrelated protein SIV tat, and tumor development and survival were monitored. RESULTS: Intramuscular expression of MAGE-1 and MAGE-3 by plasmid DNA injection and subcutaneous immunization with syngeneic mouse embryonic fibroblasts transduced with recombinant retroviruses to express these antigens induced specific immunity against tumors expressing MAGE-1 and MAGE-3. Both CD4+ and CD8+ T cells were required for anti-tumor immunity. Coexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) or B7-1 significantly increased anti-tumor immunity in an antigen-specific manner and resulted in a considerable proportion of mice surviving lethal tumor challenge. CONCLUSIONS: Our results suggest that genetic and cellular vaccines against MAGE and other tumor antigens may be useful for the therapy of tumors expressing specific markers, and that GM-CSF and B7-1 are potent stimulators for the induction of antigen-specific tumor immunity.
PMCID: PMC2230202  PMID: 8898371
6.  Development of a T Cell Receptor Targeting an HLA-A*0201 Restricted Epitope from the Cancer-Testis Antigen SSX2 for Adoptive Immunotherapy of Cancer 
PLoS ONE  2014;9(3):e93321.
The clinical success of adoptive immunotherapy of cancer relies on the selection of target antigens that are highly expressed in tumor cells but absent in essential normal tissues. A group of genes that encode the cancer/testis or cancer germline antigens have been proposed as ideal targets for immunotherapy due to their high expression in multiple cancer types and their restricted expression in immunoprivileged normal tissues. In the present work we report the isolation and characterization of human T cell receptors (TCRs) with specificity for synovial sarcoma X breakpoint 2 (SSX2), a cancer/testis antigen expressed in melanoma, prostate cancer, lymphoma, multiple myeloma and pancreatic cancer, among other tumors. We isolated seven HLA-A2 restricted T cell receptors from natural T cell clones derived from tumor-infiltrated lymph nodes of two SSX2-seropositive melanoma patients, and selected four TCRs for cloning into retroviral vectors. Peripheral blood lymphocytes (PBL) transduced with three of four SSX2 TCRs showed SSX241-49 (KASEKIFYV) peptide specific reactivity, tumor cell recognition and tetramer binding. One of these, TCR-5, exhibited tetramer binding in both CD4 and CD8 cells and was selected for further studies. Antigen-specific and HLA-A*0201-restricted interferon-γ release, cell lysis and lymphocyte proliferation was observed following culture of TCR engineered human PBL with relevant tumor cell lines. Codon optimization was found to increase TCR-5 expression in transduced T cells, and this construct has been selected for development of clinical grade viral vector producing cells. The tumor-specific pattern of expression of SSX2, along with the potent and selective activity of TCR-5, makes this TCR an attractive candidate for potential TCR gene therapy to treat multiple cancer histologies.
PMCID: PMC3969312  PMID: 24681846
7.  Fusion of Hsp70 to Mage-a1 enhances the potency of vaccine-specific immune responses 
Heat shock proteins (HSPs) are capable of promoting antigen presentation of chaperoned peptides through interactions with receptors on antigen presenting cells. This property of HSPs suggests a potential function as an adjuvant-free carrier to stimulate immune responses against a covalently linked fusion partner. MAGE-A1 is a likely candidate for tumor immunotherapy due to its abundant immunogenic epitopes and strict tumor specificity. To analyze the influence of HSP70 conjugation to MAGE-A1, towards developing a novel effective vaccine against MAGE-expressing tumors, we cloned the murine counterpart of the human HSP70 and MAGE-A1 genes.
Recombinant proteins expressing Mage-a1 (aa 118–219), Hsp70, and Mage-a1-Hsp70 fusion were purified and used to immunize C57BL/6 mice. The humoral and cellular responses elicited against Mage-a1 were measured by ELISA, IFN-γ ELISPOT assay, and cytotoxicity assay.
Immunization of mice with Mage-a1-Hsp70 fusion protein elicited significantly higher Mage-a1-specific antibody titers than immunization with either Mage-a1 alone or a combination of Mage-a1 + Hsp70. The frequency of IFN-γ-producing cells and the cytotoxic T lymphocyte (CTL) activity was also elevated. Consistent with the elevated immune response, immunization with fusion protein induced potent in vivo antitumor immunity against MAGE-a1-expressing tumors.
These results indicate that the fusion of Hsp70 to Mage-a1 can enhance immune responses and anti-tumor effects against Mage-a1-expressing tumors. Fusion of HSP70 to a tumor antigen may greatly enhance the potency of protein vaccines and can potentially be applied to other cancer systems with known tumor-specific antigens. These findings provide a scientific basis for the development of a novel HSP70 and MAGE fusion protein vaccine against MAGE-expressing tumors.
PMCID: PMC4029478  PMID: 24314011
Mage-a1; Heat-shock protein 70; Protein vaccine; Humoral immunity; Cytotoxic T lymphocyte
8.  Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy 
Nine cancer patients were treated with adoptive cell therapy using autologous anti-MAGE-A3 TCR engineered T cells. Five patients experienced clinical regression of their cancers including two on-going responders. Beginning 1–2 days post-infusion, three patients (#’s 5, 7, and 8) experienced mental status changes, and two patients (5 and 8) lapsed into comas and subsequently died. Magnetic resonance imagining analysis of patients 5 and 8 demonstrated periventricular leukomalacia, and examination of their brains at autopsy revealed necrotizing leukoencephalopathy with extensive white matter defects associated with infiltration of CD3+/CD8+ T cells. Patient 7, developed Parkinson-like symptoms, which resolved over 4 weeks and fully recovered. Immunohistochemical staining of patient and normal brain samples demonstrated rare positively staining neurons with an antibody that recognizes multiple MAGE-A family members. The TCR used in this study recognized epitopes in MAGE-A3/A9/A12. Molecular assays of human brain samples using Q-RT-PCR, Nano string quantitation, and deep-sequencing indicated that MAGE -A12 was expressed in human brain (and possibly MAGE-A1, MAGE-A8, and MAGE-A9). This previously unrecognized expression of MAGE-A12 in human brain was possibly the initiating event of a TCR-mediated inflammatory response that resulted in neuronal cell destruction and raises caution for clinical applications targeting MAGE-A family members with highly active immunotherapies.
PMCID: PMC3581823  PMID: 23377668
Cancer Testes Antigen; Immunotherapy; TCR; Gene Therapy
9.  Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes 
Human melanoma cell line MZ2-MEL expresses several antigens recognized by autologous cytolytic T lymphocyte (CTL) clones. We reported previously the identification of a gene, named MAGE-1, that codes for one of these antigens named MZ2-E. We show here that antigen MZ2-D, which is present on the same tumor, is encoded by another member of the MAGE gene family named MAGE-3. Like MAGE-1, MAGE-3 is composed of three exons and the large open reading frame is entirely located in the third exon. Its sequence shows 73% identity with MAGE-1. Like MZ2-E, antigen MZ2-D is presented by HLA-A1. The antigenic peptide of MZ2-D is a nonapeptide that is encoded by the sequence of MAGE-3 that is homologous to the MAGE-1 sequence coding for the MZ2-E peptide. Competition experiments using single Ala-substituted peptides indicated that amino acid residues Asp in position 3 and Tyr in position 9 were essential for binding of the MAGE-1 peptide to HLA-A1. Gene MAGE-3 is expressed in many tumors of several types, such as melanoma, head and neck squamous cell carcinoma, lung carcinoma and breast carcinoma, but not in normal tissues except for testes. It is expressed in a larger proportion of melanoma samples than MAGE-1. MAGE-3 encoded antigens may therefore have a wide applicability for specific immunotherapy of melanoma patients.
PMCID: PMC2191409  PMID: 8113684
10.  Aberrant expression of melanoma-associated antigen-D2 serves as a prognostic indicator of hepatocellular carcinoma outcome following curative hepatectomy 
Oncology Letters  2014;9(3):1201-1206.
Hepatocellular carcinoma (HCC) is the most common cause of cancer-related mortality globally. Since the prognosis of advanced HCC patients is extremely poor, the development of novel molecular targets for diagnosis and therapy is urgently required. In the present study, the expression of the melanoma-associated antigen-D2 (MAGE-D2) gene was investigated to determine whether it affects the malignant phenotype of HCC and thus, may serve as a marker of prognosis. Therefore, the expression of MAGE-D2 mRNA and MAGE-D2 protein in nine HCC cell lines and 151 pairs of surgical tissues was analyzed. mRNA expression levels were analyzed using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry was used to compare the clinicopathological parameters of the tumors. A significant difference in the level of MAGE-D2 expression was observed between the normal liver and chronic hepatitis tissues, however, no significant differences were identified among the levels of the chronic hepatitis, cirrhosis and HCC tissues. The expression patterns of the MAGE-D2 protein were consistent with those of its mRNA. The expression levels of MAGE-D2 mRNA in 66 of 151 (44%) patients were higher in the HCC tissues compared with the corresponding non-cancerous tissues. In addition, the disease-specific survival time was significantly shorter for patients with higher levels of MAGE-D2 mRNA expression. Multivariate analysis identified increased expression of MAGE-D2 mRNA as an independent prognostic factor for disease-specific survival (hazard ratio, 2.65; 95% confidence interval, 1.43–4.98; P=0.002). However, increased expression levels of MAGE-D2 mRNA were not significantly associated with other clinicopathological parameters, including extrahepatic recurrence. These results indicated that MAGE-D2 mRNA affects tumor progression and may serve as a prognostic indicator following curative resection. In addition, MAGE-D2 may provide a target for the therapy of HCC.
PMCID: PMC4314984  PMID: 25663882
hepatocellular carcinoma; expression; prognosis; melanoma-associated antigen-D2
11.  Expression and clinical significance of cancer-testis genes in clear cell renal cell carcinoma 
Cancer-testis (CT) antigens, which are encoded by CT genes, have been recognized as a group of highly attractive targets for cancer immunotherapy. However, the expression and clinical relevance of CT genes in clear cell renal cell carcinoma (ccRCC) remains largely unknown. The present study aims to analyze the expression profile of 6 individual CT genes including MAGE-A1, MAGE-A3, MAGE-A12, cTAGE-1, cTAGE-2, and NY-ESO-1 in ccRCC and further investigate their possible correlations with clinicopathologic characteristics. The mRNA expressions of these CT genes were detected using reverse transcriptase-polymerase chain reaction (RT-PCR) in 105 ccRCC tissue samples (T1-2 in 70 samples, T3-4 in 35 samples; G1-2 in 65 samples, G3-4 in 40 samples) as well as the paired adjacent normal tissues. The most frequently expressed CT gene was MAGE-A3 (27.6%), followed by MAGE-A12 (23.8%), NY-ESO-1 (21%), MAGE-A1 (20%), cTAGE-1 (17.1%), and cTAGE-2 (14.3%). In contrast, no expression of CT genes was detected in the paired adjacent normal tissues. Furthermore, the MAGE-A3 protein expression was determined by Western blot and immunohistochemistry. MAGE-A3 protein was expressed in 21.9% ccRCC samples with a cytoplasmic staining pattern. No MAGE-A3 protein expression was found in the paired adjacent normal tissues. There was a significant correlation between MAGE-A3 expression at both mRNA (P =0.045) and protein (P = 0.03) levels with advanced stages of the disease. Taken together, CT genes may serve as promising targets of specific immunotherapy for ccRCC and particularly, MAGE-A3 may serve as a potential prognostic marker for ccRCC patients.
PMCID: PMC4129025  PMID: 25120790
Cancer-testis (CT) gene; clear cell renal cell carcinoma; immunotherapy; prognosis
12.  Disease-associated Bias in T Helper Type 1 (Th1)/Th2 CD4+ T Cell Responses Against MAGE-6 in HLA-DRB1*0401+ Patients With Renal Cell Carcinoma or Melanoma 
T helper type 1 (Th1)-type CD4+ antitumor T cell help appears critical to the induction and maintenance of antitumor cytotoxic T lymphocyte (CTL) responses in vivo. In contrast, Th2- or Th3/Tr-type CD4+ T cell responses may subvert Th1-type cell-mediated immunity, providing a microenvironment conducive to disease progression. We have recently identified helper T cell epitopes derived from the MAGE-6 gene product; a tumor-associated antigen expressed by most melanomas and renal cell carcinomas. In this study, we have assessed whether peripheral blood CD4+ T cells from human histocompatibility leukocyte antigens (HLA)-DRβ1*0401+ patients are Th1- or Th2-biased to MAGE-6 epitopes using interferon (IFN)-γ and interleukin (IL)-5 enzyme-linked immunospot assays, respectively. Strikingly, the vast majority of patients with active disease were highly-skewed toward Th2-type responses against MAGE-6–derived epitopes, regardless of their stage (stage I versus IV) of disease, but retained Th1-type responses against Epstein-Barr virus– or influenza-derived epitopes. In marked contrast, normal donors and cancer patients with no current evidence of disease tended to exhibit either mixed Th1/Th2 or strongly Th1-polarized responses to MAGE-6 peptides, respectively. CD4+ T cell secretion of IL-10 and transforming growth factor (TGF)-β1 against MAGE-6 peptides was not observed, suggesting that specific Th3/Tr-type CD4+ subsets were not common events in these patients. Our data suggest that immunotherapeutic approaches will likely have to overcome or complement systemic Th2-dominated, tumor-reactive CD4+ T cell responses to provide optimal clinical benefit.
PMCID: PMC2193999  PMID: 12208877
melanoma; renal cell carcinoma; helper T lymphocyte; MAGE-6; epitope
13.  NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability 
The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy.
PMCID: PMC3617456  PMID: 22907642
tumor immunity; human; cytotoxic T cells; T cell receptor; NY-ESO-1
14.  Expression of tumor-specific antigen MAGE, GAGE and BAGE in ovarian cancer tissues and cell lines 
BMC Cancer  2010;10:163.
To observe mRNA expression of tumor-specific antigen MAGE, BAGE and GAGE in epithelial ovarian cancer tissues and cell lines, to explore the relationship between gene expression and diagnosis, treatment and prognosis of ovarian cancer, and to evaluate the feasibility of their gene products as markers, and an immunotherapy target for ovarian cancer.
mRNA expression of MAGE-1, MAGE-3, GAGE-1/2 and BAGE were determined by reverse transcription polymerase chain reaction (RT-PCR) in 14 cases of normal ovarian tissue, 20 cases of ovarian benign tumor specimens, 41 cases of ovarian cancer specimens, and ovarian cancer cell lines SKOV3, A2780, and COC1.
MAGE, GAGE and BAGE genes were not expressed in normal ovarian tissue. In benign tumors, only the MAGE gene was expressed; the expression rate of this gene in benign tumors was 15% (3/20). In ovarian cancer tissues, MAGE-1 and MAGE-3 was highly expressed, with expression rates of 53.7% (22/41) and 36.6% (15/41), while GAGE-1/2 and BAGE had relatively low expression, with rates of 26.8% (11/41) and 14.6% (6/41). In metastatic lesions of ovarian cancer, only MAGE-1 and BAGE were expressed, with expression rates of 28.6% (2/7) and 14.3% (1/7). The positive expression rates of MAGE-1 and MAGE-3 in serous cystadenocarcinoma were significantly higher than that in other types of ovarian cancer (P < 0.05). Gene expression rate was not correlated with menopause or lymph node metastasis. Positive expression of MAGE-1 and MAGE-3 was positively correlated with tumor differentiation and the clinical stage of the ovarian cancer. In addition, the positive expression rate of BAGE was significantly higher in ovarian cancer patients with ascites (P < 0.05). The mRNA expression profiles of MAGE, GAGE and BAGE in ovarian carcinoma cell lines SKOV3, A2780 and COC1 varied, but there was at least one gene expressed in each cell line.
Tumor-specific antigen MAGE, BAGE and GAGE may play a role in the occurrence and development of ovarian cancer. These genes can be used as one of the important indicators for early diagnosis, efficacy evaluation and prognostic determination of ovarian cancer.
PMCID: PMC2868811  PMID: 20423514
15.  Melanoma Cells Present a MAGE-3 Epitope to CD4+ Cytotoxic T Cells in Association with Histocompatibility Leukocyte Antigen DR11  
In this study we used TEPITOPE, a new epitope prediction software, to identify sequence segments on the MAGE-3 protein with promiscuous binding to histocompatibility leukocyte antigen (HLA)-DR molecules. Synthetic peptides corresponding to the identified sequences were synthesized and used to propagate CD4+ T cells from the blood of a healthy donor. CD4+ T cells strongly recognized MAGE-3281–295 and, to a lesser extent, MAGE-3141–155 and MAGE-3146–160. Moreover, CD4+ T cells proliferated in the presence of recombinant MAGE-3 after processing and presentation by autologous antigen presenting cells, demonstrating that the MAGE-3 epitopes recognized are naturally processed. CD4+ T cells, mostly of the T helper 1 type, showed specific lytic activity against HLA-DR11/MAGE-3–positive melanoma cells. Cold target inhibition experiments demonstrated indeed that the CD4+ T cells recognized MAGE-3281–295 in association with HLA-DR11 on melanoma cells. This is the first evidence that a tumor-specific shared antigen forms CD4+ T cell epitopes. Furthermore, we validated the use of algorithms for the prediction of promiscuous CD4+ T cell epitopes, thus opening the possibility of wide application to other tumor-associated antigens. These results have direct implications for cancer immunotherapy in the design of peptide-based vaccines with tumor-specific CD4+ T cell epitopes.
PMCID: PMC2192952  PMID: 10049951
MAGE-3; CD4+ epitopes; melanoma; tumor vaccines; adoptive immunotherapy
16.  Identification of Two Novel HLA-A*0201-Restricted CTL Epitopes Derived from MAGE-A4 
MAGE-A antigens belong to cancer/testis (CT) antigens that are expressed in tumors but not in normal tissues except testis and placenta. MAGE-A antigens and their epitope peptides have been used in tumor immunotherapy trials. MAGE-A4 antigen is extensively expressed in various histological types of tumors, so it represents an attractive target for tumor immunotherapy. In this study, we predicted HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) epitopes of MAGE-A4, followed by peptide/HLA-A*0201 affinity and complex stability assays. Of selected four peptides (designated P1, P2, P3, and P4), P1 (MAGE-A4286-294, KVLEHVVRV) and P3 (MAGE-A4272-280, FLWGPRALA) could elicit peptide-specific CTLs both in vitro from HLA-A*0201-positive PBMCs and in HLA-A*0201/Kb transgenic mice. And the induced CTLs could lyse target cells in an HLA-A*0201-restricted fashion, demonstrating that the two peptides are HLA-A*0201-restricted CTL epitopes and could serve as targets for therapeutic antitumoral vaccination.
PMCID: PMC3042617  PMID: 21350607
17.  Evaluation of MAGE-1 and MAGE-3 as tumour-specific markers to detect blood dissemination of hepatocellular carcinoma cells 
British Journal of Cancer  2002;86(1):110-116.
The members of MAGE gene family are highly expressed in human hepatocellular carcinoma (HCC). In the present study, we tested the tumour-specific MAGE-1 and MAGE-3 transcripts in the peripheral blood of HCC patients by nested RT–PCR to detect the circulating tumour cells and evaluate their potential clinical implication. Of 30 HCC patients, the positive rate of MAGE-1 and MAGE-3 transcripts was 43.3% (13 out of 30) and 33.3% (10 out of 30) in PBMC samples, whilst the positive rate was 70% (21 out of 30) and 53.3% (16 out of 30) in the resected HCC tissue samples, respectively. The positivity for at least one MAGE gene transcript was 63.3% (19 out of 30) in PBMC samples of HCC patients and 83.3% (25 out of 30) in the resected HCC tissue samples. MAGE-1 and/or MAGE-3 mRNA were not detected in the PBMC of those patients from whom the resected HCC tissues were MAGE-1 or MAGE-3 mRNA negative, nor in the 25 PBMC samples from healthy donors. The detection of MAGE transcripts in PBMC was correlated with the advanced stages and tumour size of the HCC, being 82.4% (14 out of 17) in tumour stages III and IVa, 56.6% (five out of nine) in stage II, and null (nought out of four) in stage I. The serum α-FP in 33.3% (10 out of 30) of HCC patients was normal or slightly elevated (<40 ng ml−1). However, six of these 10 patients (α-FP <40 ng ml−1) were MAGE-1 and /or MAGE-3 mRNA positive in their PBMC. The follow-up survey of MAGE mRNA in PBMC was performed in 12 patients. Seven patients with persistent MAGE-1 and/or MAGE-3 mRNA positive or from negative turned to positive died because of metastasis and/or recurrence. In striking contrast, all four patients with MAGE-1 and/or MAGE-3 mRNA from positive turned to negative and one patient with persistent MAGE-3 transcript negative are alive after last test. Collectively, detection of MAGE transcripts with follow-up survey in PBMC is a feasible and reliable assay for the early prediction of the relapse and prognosis of the HCC patients.
British Journal of Cancer (2002) 86, 110–116. DOI: 10.1038/sj/bjc/6600016
© 2002 The Cancer Research Campaign
PMCID: PMC2746529  PMID: 11857021
circulating tumour cells; hepatocellular carcinoma; MAGE transcripts; nested polymerase chain reaction; tumour-specific marker
18.  Identification of novel helper epitopes of MAGE-A4 tumour antigen: useful tool for the propagation of Th1 cells 
British Journal of Cancer  2009;100(7):1135-1143.
MAGE-A4 has been considered as an attractive cancer-testis (CT) antigen for tumour immunotherapy. It has been well accepted that T-helper type 1 (Th1) cell-dominant immunity is critical for the successful induction of antitumour immunity in a tumour-bearing host. The adoptive Th1 cell therapy has been shown to be an attractive strategy for inducing tumour eradication in mouse systems. However, Th1-cell therapy using human tumour-specific Th1 cells, which were expanded from peripheral blood mononuclear cells (PBMCs) in a clinically useful protocol, has never been performed. Here, we first identified MAGE-A4-derived promiscuous helper epitope, peptide (MAGE-A4 280–299), bound to both HLA-DPB1*0501 and DRB1*1403. Using the peptide, we established a suitable protocol for the propagation of MAGE-A4-specific Th1 cells in vitro. Culture of CD4+ T cells with IFN-γ-treated PBMC-derived adherent cells in the presence of helper epitope peptide resulted in a great expansion of MAGE-A4-reactive Th cells producing IFN-γ , but not IL-4. Moreover, it was shown that ligation of MAGE-A4-reactive Th1 cells with the cognate peptide caused the production of IFN-γ and IL-2. Thus, our identified MAGE-A4 helper epitope peptide will become a good tool for the propagation of tumour-specific Th1 cells applicable to adoptive immunotherapy of human cancer.
PMCID: PMC2669985  PMID: 19277034
helper epitope; promiscuous peptide; tumour-specific CD4+ T cells; adoptive Th1-cell therapy
19.  In Vivo Suppression of HIV by Antigen Specific T Cells Derived from Engineered Hematopoietic Stem Cells 
PLoS Pathogens  2012;8(4):e1002649.
The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.
Author Summary
There is a desperate need for the development of new therapeutic strategies to eradicate HIV infection. HIV actively subverts the potent natural immune responses against it, particularly cellular cytotoxic T lymphocyte (CTL) responses. The development of a therapy that allows long-lived immune self-containment of HIV and restoration of these CTL responses by the host would be ideal. Through genetic manipulation of human blood-forming stem cells, we introduced a molecule– an HIV-targeting T cell receptor (TCR)–that allowed the generation of functional HIV-specific CTLs following differentiation within human tissues in a humanized mouse model. To assess if these newly developed, HIV-specific CTLs can allow active suppression of HIV replication, we infected these mice with HIV. We found that the development of genetically modified, HIV-specific CTLs in these mice results in the presence of a functional antiviral CTL response in vivo that significantly lowers viral replication following HIV infection. These results have strong implications for the use of this technology to engineer the human immune response to combat viral infections and suggest that genetic engineering via HSCs may allow tailoring of the immune response to target and eradicate HIV.
PMCID: PMC3325196  PMID: 22511873
20.  Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer 
PLoS ONE  2010;5(7):e11726.
Therapies directed at augmenting regulatory T cell (Treg) activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition.
Methodology/Principal Findings
To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR) gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff) activity as determined by tumor cell growth and luciferase reporter-based imaging.
These results support the feasibility of class I-restricted TCR transfer as a promising strategy to redirect the functional properties of Tregs and provide for a more efficacious adoptive cell therapy.
PMCID: PMC2908680  PMID: 20668510
21.  Fine Tuning of T Cell Receptor Avidity to Increase HIV Epitope Variant Recognition by Cytotoxic T Lymphocytes 
AIDS (London, England)  2010;24(17):2619-2628.
T cell receptor (TCR) gene therapy is an approach being considered for HIV-1, but epitope mutation is a significant barrier. We assessed whether HIV-specific TCR can be modified to have broader coverage of epitope variants by recombining polymorphisms between public clonotype TCR sequences.
Public clonotype TCRs recognizing the same epitope often differ by polymorphisms in their third complementarity determining (CDR3) regions. We assessed whether novel combinations of such polymorphisms could improve TCR recognition of epitope variation.
A TCR recognizing the HLA A*0201-restricted epitope SLYNTVATL (Gag 77-85, SL9) was engineered to have combinations of four polymorphisms in the CDR3 regions compared to another SL9-specific TCR. These novel TCRs were screened for functional avidities against SL9 epitope variants and abilities to mediate cytotoxic T lymphocyte suppression of HIV-1 containing the same epitope variants.
The TCRs varied modestly in functional avidities (FAs) for SL9 variants, due to alterations in affinity. This translated to differences in antiviral activities against HIV-1 when FA changes crossed the previously defined threshold required for efficient recognition of HIV-1 infected cells. Higher avidity TCR mutants had generally broader recognition of SL9 variants.
These results indicate that rationally targeted increases in FA can be utilized to maximize the antiviral breadth of transgenic TCRs. In contrast to previously reported random mutagenesis to markedly increase FA, tuning through recombining naturally occurring polymorphisms may offer a more physiologic approach that minimizes the risk of deleterious TCR reactivities.
PMCID: PMC2997528  PMID: 20881472
T-cell receptor; HIV; immune evasion; cytotoxic T-lymphocytes; gene therapy
22.  Epigenetic modulation of MAGE-A3 antigen expression in multiple myeloma following treatment with the demethylation agent 5-azacitidine and the histone deacetlyase inhibitor MGCD0103 
Cytotherapy  2010;13(5):618-628.
Background aims
Immunotherapy targeting MAGE-A3 in multiple myeloma (MM) could eradicate highly aggressive and proliferative clonal cell populations responsible for relapse. However, expression of many cancer-testis antigens, including MAGE-A3, can be heterogeneous, leading to the potential for tumor escape despite MAGE-A3-induced immunity. We hypothesized that a combination of the hypomethylating agent 5-azacitidine (5AC) and the histone deacetylase inhibitor (HDACi) MGCD0103 (MGC) could induce MAGE-A3 expression in MAGE-A3-negative MM, resulting in recognition and killing of MM cells by MAGE-A3-specific cytotoxic T lymphocytes (CTL).
Gene expression analyses of MAGE-A3 expression in primary MM patient samples at diagnosis and relapse were completed to identify populations that would benefit from MAGE-A3 immunotherapy. MM cell lines were treated with 5AC and MGC. Real-time polymerase chain reaction (PCR) and Western blotting were performed to assess MAGE-A3 RNA and protein levels, respectively. Chromium-release assays and interferon (IFN) secretion assays were employed to ascertain MAGE-A3 CTL specificity against treated targets.
Gene expression analysis revealed that MAGE-A3 is expressed in MM patients at diagnosis (25%) and at relapse (49%). We observed de novo expression of MAGE-A3 RNA and protein in MAGE-A3-negative cell lines treated with 5AC. MGC treatment alone did not induce expression but sequential 5AC/MGC treatment led to enhanced expression and augmented recognition by MAGE-A3-specific CTL, as assessed by 51Cr-release assays (P = 0.047) and enzyme-linked immunosorbent assay (ELISA) for IFN-γ secretion (P = 0.004).
MAGE-A3 is an attractive target for immunotherapy of MM and epigenetic modulation by 5AC, and MGC can induce MAGE-A3 expression and facilitate killing by MAGE-A3-specific CTL.
PMCID: PMC3633222  PMID: 21171821
5-azacitidine; cancer-testis antigen; demethylation; epigenetics; histone deactylase inhibitor; hypomethylation; MAGE-A3; MGCD0103; multiple myeloma
23.  Identification of MAGE-3 Epitopes Presented by HLA-DR Molecules to CD4+ T Lymphocytes  
MAGE-type genes are expressed by many tumors of different histological types and not by normal cells, except for male germline cells, which do not express major histocompatibility complex (MHC) molecules. Therefore, the antigens encoded by MAGE-type genes are strictly tumor specific and common to many tumors. We describe here the identification of the first MAGE-encoded epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules to CD4+ T lymphocytes. Monocyte-derived dendritic cells were loaded with a MAGE-3 recombinant protein and used to stimulate autologous CD4+ T cells. We isolated CD4+ T cell clones that recognized two different MAGE-3 epitopes, MAGE-3114–127 and MAGE-3121–134, both presented by the HLA-DR13 molecule, which is expressed in 20% of Caucasians. The second epitope is also encoded by MAGE-1, -2, and -6. Our procedure should be applicable to other proteins for the identification of new tumor-specific antigens presented by HLA class II molecules. The knowledge of such antigens will be useful for evaluation of the immune response of cancer patients immunized with proteins or with recombinant viruses carrying entire genes coding for tumor antigens. The use of antigenic peptides presented by class II in addition to peptides presented by class I may also improve the efficacy of therapeutic antitumor vaccination.
PMCID: PMC2192951  PMID: 10049940
human; invariant chain; peptide; tumor; histocompatibility leukocyte antigen class II
24.  Overexpression of MAGE-D4 in colorectal cancer is a potentially prognostic biomarker and immunotherapy target 
Melanoma-associated antigen D4 (MAGE-D4) is a novel member of MAGE family. This study aimed to examine the expression and immunogenicity of MAGE-D4 in colorectal cancer (CRC) to determine its potential as a prognosis and immunotherapeutic target. The expression of MAGE-D4 mRNA and protein was determined by RT-PCR and immunohistochemistry (IHC) in CRCs with paired adjacent non-tumor tissues, colorectal adenomas and normal colorectal tissues, respectively. Sera from 64 CRC patients were tested for MAGE-D4 antibody by ELISA. MAGE-D4 mRNA was more frequently expressed in CRCs (76.7%, 46/60) than in adjacent non-tumor tissues (15.0%, 9/60). MAGE-D4 protein was detected in all the CRC tissues tested, 70.0% of which showed high expression. There was no MAGE-D4 protein detected in any paired adjacent non-tumor tissue. No MAGE-D4 expression was found in colorectal adenomas and normal colorectal tissues by either RT-PCR or immunohistochemistry. Patients with high MAGE-D4 protein expression had significantly shorter overall survival than those with low MAGE-D4 protein expression (median, 68.6 vs 122.2 months; P=0.030). Furthermore, multivariate analysis exhibited high MAGE-D4 protein expression had a trend toward an independent prognostic factor (hazard ratio: 6.124; P=0.050). Humoral immunity to MAGE-D4 was detected in 12 of 64 (18.8%) CRC patients’ sera but not in 77 healthy donors. There was no correlation between MAGE-D4 expression, serum antibody and clinicopathological parameters. These findings suggest MAGE-D4 may serve as a potentially prognostic biomarker and an attractive target of immunotherapy in CRC.
PMCID: PMC4129003  PMID: 25120768
Melanoma-associated antigen; MAGE-D4; colorectal cancer; serum immunoreactivity
25.  Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial 
DC derived-exosomes are nanomeric vesicles harboring functional MHC/peptide complexes capable of promoting T cell immune responses and tumor rejection. Here we report the feasability and safety of the first Phase I clinical trial using autologous exosomes pulsed with MAGE 3 peptides for the immunization of stage III/IV melanoma patients. Secondary endpoints were the monitoring of T cell responses and the clinical outcome.
Patients and methods
Exosomes were purified from day 7 autologous monocyte derived-DC cultures. Fifteen patients fullfilling the inclusion criteria (stage IIIB and IV, HLA-A1+, or -B35+ and HLA-DPO4+ leukocyte phenotype, tumor expressing MAGE3 antigen) were enrolled from 2000 to 2002 and received four exosome vaccinations. Two dose levels of either MHC class II molecules (0.13 versus 0.40 × 1014 molecules) or peptides (10 versus 100 μg/ml) were tested. Evaluations were performed before and 2 weeks after immunization. A continuation treatment was performed in 4 cases of non progression.
The GMP process allowed to harvest about 5 × 1014 exosomal MHC class II molecules allowing inclusion of all 15 patients. There was no grade II toxicity and the maximal tolerated dose was not achieved. One patient exhibited a partial response according to the RECIST criteria. This HLA-B35+/A2+ patient vaccinated with A1/B35 defined CTL epitopes developed halo of depigmentation around naevi, a MART1-specific HLA-A2 restricted T cell response in the tumor bed associated with progressive loss of HLA-A2 and HLA-BC molecules on tumor cells during therapy with exosomes. In addition, one minor, two stable and one mixed responses were observed in skin and lymph node sites. MAGE3 specific CD4+ and CD8+ T cell responses could not be detected in peripheral blood.
The first exosome Phase I trial highlighted the feasibility of large scale exosome production and the safety of exosome administration.
PMCID: PMC554765  PMID: 15740633
exosomes; dendritic cells; phase I trial; cancer vaccine; immunotherapy

Results 1-25 (1307916)