Search tips
Search criteria

Results 1-25 (560868)

Clipboard (0)

Related Articles

1.  Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition 
Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).
PMCID: PMC4139845  PMID: 25019343
organosolv lignin; silver; hydroxyapatite; electrophoretic deposition; titanium; bioactivity; SBF; cytotoxicity; antimicrobial activity
2.  Evaluation of Biological Properties of Electron Beam Melted Ti6Al4V Implant with Biomimetic Coating In Vitro and In Vivo 
PLoS ONE  2012;7(12):e52049.
High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation.
In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating.
The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young’s modulus being 14.5–38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation.
This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.
PMCID: PMC3525565  PMID: 23272208
3.  Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity 
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene coating were analysed using X-ray diffraction, scanning electron microscopy, atomic force microscopy and the standard mechanical testing of the American Society for Testing and Materials, respectively. The results indicated that sphene coating was obtained with a uniform and dense microstructure at the interface of the Ti-6Al-4V surface and the thickness and surface roughness of the coating were approximately 150 and 10 μm, respectively. Plasma-sprayed sphene coating on Ti-6Al-4V possessed a significantly improved bonding strength and chemical stability compared with plasma-sprayed hydroxyapatite (HAp) coating. Plasma-sprayed sphene coating supported human osteoblast-like cell (HOB) attachment and significantly enhanced HOB proliferation and differentiation compared with plasma-sprayed HAp coating and uncoated Ti-6Al-4V. Taken together, plasma-sprayed sphene coating on Ti-6Al-4V possessed excellent bonding strength, chemical stability and cellular bioactivity, indicating its potential application for orthopaedic implants.
PMCID: PMC2658789  PMID: 18664431
plasma spraying; surface modification; sphene; osteoblasts; titanium alloy
4.  Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells 
The development of new osteoconductive bone substitute materials is expected in medicine. In this study, we attempted to produce new hydroxylapatite (HAP)/collagen (Col) composites using two HAP particles of different sizes and porcine type I collagen. The two HAP particles were either nano-sized (40 nm in average diameter; n-HAP) or had macro-pore sizes of 0.5–1.0 mm in length with fully interconnected pores (m-HAP). The aim of this study was to investigate the effects of apatite particle size in two HAP/Col composites on the osteogenic differentiation profile in osteoblast-like cells (SaOS-2). We created a collagen control sponge (Col) and two HAP/Col composite sponges (n-HAP/Col and m-HAP/Col) using freeze-drying and dehydrothermal cross-linking techniques, and then punched out samples of 6 mm in diameter and 1 mm in height. The SaOS-2 cells were cultured on three test materials for 1, 2, 3 and 4 weeks. Total RNA was extracted from the cultured cells and the expression of osteogenic differentiation-related genes was evaluated by reverse transcription PCR (RT-PCR) using primer sets of alkaline phosphatase (ALP), type 1 collagen (COL1), bone sialoprotein (BSP) and osteocalcin precursor [bone gamma-carboxyglutamate (gla) protein (BGLAP)] genes, as well as the β-actin gene. The cells were also cultured on Col, n-HAP/Col and m-HAP/Col specimens for 1 and 4 weeks, and were then observed under a scanning electron microscope (SEM). The experimental results were as follows: RT-PCR indicated that osteogenic differentiation, particularly the gene expression of BSP, was most accelerated when the cells were cultured on n-HAP/Col specimens, followed by m-HAP/Col, whilst the weakest accelaeration was observed when the cells were cultured on Col specimens. As shown by the SEM images, the SaOS-2 cells were fibroblastic when cultured on Col specimens for up to 4 weeks; they were fibroblastic when cultured on n-HAP/Col specimens for 1 week, but appeared as spheroids, while actively phagocytizing n-HAP particles at 4 weeks; however, they appeared as deformed fibroblasts when cultured on m-HAP/Col specimens, detached from the particles. Despite limited experimental results, our study suggests that n-HAP/Col may be employed as a new osteoconductive bone substitute material.
PMCID: PMC3829770  PMID: 24100550
SaOS-2 osteoblastic cells; apatite size; collagen composite; osteogenic differentiation; gene expression
5.  Surface modification for titanium implants by hydroxyapatite nanocomposite 
Background: Titanium (Ti) implants are commonly coated with hydroxyapatite (HA). However, HA has some disadvantages such as brittleness, low tensile strength and fracture toughness. It is desirable to combine the excellent mechanical properties of ZrO2 and the chemical inertness of Al2O3 with respect to the purpose of this project which was coating Ti implants with HA-ZrO2-Al2O3 to modify the surface of these implants by adding ZrO2 and Al2O3 to HA. The purpose of this study was to evaluate the efficacy of hydroxyapatite coating nonocomposite.
Methods: From September 2009 to January2011, functionally graded HA-Al2O3-ZrO2 and HA coatings were applied on Ti samples. HA-Al2O3-ZrO2 and HA sols were orderly dip coated on the substrates and calcined. Scanning electron microscopy and EDS were used to estimate the particle size of the surfaces and for morphological analysis. The morphology of non-coated HA-coated HA-Al2O3-ZrO2 (composite-coated) and double-layer composite coated samples were compared with one other. Mechanical test (heat & quench) was also done for comparing single-phase (HA), composite and double-layer composite samples.
Results: The morphology of HA-Al2O3-ZrO2 coating is more homogenous than HA-coated and uncoated samples. Furthermore, single-layer coating is more homogenous than double-layer coating. EDS analysis was done on HA-coated sample and showed that the Ca/P ratio in the film was similar to the theoretical value 1.67 in HA.
Conclusion: Surface modification of Ti implants can be done by coating them with single-layer of HA-Al2O3-ZrO2. Single-layer hydroxyapatite-alumina-zirconia coated sample has the most homogenous morphology on the surface.
PMCID: PMC3755845  PMID: 24009915
Surface modification; Ti Implants; Hydroxyapatite; Nanocomposite
6.  The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning 
Bioactive hydroxyapatite (HA) with addition of silicon (Si) in the crystal structure (silicon-doped hydroxyapatite (SiHA)) has become a highly attractive alternative to conventional HA in bone replacement owing to the significant improvement in the in vivo bioactivity and osteoconductivity. Nanometre-scaled SiHA (nanoSiHA), which closely resembles the size of bone mineral, has been synthesized in this study. Thus, the silicon addition provides an extra chemical cue to stimulate and enhance bone formation for new generation coatings, and the next stage in metallic implantation design is to further improve cellular adhesion and proliferation by control of cell alignment. Topography has been found to provide a powerful set of signals for cells and form contact guidance. Using the recently developed novel technique of template-assisted electrohydrodynamic atomization (TAEA), patterns of pillars and tracks of various dimensions of nanoSiHA were achieved. Modifying the parameters of TAEA, the resolution of pattern structures was controlled, enabling the topography of a substrate to be modified accordingly. Spray time, flow rate and distance between the needle and substrate were varied to improve the pattern formation of pillars and tracks. The 15 min deposition time provided the most consistent patterned topography with a distance of 50 mm and flow rate of 4 µl min−1. A titanium substrate was patterned with pillars and tracks of varying widths, line lengths and distances under the optimized TAEA processing condition. A fast bone-like apatite formation rate was found on nanoSiHA after immersion in simulated body fluid, thus demonstrating its high in vitro bioactivity. Primary human osteoblast (HOB) cells responded to SiHA patterns by stretching of the filopodia between track and pillar, attaching to the apex of the pillar pattern and stretching between two. HOB cells responded to the track pattern by elongating along and between the track, and the length of HOB cells was proportional to the gaps between track patterns, but this relationship was not observed on the pillar patterns. The study has therefore provided an insight for future design of next generation implant surfaces to control and guide cellular responses, while TAEA patterning provides a controllable technique to provide topography to medical implants.
PMCID: PMC3061100  PMID: 21208969
patterning; electrohydrodynamic atomization; surface topography
7.  Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite 
Metals  2014;4(4):549-569.
The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical semiconductors, stress transfer, additives with low thermal PMC processing and new coating possibilities.
PMCID: PMC4307950  PMID: 25635227
titanium; composite; bisphenol polymer; carbon fiber; osseointegration; corrosion; infection; estrogen; microbiocircuit; semiconductor
8.  Hydroxyapatite for Keratoprosthesis Biointegration 
Biointegration, one of the important problems facing keratoprostheses, was addressed by coating a model material with hydroxyapatite. The coating enhanced cell viability in vitro and biointegration ex vivo and reduced inflammation in vivo.
Integration of keratoprosthesis with the surrounding cornea is very important in preventing bacterial invasion, which may cause ocular injury. Here the authors investigated whether hydroxyapatite (HAp) coating can improve keratoprosthesis (KPro) biointegration, using polymethyl methacrylate (PMMA)—the principal component of the Boston KPro—as a model polymer.
HAp coatings were induced on PMMA discs after treatment with concentrated NaOH and coating with poly-dopamine (PDA) or polydopamine and then with 11-mercaptoundecanoic acid (11-MUA). Coatings were characterized chemically (Fourier transform infrared spectroscopy [FTIR], energy dispersive X-ray spectroscopy [EDX]) and morphologically (SEM) and were used as substrates for keratocyte growth in vitro. Cylinders of coated PMMA were implanted in porcine corneas ex vivo for 2 weeks, and the force required to pull them out was measured. The inflammatory reaction to coated discs was assessed in the rabbit cornea in vivo.
FTIR of the coatings showed absorption bands characteristic of phosphate groups, and EDX showed that the Ca/P ratios were close to those of HAp. By SEM, each method resulted in morphologically distinct HAp films; the 11-MUA group had the most uniform coating. The hydroxyapatite coatings caused comparable enhancement of keratocyte proliferation compared with unmodified PMMA surfaces. HAp coating significantly increased the force and work required to pull PMMA cylinders out of porcine corneas ex vivo. HAp coating of implants reduced the inflammatory response around the PMMA implants in vivo.
These results are encouraging for the potential of HAp-coated surfaces for use in keratoprostheses.
PMCID: PMC3183975  PMID: 21849419
9.  Preparation and Characterization of Hydroxyapatite Coating on AZ31 Mg Alloy for Implant Applications 
Magnesium alloys as biodegradable metal implants in orthopaedic research received a lot of interest in recent years. They have attractive biological properties including being essential to human metabolism, biocompatibility, and biodegradability. However, magnesium can corrode too rapidly in the high-chloride environment of the physiological system, loosing mechanical integrity before the tissue has sufficiently healed. Hydroxyapatite (HAp) coating was proposed to decrease the corrosion rate and improve the bioactivity of magnesium alloy. Apatite has been cathodically deposited on the surface of Mg alloy from solution that composed of 3 mM Ca(H2PO4)2 and 7 mM CaCl2 at various applied potentials. The growing of HAp was confirmed on the surface of the coatings after immersion in SBF solution for 7 days. The coating obtained at −1.4 V showed higher corrosion resistance with bioactive behaviors.
PMCID: PMC3600141  PMID: 23533371
10.  Hydroxyapatite coating enhances polyethylene terephthalate artificial ligament graft osseointegration in the bone tunnel 
International Orthopaedics  2010;35(10):1561-1567.
The purpose of this study was to investigate whether hydroxyapatite (HAp) coating could induce polyethylene terephthalate (PET) artificial ligament graft osseointegration in the bone tunnel. Twenty-four New Zealand white rabbits underwent artificial ligament graft transplantation in bilateral proximal tibia tunnels. One limb was implanted with HAp-coated PET graft, and the contralateral limb was implanted with non-HAp-coated PET graft as control. The rabbits were randomly sacrificed at four and eight weeks after surgery. The loads to failure of the experimental group at eight weeks were significantly higher than those of the control group (p = 0.0057). Histologically, application of HAp coating induced new bone formation between graft and bone at eight weeks compared with the controls. Real-time polymerase chain reaction examination revealed significantly elevated messenger ribonucleic acid expression levels of osteopontin and collagen I in the grafts of the HAp group compared with the controls at four weeks (p < 0.05). The study has shown that HAp coating on the PET artificial ligament surface has a positive effect in the induction of artificial ligament osseointegration within the bone tunnel.
PMCID: PMC3174296  PMID: 21110021
11.  In Vitro Mineralization by Preosteoblasts in Poly(D, L-lactide-co-glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles 
Inverse opal scaffolds made of poly(D, L-lactide-co-glycolide) (PLGA) and hydroxyapatite (HAp) were fabricated using cubic-closed packed (ccp) lattices of uniform gelatin microspheres as templates and evaluated for bone tissue engineering. The scaffolds exhibited a uniform pore size (213 ± 4.4 μm), a porosity of ∼75%, and an excellent connectivity in three dimensions. Three different formulations were examined: pure PLGA, HAp-impregnated PLGA (PLGA/HAp), and apatite (Ap)-coated PLGA/HAp. After seeding with preosteoblasts (MC3T3-E1), the samples were cultured for different periods of time and then characterized by X-ray microcomputed tomography (micro-CT) and scanning electron microscopy to evaluate osteoinductivity in terms of the amount and spatial distribution of mineral secreted from the differentiated preosteoblasts. Our results indicate that preosteoblasts cultured in the Ap-coated PLGA/HAp scaffolds secreted the largest amount of mineral, which was also homogeneously distributed throughout the scaffolds. In contrast, the cells in the pure PLGA scaffolds secreted very little mineral, which was mainly deposited around the perimeter of the scaffolds. These results suggest that the uniform pore structure and favorable surface properties could facilitate the uniform secretion of extracellular matrix from cells throughout the scaffold. The Ap-coated PLGA/HAp scaffold with uniform pore structure could be a promising material for bone tissue engineering.
PMCID: PMC2912416  PMID: 20450216
hydroxyapatite; preosteoblasts; osteoinductivity; X-ray microcomputed tomography (micro-CT)
12.  Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol 
Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA).
Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.
PMCID: PMC4220561  PMID: 25382938
Multifunctional nano materials; Cholecalciferol; HAp; PLGA; Osteogenesis
13.  Titanium-Enriched Hydroxyapatite–Gelatin Scaffolds with Osteogenically Differentiated Progenitor Cell Aggregates for Calvaria Bone Regeneration 
Tissue Engineering. Part A  2013;19(15-16):1803-1816.
Adequate bony support is the key to re-establish both function and esthetics in the craniofacial region. Autologous bone grafting has been the gold standard for regeneration of problematic large bone defects. However, poor graft availability and donor-site complications have led to alternative bone tissue-engineering approaches combining osteoinductive biomaterials and three-dimensional cell aggregates in scaffolds or constructs. The goal of the present study was to generate novel cell aggregate-loaded macroporous scaffolds combining the osteoinductive properties of titanium dioxide (TiO2) with hydroxyapatite–gelatin nanocomposites (HAP-GEL) for regeneration of craniofacial defects. Here we investigated the in vivo applicability of macroporous (TiO2)-enriched HAP-GEL scaffolds with undifferentiated and osteogenically differentiated multipotent adult progenitor cell (MAPC and OD-MAPC, respectively) aggregates for calvaria bone regeneration. The silane-coated HAP-GEL with and without TiO2 additives were polymerized and molded to produce macroporous scaffolds. Aggregates of the rat MAPC were precultured, loaded into each scaffold, and implanted to rat calvaria critical-size defects to study bone regeneration. Bone autografts were used as positive controls and a poly(lactic-co-glycolic acid) (PLGA) scaffold for comparison purposes. Preimplanted scaffolds and calvaria bone from pig were tested for ultimate compressive strength with an Instron 4411® and for porosity with microcomputerized tomography (μCT). Osteointegration and newly formed bone (NFB) were assessed by μCT and nondecalcified histology, and quantified by calcium fluorescence labeling. Results showed that the macroporous TiO2-HAP-GEL scaffold had a comparable strength relative to the natural calvaria bone (13.8±4.5 MPa and 24.5±8.3 MPa, respectively). Porosity was 1.52±0.8 mm and 0.64±0.4 mm for TiO2-HAP-GEL and calvaria bone, respectively. At 8 and 12 weeks postimplantation into rat calvaria defects, greater osteointegration and NFB were significantly present in the TiO2-enriched HAP-GEL constructs with OD-MAPCs, compared to the undifferentiated MAPC-loaded constructs, cell-free HAP-GEL with and without titanium, and PLGA scaffolds. The tissue-engineered TiO2-enriched HAP-GEL constructs with OD-MAPC aggregates present a potential useful therapeutic approach for calvaria bone regeneration.
PMCID: PMC3700087  PMID: 23495972
14.  Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants 
The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the immediate microenvironment surrounding the implant.
PMCID: PMC3284227  PMID: 22359461
osseointegration; dental and orthopedic implant; nanotechnology; bone–implant integration; HA; calcium phosphate
15.  Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates 
In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO2 coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings on Ti substrates might be a promising material for bone replacement.
PMCID: PMC3344277  PMID: 22606041
hydroxyapatite; carbon nanotubes; titania; anodization; sol-gel process
16.  Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy 
Biomolecules & Therapeutics  2014;22(6):563-569.
Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (μCT) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with μCT and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.
PMCID: PMC4256038  PMID: 25489426
Dental implants; Osseointegration; Titanium alloy; Ibandronate; Nanotubes
17.  In vivo behaviour of low-temperature calcium-deficient hydroxyapatite: comparison with deproteinised bovine bone 
International Orthopaedics  2010;35(10):1553-1560.
This study aims to evaluate in detail the biological osteoconductive properties of the low-temperature synthetic porous calcium-deficient hydroxyapatite and to compare it with the biological apatite. Bone reactions to granules of similar sizes of the low-temperature hydroxyapatite and commercially available non-sintered deproteinized bovine bone were compared. Two different temperatures were used to fabricate two batches of newly developed porous hydroxyapatite with different carbonate groups content and specific surface area. The histological analysis of specimens with histomorphometry was performed at different time after in vivo implantation. Based on histological analysis, the level of bone formation in the spaces between the implanted granules and through the interconnected pores of all implanted materials within a cortical region (bone area ingrowth 72–85 %) was several-fold higher than within a cancellous bone site (bone area ingrowth 16–28 %) at three and six months after implantation. Within the cancellous bone site, bone coverage of the implanted material at six months was significantly higher in hydroxyapatite material fabricated using low-temperature synthesis and subsequent processing at 150°C than in hydroxyapatite scaffold developed using low-temperature synthesis with subsequent processing at 700°C or deproteinized bovine bone. According to our study, the bioactive properties of the low-temperature calcium-deficient hydroxyapatite are comparable with the biological apatite. The favourable influence of a high specific surface area of a low-temperature calcium-deficient hydroxyapatite on in vivo bone formation was emphasized.
PMCID: PMC3174292  PMID: 20721552
18.  Surface modification of implants in long bone 
Biomatter  2012;2(3):149-157.
Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.
PMCID: PMC3549868  PMID: 23507866
RGD peptide; bone healing; chondroitin sulfate; collagen type I; hyaluronic acid; hydroxyapatite; implants; titanium
19.  Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An In Vivo Study in Rabbit Femur 
This study aimed at investigating if a coating of hydroxyapatite nanocrystals would enhance bone healing over time in trabecular bone. Sandblasted and acid etched titanium implants with and without a submicron thick coat of hydroxyapatite nanocrystals (nano-HA) were implanted in rabbit femur with healing times of 2, 4, and 9 weeks. Removal torque analyses and histological evaluations were performed. The torque analysis did not show any significant differences between the implants at any healing time. The control implant showed a tendency of more newly formed bone after 4 weeks of healing and significantly higher bone area values after 9 weeks of healing. According to the results from this present study, both control and nano-HA surfaces were biocompatible and osteoconductive. A submicron thick coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing, as compared to blasted and etched control implants when placed in trabecular bone.
PMCID: PMC3958713  PMID: 24723952
20.  Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite 
Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon–bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon–bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo.
HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others.
The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and eosin staining showed that new bone tissue formation was only found in the PET+SF+HAP group 8 weeks postoperatively. Masson staining showed that in the PET+SF+HAP group 8 weeks postoperatively, the PET fibers were almost completely encircled by collagen. Histomorphometric analysis showed that the width of the graft–bone interface in the PET+SF+HAP group was narrower than that in the other two groups 4 and 8 weeks postoperatively. The mRNA level of BMP-7 in the PET+SF+HAP groups was significantly higher than those in the other two groups 4 and 8 weeks postoperatively.
The study showed that the combined SF and HAP coating by biomimetic route on the surface of PET artificial ligament could induce graft osseointegration in the bone tunnel, providing theoretical and experimental foundation for manufacturing novel artificial ligaments meeting the clinical needs.
PMCID: PMC4189703  PMID: 25302023
biomineralization; tendon–bone healing; ligament reconstruction
21.  Nanometer-thin TiO2 enhances skeletal muscle cell phenotype and behavior 
The independent role of the surface chemistry of titanium in determining its biological properties is yet to be determined. Although titanium implants are often in contact with muscle tissue, the interaction of muscle cells with titanium is largely unknown. This study tested the hypotheses that the surface chemistry of clinically established microroughened titanium surfaces could be controllably varied by coating with a minimally thin layer of TiO2 (ideally pico-to-nanometer in thickness) without altering the existing topographical and roughness features, and that the change in superficial chemistry of titanium is effective in improving the biological properties of titanium.
Methods and results
Acid-etched microroughened titanium surfaces were coated with TiO2 using slow-rate sputter deposition of molten TiO2 nanoparticles. A TiO2 coating of 300 pm to 6.3 nm increased the surface oxygen on the titanium substrates in a controllable manner, but did not alter the existing microscale architecture and roughness of the substrates. Cells derived from rat skeletal muscles showed increased attachment, spread, adhesion strength, proliferation, gene expression, and collagen production at the initial and early stage of culture on 6.3 nm thick TiO2-coated microroughened titanium surfaces compared with uncoated titanium surfaces.
Using an exemplary slow-rate sputter deposition technique of molten TiO2 nanoparticles, this study demonstrated that titanium substrates, even with microscale roughness, can be sufficiently chemically modified to enhance their biological properties without altering the existing microscale morphology. The controllable and exclusive chemical modification technique presented in this study may open a new avenue for surface modifications of titanium-based biomaterials for better cell and tissue affinity and reaction.
PMCID: PMC3215160  PMID: 22114483
nanotechnology; orthopedic implants; molten TiO2 nanoparticles; surface chemistry
22.  Comparative in vitro study regarding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate 
The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol–gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation.
The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8–9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants.
The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.
PMCID: PMC4077223  PMID: 24987458
Implants; Porous titanium; Hydroxyapatite; Silicatitanate; Osteoblasts; Cell adhesion; Differentiation; Mineralization
23.  Bone Regeneration in Odontostomatology 
Maxillary edentulism, together with periodontal disease, is the condition that most frequently induces disruption of alveolar bone tissue. Indeed, the stimulus of the periodontal ligament is lost and the local bone tissue becomes subject to resorption processes that, in the six months following the loss of the tooth, result in alveolar defects or more extensive maxillary atrophy. In both cases, loss of vestibular cortical bone is followed by reduction in the vertical dimension of the alveolar process, producing effects that upset the morphology of the three-dimensional relations between the dental arches. Maintenance, or restoration, of sufficient bone volume to withstand prosthetic loading and the insertion of an endosseous implant, demands the implementation of operating protocols that bring about bone regeneration in the defect sites. Given the biological principles involved, this requires the implementation of osteogenesis, osteoinduction and osteoconduction protocols.
Osteogenesis is the synthesis of new bone by autologous cells that remain viable, given the capacity of the grafted material to become part of the newly forming bone tissue; osteoinduction is based on the capacity of the grafted material to induce the migration, proliferation and phenotypic conversion, into bone-producing cells, of multipotent undifferentiated cells derived from connective tissue or bone marrow; osteoconduction, meanwhile, provides three-dimensional support and guidance to osteoblast precursors within the defect. The operating procedures implemented take into account the size and morphology of the defect, for the restoration of which guided repair or an out-and-out regenerative protocol may be sufficient. Guided repair exploits the principle of resorption/replacement of the biomaterial with newly-formed bone and consists of restoring the lost bone tissue through the implantation of different, osteointegrative biomaterials. This type of repair requires the application of biocompatible osteoconductors which will gradually be absorbed and replaced by newly formed tissue. Instead, the clinical-surgical basis of bone regeneration is: guided bone regeneration (GBR), the use of growth factors and the application of grafts/osteointegrative materials. GBR, through the use of membranes (resorbable or non-resorbable) allows the filling of a defect, “guiding” the growth only of the osteogenic lines and preventing the invasion of non-osteogenic tissues that compete with the bone. This objective is achieved also thanks to the capacity of the membranes to serve as a filter, thereby strengthening the osteocompetent lines and, at the same time, keeping epithelial cells away. The clinical use of GBR, partly on account of its predictable results, is now very widespread. The growth factors used in bone regeneration are glycoproteins which exert autocrine and paracrine effects on the primordial cells in the site. One of these factors, plasma-rich protein (PRP), is an autologous source of growth factors; obtained by separating and concentrating the platelets in a small volume of plasma, it is immediately utilisable in the surgical site. As regards the osteointegrative materials we can distinguish between autologous, homologous, heterologous, and alloplastic grafts. Of these, autologous bone is the gold standard as it has osteogenic, osteoinductive, and osteoconductive properties and, being fresh, keeps osteoblasts viable. Depending on the size of the defect to be treated, harvesting is from endoral or extraoral sites (calvaria, iliac crest, tibia). The harvested material conserves the embryological characteristics of the site of origin: this principle is reflected in the bone density that develops in the regenerated site. Homologous bone supplied by tissue banks in various formulations is an osteoconductive and partially osteoinductive material that guarantees good mechanical properties even in large defects. Heterologous bone of bovine or equine origin is a carbonate-rich non-stoichiometric apatite. Despite showing low resorption, it does not withstand traction or masticatory loading. Alloplastic materials are osteoconductive materials showing different degrees of resorption; they have biomechanical properties and the speed of their resorption varies, depending on their chemical and stoichiometric formulation. The purpose of bone regeneration thus obtained is to allow the insertion of a titanium implant in the site of the regeneration. This alloplastic implant, whose rough and porous surface allows integration with the bone tissue, will support the prosthesis subsequently applied.
PMCID: PMC3213819
24.  Blue-Violet Laser Modification of Titania Treated Titanium: Antibacterial and Osteo-Inductive Effects 
PLoS ONE  2013;8(12):e84327.
Many studies on surface modifications of titanium have been performed in an attempt to accelerate osseointegration. Recently, anatase titanium dioxide has been found to act as a photocatalyst that expresses antibiotic properties and exhibits hydrophilicity after ultraviolet exposure. A blue-violet semiconductor laser (BV-LD) has been developed as near-ultraviolet light. The purpose of this study was to investigate the effects of exposure to this BV-LD on surface modifications of titanium with the goal of enhancing osteoconductive and antibacterial properties.
The surfaces of pure commercial titanium were polished with #800 waterproof polishing papers and were treated with anatase titania solution. Specimens were exposed using BV-LD (λ = 405 nm) or an ultraviolet light-emitting diode (UV-LED, λ = 365 nm) at 6 mW/cm2 for 3 h. The surface modification was evaluated physically and biologically using the following parameters or tests: surface roughness, surface temperature during exposure, X-ray diffraction (XRD) analysis, contact angle, methylene blue degradation tests, adherence of Porphyromonas gingivalis, osteoblast and fibroblast proliferation, and histological examination after implantation in rats.
No significant changes were found in the surface roughness or XRD profiles after exposure. BV-LD exposure did not raise the surface temperature of titanium. The contact angle was significantly decreased, and methylene blue was significantly degraded. The number of attached P. gingivalis organisms was significantly reduced after BV-LD exposure compared to that in the no exposure group. New bone was observed around exposed specimens in the histological evaluation, and both the bone-to-specimen contact ratio and the new bone area increased significantly in exposed groups.
This study suggested that exposure of titanium to BV-LD can enhance the osteoconductivity of the titanium surface and induce antibacterial properties, similar to the properties observed following exposure to UV-LED.
PMCID: PMC3866166  PMID: 24358355
25.  BMP-2 gene-fibronectin-apatite composite layer enhances bone formation 
Safe and efficient gene transfer systems are needed for tissue engineering. We have developed an apatite composite layer including the bone morphogenetic protein-2 (BMP-2) gene and fibronectin (FB), and we evaluated its ability to induce bone formation.
An apatite composite layer was evaluated to determine the efficiency of gene transfer to cells cultured on it. Cells were cultured on a composite layer including the BMP-2 gene and FB, and BMP-2 gene expression, BMP-2 protein concentrations, alkaline phosphatase (ALP) activity, and osteocalcin (OC) concentrations were measured. A bone defect on the cranium of rats was treated with hydroxyapatite (HAP)-coated ceramic buttons with the apatite composite layer including the BMP-2 gene and FB (HAP-BMP-FB). The tissue concentration of BMP-2, bone formation, and the expression levels of the BMP-2, ALP, and OC genes were all quantified.
The apatite composite layer provided more efficient gene transfer for the cultured cells than an apatite composite layer without FB. The BMP-2 concentration was approximately 100~600 pg/mL in the cell-culture medium. Culturing the cells on the apatite composite layer for 27 days increased ALP activity and OC concentrations. In animal experiments, the tissue concentrations of BMP-2 were over 100 pg/mg in the HAP-BMP-FB group and approximately 50 pg/mg in the control groups. Eight weeks later, bone formation was more enhanced in the HAP-BMP-FB group than in the control groups. In the tissues surrounding the HAP button, the gene expression levels of ALP and OC increased.
The BMP-2 gene-FB-apatite composite layer might be useful for bone engineering.
PMCID: PMC3175450  PMID: 21859498
bone engineering; BMP-2 gene-fibronectin-apatite composite layer; BMP-2 gene therapy; non-viral gene transfer.

Results 1-25 (560868)