PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (692240)

Clipboard (0)
None

Related Articles

1.  Using genetic diversity information to establish core collections of Stylosanthes capitata and Stylosanthes macrocephala 
Genetics and Molecular Biology  2012;35(4):847-861.
Stylosanthes species are important forage legumes in tropical and subtropical areas. S. macrocephala and S. capitata germplasm collections that consist of 134 and 192 accessions, respectively, are maintained at the Brazilian Agricultural Research Corporation Cerrados (Embrapa-Cerrados). Polymorphic microsatellite markers were used to assess genetic diversity and population structure with the aim to assemble a core collection. The mean values of HO and HE for S. macrocephala were 0.08 and 0.36, respectively, whereas the means for S. capitata were 0.48 and 0.50, respectively. Roger’s genetic distance varied from 0 to 0.83 for S. macrocephala and from 0 to 0.85 for S. capitata. Analysis with STRUCTURE software distinguished five groups among the S. macrocephala accessions and four groups among those of S. capitata. Nei’s genetic diversity was 27% in S. macrocephala and 11% in S. capitata. Core collections were assembled for both species. For S. macrocephala, all of the allelic diversity was represented by 23 accessions, whereas only 13 accessions were necessary to represent all allelic diversity for S. capitata. The data presented herein evidence the population structure present in the Embrapa-Cerrados germplasm collections of S. macrocephala and S. capitata, which may be useful for breeding programs and germplasm conservation.
doi:10.1590/S1415-47572012005000076
PMCID: PMC3526094  PMID: 23271947
Stylosanthes; tropical forage; microsatellites; genetic diversity; core collection
2.  High-throughput transcriptome sequencing and preliminary functional analysis in four Neotropical tree species 
BMC Genomics  2014;15:238.
Background
The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources.
Results
In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs.
Conclusion
The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species.
doi:10.1186/1471-2164-15-238
PMCID: PMC3986928  PMID: 24673733
454-Pyrosequencing; Tropical rainforest tree species; Polymorphism discovery
3.  Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L) 
PLoS ONE  2008;3(10):e3311.
Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study.
doi:10.1371/journal.pone.0003311
PMCID: PMC2551746  PMID: 18827930
4.  Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus 
BMC Genetics  2013;14:50.
Background
Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification.
Results
Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups. In more accurate analyses of P. notatum accessions, the genetic variation that was evaluated used thirty simple sequence repeat (SSR) loci and revealed seven distinct genetic groups and a correspondence of these groups to the three botanical varieties of the species (P. notatum var. notatum, P. notatum var. saurae and P. notatum var. latiflorum).
Conclusions
The molecular genetic approach employed in this study was able to distinguish many of the different taxa examined, except for species that belong to the Plicatula group, which has historically been recognized as a highly complex group. Our molecular genetic approach represents a valuable tool for species identification in the initial assessment of germplasm as well as for characterization, conservation and successful species hybridization.
doi:10.1186/1471-2156-14-50
PMCID: PMC3682885  PMID: 23759066
Cross-species amplification; Genetic diversity; Germplasm evaluation; Microsatellite markers; Paspalum botanical varieties
5.  European Phaseolus coccineus L. landraces: Population Structure and Adaptation, as Revealed by cpSSRs and Phenotypic Analyses 
PLoS ONE  2013;8(2):e57337.
Relatively few studies have extensively analysed the genetic diversity of the runner bean through molecular markers. Here, we used six chloroplast microsatellites (cpSSRs) to investigate the cytoplasmic diversity of 331 European domesticated accessions of the scarlet runner bean (Phaseolus coccineus L.), including the botanical varieties albiflorus, bicolor and coccineus, and a sample of 49 domesticated and wild accessions from Mesoamerica. We further explored the pattern of diversity of the European landraces using 12 phenotypic traits on 262 individuals. For 158 European accessions, we studied the relationships between cpSSR polymorphisms and phenotypic traits. Additionally, to gain insights into the role of gene flow and migration, for a subset of 115 accessions, we compared and contrasted the results obtained by cpSSRs and phenotypic traits with those obtained in a previous study with 12 nuclear microsatellites (nuSSRs). Our results suggest that both demographic and selective factors have roles in the shaping of the population genetic structure of the European runner bean. In particular, we infer the existence of a moderate-to-strong cytoplasmic bottleneck that followed the expansion of the crop into Europe, and we deduce multiple domestication events for this species. We also observe an adaptive population differentiation in the phenology across a latitudinal gradient, which suggests that selection led to the diversification of the runner bean in Europe. The botanical varieties albiflorus, bicolor and coccineus, which are based solely on flower colour, cannot be distinguished based on these cpSSRs and nuSSRs, nor according to the 12 quantitative traits.
doi:10.1371/journal.pone.0057337
PMCID: PMC3579852  PMID: 23451209
6.  Initial sequence characterization of the rhabdoviruses of squamate reptiles, including a novel rhabdovirus from a caiman lizard (Dracaena guianensis) 
Veterinary Microbiology  2012;158(3-4):274-279.
Rhabdoviruses infect a variety of hosts, including non-avian reptiles. Consensus PCR techniques were used to obtain partial RNA-dependent RNA polymerase gene sequence from five rhabdoviruses of South American lizards; Marco, Chaco, Timbo, Sena Madureira, and a rhabdovirus from a caiman lizard (Dracaena guianensis). The caiman lizard rhabdovirus formed inclusions in erythrocytes, which may be a route for infecting hematophagous insects. This is the first information on behavior of a rhabdovirus in squamates. We also obtained sequence from two rhabdoviruses of Australian lizards, confirming previous Charleville virus sequence and finding that, unlike a previous sequence report but in agreement with serologic reports, Almpiwar virus is clearly distinct from Charleville virus. Bayesian and maximum likelihood phylogenetic analysis revealed that most known rhabdoviruses of squamates cluster in the Almpiwar subgroup. The exception is Marco virus, which is found in the Hart Park group.
doi:10.1016/j.vetmic.2012.02.020
PMCID: PMC3371314  PMID: 22397930
Rhabdoviridae; phylogeny; Dracaena guianensis; Marco virus; Chaco virus; Timbo virus; Sena Madureira virus
7.  Pollen and seed flow patterns of Carapa guianensis Aublet. (Meliaceae) in two types of Amazonian forest 
Genetics and Molecular Biology  2012;35(4):818-826.
Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height ≥ 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 ± 106 m in terra firme and 175 ± 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 ± 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 ± 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.
doi:10.1590/S1415-47572012005000068
PMCID: PMC3526091  PMID: 23271944
gene flow; parentage analysis; scatterhoarding; seed dispersal; spatial genetic structure
8.  Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of Mediterranean olive genetic resources 
Genetica  2011;139(9):1083-1094.
The conservation of cultivated plants in ex-situ collections is essential for the optimal management and use of their genetic resources. For the olive tree, two world germplasm banks (OWGB) are presently established, in Córdoba (Spain) and Marrakech (Morocco). This latter was recently founded and includes 561 accessions from 14 Mediterranean countries. Using 12 nuclear microsatellites (SSRs) and three chloroplast DNA markers, this collection was characterised to examine the structure of the genetic diversity and propose a set of olive accessions encompassing the whole Mediterranean allelic diversity range. We identified 505 SSR profiles based on a total of 210 alleles. Based on these markers, the genetic diversity was similar to that of cultivars and wild olives which were previously characterised in another study indicating that OWGB Marrakech is representative of Mediterranean olive germplasm. Using a model-based Bayesian clustering method and principal components analysis, this OWGB was structured into three main gene pools corresponding to eastern, central and western parts of the Mediterranean Basin. We proposed 10 cores of 67 accessions capturing all detected alleles and 10 cores of 58 accessions capturing the 186 alleles observed more than once. In each of the 10 cores, a set of 40 accessions was identical, whereas the remaining accessions were different, indicating the need to include complementary criteria such as phenotypic adaptive and agronomic traits. Our study generated a molecular database for the entire OWGB Marrakech that may be used to optimise a strategy for the management of olive genetic resources and their use for subsequent genetic and genomic olive breeding.
Electronic supplementary material
The online version of this article (doi:10.1007/s10709-011-9608-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s10709-011-9608-7
PMCID: PMC3247671  PMID: 21960415
Olea europaea; SSR characterisation; Chloroplast DNA markers; Model-based Bayesian clustering; Allelic diversity capture
9.  Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers 
Genetics and Molecular Biology  2010;33(2):308-318.
Genetic diversity of 60 Hevea genotypes, consisting of Asiatic, Amazonian, African and IAC clones, and pertaining to the genetic breeding program of the Agronomic Institute (IAC), Brazil, was estimated. Analyses were based on phenotypic multivariate parameters and microsatellites. Five agronomic descriptors were employed in multivariate procedures, such as Standard Euclidian Distance, Tocher clustering and principal component analysis. Genetic variability among the genotypes was estimated with 68 selected polymorphic SSRs, by way of Modified Rogers Genetic Distance and UPGMA clustering. Structure software in a Bayesian approach was used in discriminating among groups. Genetic diversity was estimated through Nei's statistics. The genotypes were clustered into 12 groups according to the Tocher method, while the molecular analysis identified six groups. In the phenotypic and microsatellite analyses, the Amazonian and IAC genotypes were distributed in several groups, whereas the Asiatic were in only a few. Observed heterozygosity ranged from 0.05 to 0.96. Both high total diversity (HT' = 0.58) and high gene differentiation (G st' = 0.61) were observed, and indicated high genetic variation among the 60 genotypes, which may be useful for breeding programs. The analyzed agronomic parameters and SSRs markers were effective in assessing genetic diversity among Hevea genotypes, besides proving to be useful for characterizing genetic variability.
doi:10.1590/S1415-47572010005000039
PMCID: PMC3036869  PMID: 21637487
genealogy; genetic diversity; Hevea brasiliensis; multivariate analysis; SSRs
10.  Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections 
Breeding Science  2012;61(5):566-592.
Genetic variation and population structure among 1603 soybean accessions, consisted of 832 Japanese landraces, 109 old and 57 recent Japanese varieties, 341 landrace from 16 Asian countries and 264 wild soybean accessions, were characterized using 191 SNP markers. Although gene diversity of Japanese soybean germplasm was slight lower than that of exotic soybean germplasm, population differentiation and clustering analyses indicated clear genetic differentiation among Japanese cultivated soybeans, exotic cultivated soybeans and wild soybeans. Nine hundred ninety eight Japanese accessions were separated to a certain extent into groups corresponding to their agro-morphologic characteristics such as photosensitivity and seed characteristics rather than their geographical origin. Based on the assessment of the SNP markers and several agro-morphologic traits, accessions that retain gene diversity of the whole collection were selected to develop several soybean sets of different sizes using an heuristic approach; a minimum of 12 accessions can represent the observed gene diversity; a mini-core collection of 96 accession can represent a major proportion of both geographic origin and agro-morphologic trait variation. These selected sets of germplasm will provide an effective platform for enhancing soybean diversity studies and assist in finding novel traits for crop improvement.
doi:10.1270/jsbbs.61.566
PMCID: PMC3406788  PMID: 23136496
Glycine max; Glycine soja; SNP; Genebank; LD; mini core collection
11.  Endophytic fungi from Myrcia guianensis at the Brazilian Amazon: Distribution and bioactivity 
Brazilian Journal of Microbiology  2014;45(1):153-161.
Beneficial interactions between plants and microorganisms have been investigated under different ecological, physiological, biochemical, and genetic aspects. However, the systematic exploration of biomolecules with potential for biotechnological products from this interaction still is relatively scarce. Therefore, this study aimed the evaluation of the diversity and antimicrobial activity of the endophytic fungi obtained from roots, stems and leafs of Myrcia guianensis (Myrtaceae) from the Brazilian Amazon. 156 endophytic fungi were isolated and above 80% were identified by morphological examination as belonging to the genera Pestalotiopsis, Phomopsis, Aspergillus, Xylaria, Nectria, Penicillium and Fusarium. Fermented broth of those fungi were assayed for antimicrobial activity and four inhibited the growth of Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Penicillium avellaneum. As the strain named MgRe2.2.3B (Nectria haematococca) had shown the most promising results against those pathogenic strains, its fermented broth was fractioned and only its two low polar fractions demonstrated to be active. Both fractions exhibited a minimum bactericidal concentration of 50 μg.mL−1 against S. aureus and a minimum fungicidal concentration of 100 μg.mL−1 against P. avellaneum. These results demonstrate the diversity of fungal genera in M. guianensis and the potential of these endophytic fungi for the production of new antibiotics.
doi:10.1590/S1517-83822014005000027
PMCID: PMC4059290  PMID: 24948926
secondary metabolites; fungus/plant interaction; antibiosis; Amazonian endophytic fungi
12.  Genetic characterization of Italian tomato varieties and their traceability in tomato food products-Sardaro-2012-Food Science & Nutrition-Wiley Online Library 
Food Science & Nutrition  2013;1(1):54-62.
Genetic diversity underlies the improvement of crops by plant breeding. Landraces of tomato (Solanum lycopersicum L.) can contain valuable alleles not common in modern germplasms. The aim was to measure genetic diversity present in 47 most common tomato varieties grown in Italy, 35 were varieties used for processing and 12 were landraces considered “salad varieties”. Furthermore, we demonstrated the possibility that the variety traceability can be extended through the entire production chain. Diversity was measured using 11 microsatellite markers and 94 genotypes. Among the markers used, a total of 48 alleles were detected. A dendrogram based on total microsatellite polymorphism grouped 47 varieties into three major clusters at 0.75 similarity coefficient, differentiating the modern varieties from tomatoes landraces. The DNA markers developed confirmed the possibility to support the genotype identification all along the tomato production chain. The number of alleles and genotypes identified in the present work is the largest considering papers on food traceability.
doi:10.1002/fsn3.8
PMCID: PMC3951568  PMID: 24804014
Food traceability; Solanum lycopersicum L.; SSRs molecular markers; tomato sauce
13.  Genetic Biodiversity of Italian Olives (Olea europaea) Germplasm Analyzed by SSR Markers 
The Scientific World Journal  2014;2014:296590.
The olive is an important fruit species cultivated for oil and table olives in Italy and the Mediterranean basin. The conservation of cultivated plants in ex situ collections is essential for the optimal management and use of their genetic resources. The largest ex situ olive germplasm collection consists of approximately 500 Italian olive varieties and corresponding to 85% of the total Italian olive germplasm is maintained at the Consiglio per la Ricerca e sperimentazione per l'Agricoltura, Centro di Ricerca per l'Olivicoltura e l'Industria Olearia (CRA-OLI), in Italy. In this work, eleven preselected nuclear microsatellite markers were used to assess genetic diversity, population structure, and gene flows with the aim of assembling a core collection. The dendrogram obtained utilizing the unweighted pair group method highlights the presence of homonymy and synonymy in olive tree datasets analyzed in this study. 439 different unique genotype profiles were obtained with this combination of 11 loci nSSR, representing 89.8% of the varieties analyzed. The remaining 10.2% comprises different variety pairs in which both accessions are genetically indistinguishable. Clustering analysis performed using BAPS software detected seven groups in Italian olive germplasm and gene flows were determined among identified clusters. We proposed an Italian core collection of 23 olive varieties capturing all detected alleles at microsatellites. The information collected in this study regarding the CRA-OLI ex situ collection can be used for breeding programs, for germplasm conservation, and for optimizing a strategy for the management of olive gene pools.
doi:10.1155/2014/296590
PMCID: PMC3958686  PMID: 24723801
14.  Effect of Soils from Six Management Systems on Root-knot Nematodes and Plant Growth in Greenhouse Assays 
Journal of Nematology  2005;37(4):467-472.
The effects of soil management systems on root-knot nematode (Meloidogyne incognita) eggs and gall incidence on tomato (Lycopersicon esculentum) and cucumber (Cucumis sativus) following tomato were evaluated. Soil was collected from a replicated field experiment in which six management systems were being assessed for vegetable production. Soil management systems were conventional production, organic production, bahiagrass (Paspalum notatum) pasture, bahiagrass: Stylosanthes (Stylosanthes guianensis) pasture, bare ground fallow, and weed fallow. Soil was collected from field plots and used in greenhouse experiments. Identification of egg-parasitic fungi and the incidence of root-knot nematode galling were assessed both on tomato and cucumber planted in the same pots following the removal of tomato plants. Organic, bare ground fallow and conventional production treatments reduced galling both on tomato and on cucumber following tomato. Although no treatment consistently enhanced egg-parasitic fungi, management system did affect egg viability and the types of fungi isolated from parasitized eggs.
PMCID: PMC2620999  PMID: 19262892
biological control; cropping systems; cucumber; Cucumis sativus; fungal egg parasites; Lycopersicon esculentum; Meloidogyne incognita; root-knot nematode; tomato
15.  Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape 
BMC Plant Biology  2013;13:39.
Background
The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples.
Results
We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability.
Conclusions
The comprehensive molecular characterization of our grape germplasm collection contributes to the knowledge about levels and distribution of genetic diversity in the existing resources of Vitis and provides insights into genetic subdivision within the European germplasm. Genotypic and phenotypic information compared in this study may efficiently guide further exploration of this diversity for facilitating its practical use.
doi:10.1186/1471-2229-13-39
PMCID: PMC3610244  PMID: 23497049
Grapevine; Diversity pattern; Population structure; Phenotypic variation; Core collections; Vitis spp
16.  An empirical assessment of individual-based population genetic statistical techniques: application to British pig breeds 
Heredity  2010;106(2):261-269.
Recently developed Bayesian genotypic clustering methods for analysing genetic data offer a powerful tool to evaluate the genetic structure of domestic farm animal breeds. The unit of study with these approaches is the individual instead of the population. We aimed to empirically evaluate various individual-based population genetic statistical methods for characterization of genetic diversity and structure of livestock breeds. Eighteen British pig populations, comprising 819 individuals, were genotyped at 46 microsatellite markers. Three Bayesian genotypic clustering approaches, principle component analysis (PCA) and phylogenetic reconstruction were applied to individual multilocus genotypes to infer the genetic structure and diversity of the British pig breeds. Comparisons of the three Bayesian genotypic clustering methods (, and ) revealed some broad similarities but also some notable differences. Overall, the methods agreed that majority of the British pig breeds are independent genetic units with little evidence of admixture. The three Bayesian genotypic clustering methods provided complementary, biologically credible clustering solutions but at different levels of resolution. detected finer genetic differentiation and in some cases, populations within breeds. Consequently, it estimated a greater number of underlying genetic populations (K, in the notation of Bayesian clustering methods). Two of the Bayesian methods ( and ) and phylogenetic reconstruction provided similar success in assignment of individuals, supporting the use of these methods for breed assignment.
doi:10.1038/hdy.2010.80
PMCID: PMC3183882  PMID: 20551978
Bayesian; domestic pig; genetic structure; livestock breeds; microsatellites
17.  Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics? 
Annals of Botany  2010;105(5):689-696.
Background and Aims
The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity–area and diversity–age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown.
Methods
Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling.
Key Results
The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness.
Conclusions
Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens.
doi:10.1093/aob/mcq043
PMCID: PMC2859917  PMID: 20237117
Biodiversity loss; global priorities; hotspots conservation; large-scale patterns; local and regional diversity; macroecology; plant biogeography; rarity; species–people correlation; species–time relationship; tropical ecosystems; urban ecology
18.  Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm 
BMC Genetics  2012;13:18.
Background
The goals of our study were to assess the phylogeny and the population structure of tobacco accessions representing a wide range of genetic diversity; identify a subset of accessions as a core collection capturing most of the existing genetic diversity; and estimate, in the tobacco core collection, the extent of linkage disequilibrium (LD) in seven genomic regions using simple sequence repeat (SSR) markers. To this end, a collection of accessions were genotyped with SSR markers. Molecular diversity was evaluated and LD was analyzed across seven regions of the genome.
Results
A genotyping database for 312 tobacco accessions was profiled with 49 SSR markers. Principal Coordinate Analysis (PCoA) and Bayesian cluster analysis revealed structuring of the tobacco population with regard to commercial classes and six main clades were identified, which correspond to "Oriental", Flue-Cured", "Burley", "Dark", "Primitive", and "Other" classes. Pairwise kinship was calculated between accessions, and an overall low level of co-ancestry was observed. A set of 89 genotypes was identified that captured the whole genetic diversity detected at the 49 loci. LD was evaluated on these genotypes, using 422 SSR markers mapping on seven linkage groups. LD was estimated as squared correlation of allele frequencies (r2). The pattern of intrachromosomal LD revealed that in tobacco LD extended up to distances as great as 75 cM with r2 > 0.05 or up to 1 cM with r2 > 0.2. The pattern of LD was clearly dependent on the population structure.
Conclusions
A global population of tobacco is highly structured. Clustering highlights the accessions with the same market class. LD in tobacco extends up to 75 cM and is strongly dependent on the population structure.
doi:10.1186/1471-2156-13-18
PMCID: PMC3342901  PMID: 22435796
19.  Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the Brazilian physic nut germplasm bank 
Genetics and Molecular Biology  2013;36(3):371-381.
The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.
doi:10.1590/S1415-47572013005000033
PMCID: PMC3795176  PMID: 24130445
molecular variability; Jatropha curcas L.; phenotypic variability
20.  Population genetic structure of two Medicago species shaped by distinct life form, mating system and seed dispersal 
Annals of Botany  2009;103(6):825-834.
Background and Aims
Life form, mating system and seed dispersal are important adaptive traits of plants. In the first effort to characterize in detail the population genetic structure and dynamics of wild Medicago species in China, a population genetic study of two closely related Medicago species, M. lupulina and M. ruthenica, that are distinct in these traits, are reported. These species are valuable germplasm resources for the improvement of Medicago forage crops but are under threat of habitat destruction.
Methods
Three hundred and twenty-eight individuals from 16 populations of the annual species, M. lupulina, and 447 individuals from 15 populations of the perennial species, M. ruthenica, were studied using 15 and 17 microsatellite loci, respectively. Conventional and Bayesian-clustering analyses were utilized to estimate population genetic structure, mating system and gene flow.
Key Results
Genetic diversity of M. lupulina (mean HE = 0·246) was lower than that of M. ruthenica (mean HE = 0·677). Populations of M. lupulina were more highly differentiated (FST = 0·535) than those of M. ruthenica (FST = 0·130). For M. lupulina, 55·5 % of the genetic variation was partitioned among populations, whereas 76·6 % of the variation existed within populations of M. ruthenica. Based on the genetic data, the selfing rates of M. lupulina and M. ruthenica were estimated at 95·8 % and 29·5 %, respectively. The genetic differentiation among populations of both species was positively correlated with geographical distance.
Conclusions
The mating system differentiation estimated from the genetic data is consistent with floral morphology and observed pollinator visitation. There was a much higher historical gene flow in M. ruthenica than in M. lupulina, despite more effective seed dispersal mechanisms in M. lupulina. The population genetic structure and geographical distribution of the two Medicago species have been shaped by life form, mating systems and seed dispersal mechanisms.
doi:10.1093/aob/mcp006
PMCID: PMC2707894  PMID: 19174379
Medicago lupulina; Medicago ruthenica; microsatellite; genetic diversity; gene flow; forage legume
21.  Stem and Root Nodulation in Aeschynomene spp 
Nodulation ability of 15 Rhizobium strains isolated from root and stem nodules of tropical Aeschynomene species was studied on 20 different Aeschynomene species and four other legumes—Arachis hypogaea, Stylosanthes guianensis, Macroptilium atropurpureum, and Sesbania rostrata. The results of this investigation showed that Aeschynomene species could be divided into three groups according to the cross-inoculation group concept.
PMCID: PMC238704  PMID: 16346895
22.  Trophic Relationships and Habitat Preferences of Delphinids from the Southeastern Brazilian Coast Determined by Carbon and Nitrogen Stable Isotope Composition 
PLoS ONE  2013;8(12):e82205.
To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (δ13C) and nitrogen (δ15N) isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the δ13C and δ15N values among four populations of S. guianensis. Variation in carbon isotope results from coast to ocean indicated that there was a significant decrease in δ13C values from estuarine dolphins to oceanic species. S. guianensis from Guanabara Bay had the highest mean δ13C value, while oceanic species showed significantly lower δ13C values. The highest δ15N values were observed for P. crassidens and T. truncatus, suggesting that these species occupy the highest trophic position among the delphinids studied here. The oceanic species S. attenuata, G. griseus and L. hosei had the lowest δ15N values. Stable isotope analysis showed that the three populations of S. guianensis in coastal bays had different δ13C values, but similar δ15N results. Guiana dolphins from Sepetiba and Ilha Grande bays had different foraging habitat, with specimens from Ilha Grande showing more negative δ13C values. This study provides further information on the feeding ecology of delphinids occurring in southeastern Brazil, with evidence of distinctive foraging habitats and the occupation of different ecological niches by these species in the study area.
doi:10.1371/journal.pone.0082205
PMCID: PMC3864921  PMID: 24358155
23.  Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome 
BMC Plant Biology  2004;4:11.
Background
The genus Arachis is native to a region that includes Central Brazil and neighboring countries. Little is known about the genetic variability of the Brazilian cultivated peanut (Arachis hypogaea, genome AABB) germplasm collection at the DNA level. The understanding of the genetic diversity of cultivated and wild species of peanut (Arachis spp.) is essential to develop strategies of collection, conservation and use of the germplasm in variety development. The identity of the ancestor progenitor species of cultivated peanut has also been of great interest. Several species have been suggested as putative AA and BB genome donors to allotetraploid A. hypogaea. Microsatellite or SSR (Simple Sequence Repeat) markers are co-dominant, multiallelic, and highly polymorphic genetic markers, appropriate for genetic diversity studies. Microsatellite markers may also, to some extent, support phylogenetic inferences. Here we report the use of a set of microsatellite markers, including newly developed ones, for phylogenetic inferences and the analysis of genetic variation of accessions of A. hypogea and its wild relatives.
Results
A total of 67 new microsatellite markers (mainly TTG motif) were developed for Arachis. Only three of these markers, however, were polymorphic in cultivated peanut. These three new markers plus five other markers characterized previously were evaluated for number of alleles per locus and gene diversity using 60 accessions of A. hypogaea. Genetic relationships among these 60 accessions and a sample of 36 wild accessions representative of section Arachis were estimated using allelic variation observed in a selected set of 12 SSR markers. Results showed that the Brazilian peanut germplasm collection has considerable levels of genetic diversity detected by SSR markers. Similarity groups for A. hypogaea accessions were established, which is a useful criteria for selecting parental plants for crop improvement. Microsatellite marker transferability was up to 76% for species of the section Arachis, but only 45% for species from the other eight Arachis sections tested. A new marker (Ah-041) presented a 100% transferability and could be used to classify the peanut accessions in AA and non-AA genome carriers.
Conclusion
The level of polymorphism observed among accessions of A. hypogaea analyzed with newly developed microsatellite markers was low, corroborating the accumulated data which show that cultivated peanut presents a relatively reduced variation at the DNA level. A selected panel of SSR markers allowed the classification of A. hypogaea accessions into two major groups. The identification of similarity groups will be useful for the selection of parental plants to be used in breeding programs. Marker transferability is relatively high between accessions of section Arachis. The possibility of using microsatellite markers developed for one species in genetic evaluation of other species greatly reduces the cost of the analysis, since the development of microsatellite markers is still expensive and time consuming. The SSR markers developed in this study could be very useful for genetic analysis of wild species of Arachis, including comparative genome mapping, population genetic structure and phylogenetic inferences among species.
doi:10.1186/1471-2229-4-11
PMCID: PMC491793  PMID: 15253775
24.  Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? 
Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using real and simulated molecular marker data. Our study also compared the performance of traditional hierarchical clustering with model-based clustering (STRUCTURE). We showed that the cophenetic correlation coefficient is directly related to subgroup differentiation and can thus be used as an indicator of the presence of genetically distinct subgroups in germplasm collections. Whereas UPGMA performed well in preserving distances between accessions, Ward excelled in recovering groups. Our results also showed a close similarity between clusters obtained by Ward and by STRUCTURE. Traditional cluster analysis can provide an easy and effective way of determining structure in germplasm collections using molecular marker data, and, the output can be used for sampling core collections or for association studies.
Electronic supplementary material
The online version of this article (doi:10.1007/s00122-011-1576-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s00122-011-1576-x
PMCID: PMC3114091  PMID: 21472410
25.  A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae) 
BMC Plant Biology  2008;8:130.
Background
The natural phenotypic variability present in the germplasm of cultivated plants can be linked to molecular polymorphisms using association genetics. However it is necessary to consider the genetic structure of the germplasm used to avoid false association. The knowledge of genetic structure of plant populations can help in inferring plant evolutionary history. In this context, we genotyped 360 wild, feral and cultivated accessions with 20 simple sequence repeat markers and investigated the extent and structure of the genetic variation. The study focused on the red fruited tomato clade involved in the domestication of tomato and confirmed the admixture status of cherry tomatoes (Solanum lycopersicum var. cerasiforme). We used a nested sample strategy to set-up core collection maximizing the genetic diversity with a minimum of individuals.
Results
Molecular diversity was considerably lower in S. lycopersicum i.e. the domesticated form. Model-based analysis showed that the 144 S. lycopersicum var. cerasiforme accessions were structured into two groups: one close to the domesticated group and one resulting from the admixture of the S. lycopersicum and S. pimpinellifolium genomes. SSR genotyping also indicates that domesticated and wild tomatoes have evolved as a species complex with intensive level of hybridization. We compiled genotypic and phenotypic data to identify sub-samples of 8, 24, 32 and 64 cherry tomato accessions that captured most of the genetic and morphological diversity present in the entire S. lycopersicum var. cerasiforme collection.
Conclusion
The extent and structure of allelic variation is discussed in relation to historical events like domestication and modern selection. The potential use of the admixed group of S. lycopersicum var. cerasiforme for association genetics studies is also discussed. Nested core collections sampled to represent tomato diversity will be useful in diversity studies. Molecular and phenotypic variability of these core collections is defined. These collections are available for the scientific community and can be used as standardized panels for coordinating efforts on identifying novel interesting genes and on examining the domestication process in more detail.
doi:10.1186/1471-2229-8-130
PMCID: PMC2657798  PMID: 19099601

Results 1-25 (692240)