PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (477775)

Clipboard (0)
None

Related Articles

1.  ETHNOMEDICINE OF BHIL TRIBE OF JHABUA DISTRICT, M. P.** 
Ancient Science of Life  1986;5(4):255-261.
The Bhils are inhabitants of Dhar, Jhabua, Khargone and Ratlam distrcits of Madhya Pradesh. A large number of Bhils live in the neighbouring States of Maharashtra, Gujarat and Rajasthan. They constitute the third largest tribe of India; the first two being Gonds and Santhals. They utilize a large number of plant species occurring wild in the district as herbal remedies in various diseases and ailments. An ethno-medico-botanical survey was conducted in the tribal blocks. Viz. Kathiware, Alirajpur and Sodhwa blocks of Jhabua district, M. P. The authors have gathered first-hand information on seventy – five plant species and their mode of therapeutic uses from the tribal medicine men ‘Badwa’ and other experienced tribals. The present study has brought of light some interesting data on potential medicinal plants which will be screened for determining their therapeutic and pharmacodynamic properties.
PMCID: PMC3331472  PMID: 22557535
2.  Distribution of CC-chemokine receptor-5-∆32 allele among the tribal and caste population of Vidarbha region of Maharashtra state 
BACKGROUND:
Genetic relationships among the ethnic groups are not uniform across the geographical region. Considering this assumption, we analyzed the frequency of the CC-chemokine receptor-5 (CCR5)-∆32 allele of the CCR5 chemokine receptor, which is considered a Caucasian marker, in Bhil tribal and Brahmin caste sample sets from the population.
MATERIALS AND METHODS:
108 blood samples were collected from 6 tribe's populations and a caste population from the district of Vidarbha region.
RESULTS AND DISCUSSION:
The presence of low frequencies of CCR5-Δ32 in an individual of Bhil tribe (0.034, χ2 value 0.017) in the present study implies that these communities may have a better resistance toward human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) than the other studied tribe sample, as non-show such mutation.
CONCLUSION:
The marginal presence of the allele seen in the studied tribal population could be due to gene flow from the people of European descent. However, lack of the homozygous CCR5-Δ32 mutation and the low prevalence of heterozygous CCR5-Δ32 mutations suggest that the Indians are highly susceptible to HIV/AIDS, and this correlates with the highest number of HIV/AIDS infected individuals in India.
doi:10.4103/0971-6866.112894
PMCID: PMC3722632  PMID: 23901195
Allele frequency; CC-chemokine receptor-5-∆32; India; genetic polymorphism; tribes; Vidarbha
3.  Genetic assessment of serological and biochemical markers in Bharia tribe of Chhindwara district of Madhya Pradesh 
Indian Journal of Human Genetics  2010;16(3):127-132.
BACKGROUND:
The present sero-genetic study is the first of its kind to present the baseline data of Bharia tribe of Madhya Pradesh. The main aim of this study is to provide phenotype and allele-frequency data to characterize the population genetically and to fill the void on the genetic map of Madhya Pradesh.
MATERIALS AND METHODS:
For this, blood samples from 92 unrelated healthy individuals of Bharia tribe from Chhindwara district (Tamia block) were collected. Hemolysates prepared were analyzed for two serological (A1A2BO and Rh) and six biochemical (adenosine deaminase, adenylate kinase locus 1, acid phosphatase locus 1, phosphoglucomutase locus 1, esterase D and glucosephosphate isomerase) parameters, following the standard electrophoretic techniques.
RESULTS:
The Chi-square test for goodness of fit revealed no significant deviation between the observed and expected numbers in any of the seven genetic markers, suggesting that the tribe is in genetic equilibrium. A high incidence of B allele in A1A2BO blood group and low incidence of the A1 allele, with presence of A2 in only one individual, and a low frequency of Rh(D) (Rh negative allele) was observed in serological markers. Also, no rare variant was observed for biochemical markers.
CONCLUSION:
Principal Component Analysis done in order to detect the genetic affinity of Bharia tribe with other populations from the adjoining states of Madhya Pradesh based on the allele frequencies, showed a close association of Bharia with Gujarat and Rajasthan. Hence, this study has been helpful in revealing the genetic structure and affinity of Bharia tribe.
doi:10.4103/0971-6866.73401
PMCID: PMC3009422  PMID: 21206699
Bharia; Madhya Pradesh; sero-genetic
4.  Increased Prevalence of Pulmonary Tuberculosis in Male Adults of Sahariya Tribe of India: A Revised Survey 
Background:
A survey made in 1991-92, reported Sahariya, a primitive tribe of India (M. P.), having high prevalence of pulmonary tuberculosis. No follow-up study was undertaken thereafter.
Objective:
The present study was aimed to know the current status of tuberculosis (TB) in Sahariya after more than a decade of the last survey of 1991-92, as compared to that in Bhil, another primitive tribe living in the same area but never investigated for TB incidence.
Materials and Methods:
A total of 763 random sputum smears from Sahariya and 169 sputum smears from Bhil were screened for the presence of Mycobacterium tuberculosis (M..tb) in order to evaluate the prevalence of pulmonary tuberculosis in both the tribes. Chi square (χ2) statistics was performed to study the correlation between age, sex on the one hand and with the prevalence of smear-positive pulmonary TB on the other hand, if any.
Results:
In Sahariya, the prevalence of smear-positive pulmonary TB was found increased significantly (P<0.005) to 0.454 as against 0.274 estimated in the earlier survey (1991-92). Males, particularly, appeared most affected (P<0.005; 0.382), especially adults (0.260). In contrast, among Bhil, the prevalence was very low.
Conclusion:
The observed increase in TB prevalence and its gender bias in Sahariya tribe indicate the high incidence rate and faster transmission of infection, especially in male sex.
doi:10.4103/0970-0218.66887
PMCID: PMC2940183  PMID: 20922104
Bhil; prevalence; Sahariya; sputum smear; tuberculosis
5.  ETHNO-MEDICAL STUDIES OF PATALKOT AND TAMIYA (DISTT. CHHINDWARA) M. P. – PLANTS USED AS TONIC 
Ancient Science of Life  1987;7(2):119-121.
An ethno-medical survey was conducted in the tribal pockets of Tamiya and Petalkot of Madhya Pradesh wherein “Bharia” and “Gond” tribes inhabit. This paper presents 22 medicinal plants belonging to 17 families, used as tonic medicine among them.
PMCID: PMC3331385  PMID: 22557600
6.  Influence of language and ancestry on genetic structure of contiguous populations: A microsatellite based study on populations of Orissa 
BMC Genetics  2005;6:4.
Background
We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja. These divergent groups provide a varied substratum for understanding variation of genetic patterns in a geographical area resulting from differential admixture between migrants groups and aboriginals, and the influence of this admixture on population stratification.
Results
The allele distribution pattern showed uniformity in the studied groups with approximately 81% genetic variability within populations. The coefficient of gene differentiation was found to be significantly higher in tribes (0.014) than caste groups (0.004). Genetic variance between the groups was 0.34% in both ethnic and linguistic clusters and statistically significant only in the ethnic apportionment. Although the populations were genetically close (FST = 0.010), the contemporary caste and tribal groups formed distinct clusters in both Principal-Component plot and Neighbor-Joining tree. In the phylogenetic tree, the Orissa Brahmins showed close affinity to populations of North India, while Khandayat and Gope clustered with the tribal groups, suggesting a possibility of their origin from indigenous people.
Conclusions
The extent of genetic differentiation in the contemporary caste and tribal groups of Orissa is highly significant and constitutes two distinct genetic clusters. Based on our observations, we suggest that since genetic distances and coefficient of gene differentiation were fairly small, the studied populations are indeed genetically similar and that the genetic structure of populations in a geographical region is primarily influenced by their ancestry and not by socio-cultural hierarchy or language. The scenario of genetic structure, however, might be different for other regions of the subcontinent where populations have more similar ethnic and linguistic backgrounds and there might be variations in the patterns of genomic and socio-cultural affinities in different geographical regions.
doi:10.1186/1471-2156-6-4
PMCID: PMC549189  PMID: 15694006
7.  Population Differentiation of Southern Indian Male Lineages Correlates with Agricultural Expansions Predating the Caste System 
PLoS ONE  2012;7(11):e50269.
Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.
doi:10.1371/journal.pone.0050269
PMCID: PMC3508930  PMID: 23209694
8.  Y Chromosome Haplogroup Distribution in Indo-European Speaking Tribes of Gujarat, Western India 
PLoS ONE  2014;9(3):e90414.
The present study was carried out in the Indo-European speaking tribal population groups of Southern Gujarat, India to investigate and reconstruct their paternal population structure and population histories. The role of language, ethnicity and geography in determining the observed pattern of Y haplogroup clustering in the study populations was also examined. A set of 48 bi-allelic markers on the non-recombining region of Y chromosome (NRY) were analysed in 284 males; representing nine Indo-European speaking tribal populations. The genetic structure of the populations revealed that none of these groups was overtly admixed or completely isolated. However, elevated haplogroup diversity and FST value point towards greater diversity and differentiation which suggests the possibility of early demographic expansion of the study groups. The phylogenetic analysis revealed 13 paternal lineages, of which six haplogroups: C5, H1a*, H2, J2, R1a1* and R2 accounted for a major portion of the Y chromosome diversity. The higher frequency of the six haplogroups and the pattern of clustering in the populations indicated overlapping of haplogroups with West and Central Asian populations. Other analyses undertaken on the population affiliations revealed that the Indo-European speaking populations along with the Dravidian speaking groups of southern India have an influence on the tribal groups of Gujarat. The vital role of geography in determining the distribution of Y lineages was also noticed. This implies that although language plays a vital role in determining the distribution of Y lineages, the present day linguistic affiliation of any population in India for reconstructing the demographic history of the country should be considered with caution.
doi:10.1371/journal.pone.0090414
PMCID: PMC3948632  PMID: 24614885
9.  Population Genetic Structure in Indian Austroasiatic Speakers: The Role of Landscape Barriers and Sex-Specific Admixture 
Molecular biology and evolution  2010;28(2):1013-1024.
The geographic origin and time of dispersal of Austroasiatic (AA) speakers, presently settled in south and southeast Asia, remains disputed. Two rival hypotheses, both assuming a demic component to the language dispersal, have been proposed. The first of these places the origin of Austroasiatic speakers in southeast Asia with a later dispersal to south Asia during the Neolithic, whereas the second hypothesis advocates pre-Neolithic origins and dispersal of this language family from south Asia. To test the two alternative models, this study combines the analysis of uniparentally inherited markers with 610,000 common single nucleotide polymorphism loci from the nuclear genome. Indian AA speakers have high frequencies of Y chromosome haplogroup O2a; our results show that this haplogroup has significantly higher diversity and coalescent time (17–28 thousand years ago) in southeast Asia, strongly supporting the first of the two hypotheses. Nevertheless, the results of principal component and “structure-like” analyses on autosomal loci also show that the population history of AA speakers in India is more complex, being characterized by two ancestral components—one represented in the pattern of Y chromosomal and EDAR results and the other by mitochondrial DNA diversity and genomic structure. We propose that AA speakers in India today are derived from dispersal from southeast Asia, followed by extensive sex-specific admixture with local Indian populations.
doi:10.1093/molbev/msq288
PMCID: PMC3355372  PMID: 20978040
Austroasiatic; mtDNA; Y chromosome; autosomes; admixture
10.  Genetic affinities among the lower castes and tribal groups of India: inference from Y chromosome and mitochondrial DNA 
BMC Genetics  2006;7:42.
Background
India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations.
Results
No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes.
Conclusion
The present study suggests that the vast majority (>98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes.
doi:10.1186/1471-2156-7-42
PMCID: PMC1569435  PMID: 16893451
11.  The Phylogeography of Y-Chromosome Haplogroup H1a1a-M82 Reveals the Likely Indian Origin of the European Romani Populations 
PLoS ONE  2012;7(11):e48477.
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.
doi:10.1371/journal.pone.0048477
PMCID: PMC3509117  PMID: 23209554
12.  Haptoglobin polymorphism among the tribal groups of southern Gujarat 
Indian Journal of Human Genetics  2011;17(3):169-174.
BACKGROUND:
Gujarat is located at the western most point of the Indian subcontinent. Valsad and Surat districts are part of the ‘tribal belt’of Gujarat and constitute 29.1% of total tribal population of Gujarat. These tribal populations are a rich source of gaining insights in the patterns of genetic diversity and genetico-environmental disorders against the back drop of their ecological, historical and ethnographic aspects.
AIM:
The objectives were to find out a) the genetic diversity among the tribes of Gujarat with reference to haptoglobin (Hp) locus b) the relationship between Hp polymorphism and sickle cell anemia/trait.
MATERIALS AND METHODS:
431 individuals belonging to eight tribal groups were studied for Hp polymorphism using polyacrylamide disc gel electrophoresis (PAGE). Hb*S was screened by dithionate tube turbididy (DTT) test and confirmed using cellulose acetate membrane electrophoresis (CAME).
STATISTICAL ANALYSIS:
Allele frequency was calculated by direct gene counting method. Average heterozygosity and gene diversity were computed using software DISPAN. Analysis of molecular variance (AMOVA) was estimated using software ARLEQUIN version 3.1.
RESULTS AND CONCLUSIONS:
Pattern of allele frequency distribution showed preponderance of Hp2 allele in all the eight tribal groups, which is in accordance with its frequency in different populations of Indian subcontinent. Total average heterozygosity (HT) was found to be low (0.160) but the level of genetic differentiation (GST) was found to be moderately high (5.6%). AMOVA analysis indicated least among group variance between west and south Indian populations (-0.04%) indicating the affinities of the tribes of Gujarat with that of Dravidian speaking groups. Analysis of Hp phenotypes among sickle cell anemia/ trait individuals revealed a high frequency of Hp 0-0 phenotype (92.7%) among SS individuals as opposed to only 9.7% among AS individuals, reaffirming the selective advantage of HbAS state in relation to hemolytic disorders.
doi:10.4103/0971-6866.92096
PMCID: PMC3276985  PMID: 22345988
AMOVA; haptoglobin; heterozygosity; hypohaptoglobinaemia; sickle cell anemia; tribes.
13.  Maternal Footprints of Southeast Asians in North India 
Human Heredity  2008;66(1):1-9.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.
doi:10.1159/000114160
PMCID: PMC2588665  PMID: 18223312
South Asia; 9bp indel; mtDNA; Haplogroup
14.  Maternal Footprints of Southeast Asians in North India 
Human heredity  2008;66(1):1-9.
We have analyzed 7137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.8% and 0.5%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9bp-deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.
doi:10.1159/000114160
PMCID: PMC2588665  PMID: 18223312
South Asia; 9bp indel; mtDNA; Haplogroup
15.  Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations 
PLoS ONE  2006;1(1):e81.
The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity.
doi:10.1371/journal.pone.0000081
PMCID: PMC1766372  PMID: 17218991
16.  Genetic diversity in India and the inference of Eurasian population expansion 
Genome Biology  2010;11(11):R113.
Background
Genetic studies of populations from the Indian subcontinent are of great interest because of India's large population size, complex demographic history, and unique social structure. Despite recent large-scale efforts in discovering human genetic variation, India's vast reservoir of genetic diversity remains largely unexplored.
Results
To analyze an unbiased sample of genetic diversity in India and to investigate human migration history in Eurasia, we resequenced one 100-kb ENCODE region in 92 samples collected from three castes and one tribal group from the state of Andhra Pradesh in south India. Analyses of the four Indian populations, along with eight HapMap populations (692 samples), showed that 30% of all SNPs in the south Indian populations are not seen in HapMap populations. Several Indian populations, such as the Yadava, Mala/Madiga, and Irula, have nucleotide diversity levels as high as those of HapMap African populations. Using unbiased allele-frequency spectra, we investigated the expansion of human populations into Eurasia. The divergence time estimates among the major population groups suggest that Eurasian populations in this study diverged from Africans during the same time frame (approximately 90 to 110 thousand years ago). The divergence among different Eurasian populations occurred more than 40,000 years after their divergence with Africans.
Conclusions
Our results show that Indian populations harbor large amounts of genetic variation that have not been surveyed adequately by public SNP discovery efforts. Our data also support a delayed expansion hypothesis in which an ancestral Eurasian founding population remained isolated long after the out-of-Africa diaspora, before expanding throughout Eurasia.
doi:10.1186/gb-2010-11-11-r113
PMCID: PMC3156952  PMID: 21106085
17.  Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation 
Background
Central Asia and the Indian subcontinent represent an area considered as a source and a reservoir for human genetic diversity, with many markers taking root here, most of which are the ancestral state of eastern and western haplogroups, while others are local. Between these two regions, Terai (Nepal) is a pivotal passageway allowing, in different times, multiple population interactions, although because of its highly malarial environment, it was scarcely inhabited until a few decades ago, when malaria was eradicated. One of the oldest and the largest indigenous people of Terai is represented by the malaria resistant Tharus, whose gene pool could still retain traces of ancient complex interactions. Until now, however, investigations on their genetic structure have been scarce mainly identifying East Asian signatures.
Results
High-resolution analyses of mitochondrial-DNA (including 34 complete sequences) and Y-chromosome (67 SNPs and 12 STRs) variations carried out in 173 Tharus (two groups from Central and one from Eastern Terai), and 104 Indians (Hindus from Terai and New Delhi and tribals from Andhra Pradesh) allowed the identification of three principal components: East Asian, West Eurasian and Indian, the last including both local and inter-regional sub-components, at least for the Y chromosome.
Conclusion
Although remarkable quantitative and qualitative differences appear among the various population groups and also between sexes within the same group, many mitochondrial-DNA and Y-chromosome lineages are shared or derived from ancient Indian haplogroups, thus revealing a deep shared ancestry between Tharus and Indians. Interestingly, the local Y-chromosome Indian component observed in the Andhra-Pradesh tribals is present in all Tharu groups, whereas the inter-regional component strongly prevails in the two Hindu samples and other Nepalese populations.
The complete sequencing of mtDNAs from unresolved haplogroups also provided informative markers that greatly improved the mtDNA phylogeny and allowed the identification of ancient relationships between Tharus and Malaysia, the Andaman Islands and Japan as well as between India and North and East Africa. Overall, this study gives a paradigmatic example of the importance of genetic isolates in revealing variants not easily detectable in the general population.
doi:10.1186/1471-2148-9-154
PMCID: PMC2720951  PMID: 19573232
18.  Intestinal parasitic infection in Bhil tribe of Rajasthan, India 
A total of 224 Bhil tribal individuals (115 males and 109 females) of different age groups inhabiting tribal rural areas of Udaipur district of Rajasthan, India were investigated for the prevalence of intestinal parasitic (protozoan and helminths) infections. Fresh stool samples of these tribal subjects were examined microscopically by direct wet smear with saline and 1 % Lugol’s iodine and formaline ether concentration. Of these 116 (51.78 %) were found to be infected with diverse species of intestinal parasites. Male individuals showed relatively higher (56.52 %) prevalence of infection as compared to their counterparts (46.78 %). Out of 116 infected tribal subjects, 53 (23.66 %), 33 (14.73 %) and 30 (13.39 %) were infected with protozoan, helminths and mixed (protozoan + helminths) parasitic infections, respectively. Maximum number of parasitic infections occurred in the age group of 6–10 years (69.23 %) in both sexes. Among the intestinal parasites, Entamoeba histolytica was the commonest (14.73 %) followed by Entamoeba coli (8.92 %), Taenia solium (5.35 %), Ascaris lumbricoides (4.46 %), Hymenolepis nana (2.23 %), Ancylostoma duodenale (0.89 %), Strongyloides stercoralis (0.89 %), Trichuris trichiura (0.44 %) and Hymenolepis diminuta (0.44 %). Data pertaining to distribution of parasite species in different age groups, and variation in prevalence of their infection in relation to age and sex were also analysed statistically and found to be significant. Possible causes for variation in prevalence of protozoan and helminthic infection are discussed.
doi:10.1007/s12639-012-0151-y
PMCID: PMC3427671  PMID: 24082517
Bhil tribe; Helminths; Intestinal parasites; Prevalence; Protozoan; Rajasthan; India
19.  Medicinal Plants Used by the Mandais - A Little Known Tribe of Bangladesh 
The Mandais are a little known tribe of Bangladesh inhabiting the north central regions, particularly Tangail district of Bangladesh. Their population has been estimated to be less than 10,000 people. Although the tribe has for the most part assimilated with the mainstream Bengali-speaking population, they to some extent still retain their original tribal customs, including their traditional medicinal practices. Since this practice is also on the verge of disappearance, the objective of the present study was to conduct an ethnomedicinal survey among Mandai tribal practitioners to document their use of medicinal plants for treatment of various ailments. Four traditional practitioners were found in the exclusive Mandai-inhabited village of Chokchokia in Tangail district. Information was collected from the practitioners with the help of a semi-structured questionnaire and guided field-walk method. It was observed that the four traditional practitioners used a total of 31 plants distributed into 23 families for treatment. The various ailments treated included diabetes, low semen density, jaundice, gastrointestinal tract disorders (stomach ache, indigestion, dysentery, and diarrhea), leucorrhea, pain (rheumatic pain, joint pain), skin disorders, respiratory tract disorders (coughs, mucus, and allergy), debility, fever, and helminthiasis. From the number of plants used (seven), it appeared that gastrointestinal tract disorders formed the most common ailment among the Mandai community, possibly brought about by the low income status of the people coupled with unhygienic conditions of living.
PMCID: PMC3746648  PMID: 23983389
Medicinal plants; CAM; ethnomedicine; Mandai
20.  Genetic differences between Chibcha and Non-Chibcha speaking tribes based on mitochondrial DNA (mtDNA) haplogroups from 21 Amerindian tribes from Colombia 
Genetics and Molecular Biology  2013;36(2):149-157.
We analyzed the frequency of four mitochondrial DNA haplogroups in 424 individuals from 21 Colombian Amerindian tribes. Our results showed a high degree of mtDNA diversity and genetic heterogeneity. Frequencies of mtDNA haplogroups A and C were high in the majority of populations studied. The distribution of these four mtDNA haplogroups from Amerindian populations was different in the northern region of the country compared to those in the south. Haplogroup A was more frequently found among Amerindian tribes in northern Colombia, while haplogroup D was more frequent among tribes in the south. Haplogroups A, C and D have clinal tendencies in Colombia and South America in general. Populations belonging to the Chibcha linguistic family of Colombia and other countries nearby showed a strong genetic differentiation from the other populations tested, thus corroborating previous findings. Genetically, the Ingano, Paez and Guambiano populations are more closely related to other groups of south eastern Colombia, as also inferred from other genetic markers and from archeological data. Strong evidence for a correspondence between geographical and linguistic classification was found, and this is consistent with evidence that gene flow and the exchange of customs and knowledge and language elements between groups is facilitated by close proximity.
doi:10.1590/S1415-47572013005000011
PMCID: PMC3715279  PMID: 23885195
mitochondrial DNA; Amerindian; Colombia; Chibcha; genetic relationships
21.  Phylogeography of mtDNA haplogroup R7 in the Indian peninsula 
Background
Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic) speaking populations originated in India or derive from a relatively recent migration from further East.
Results
Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of ~12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1), is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari) of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between genetic variation and geography, rather than between genes and languages.
Conclusion
Our high-resolution phylogeographic study, involving diverse linguistic groups in India, suggests that the high frequency of mtDNA haplogroup R7 among Munda speaking populations of India can be explained best by gene flow from linguistically different populations of Indian subcontinent. The conclusion is based on the observation that among Indo-Europeans, and particularly in Dravidians, the haplogroup is, despite its lower frequency, phylogenetically more divergent, while among the Munda speakers only one sub-clade of R7, i.e. R7a1, can be observed. It is noteworthy that though R7 is autochthonous to India, and arises from the root of hg R, its distribution and phylogeography in India is not uniform. This suggests the more ancient establishment of an autochthonous matrilineal genetic structure, and that isolation in the Pleistocene, lineage loss through drift, and endogamy of prehistoric and historic groups have greatly inhibited genetic homogenization and geographical uniformity.
doi:10.1186/1471-2148-8-227
PMCID: PMC2529308  PMID: 18680585
22.  Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India 
Indian Journal of Microbiology  2010;50(1):89-96.
We report here that, during periodical surveys of insects inhabiting diverse habitats for the collection of entomopathogenic fungi; a large number of isolates were recovered belonging to seven species, from various regions of Madhya Pradesh and Chhattisgarh forest areas and agricultural fields. The most common entomopathogenic fungi such as Beauveria bassiana, Nomuraea rileyi, Paecilomyces farinosus and Paecilomyces fumosoroseus were found to infect various insect hosts species naturally viz. Hyblaea puera, Eutectona machaeralis, Diachrysia orichalcea, Spodoptera litura, and few new insect hosts of these fungal pathogens among Indian insect population were collected for the first time from Central India, such as beetles of Agrilus species, hairy caterpillars of Lymantria species. The isolation, identification, maintenance and pathogenicity assay of these isolates was performed prior to deposition in culture collection center.
doi:10.1007/s12088-010-0007-z
PMCID: PMC3450281  PMID: 23100813
Biodiversity; Central India; Entomopathogenic fungus; Fungal germplasm collection; Invertebrate hosts
23.  Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans 
BMC Genetics  2004;5:26.
Background
Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.
Results
Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.
Conclusions
Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.
doi:10.1186/1471-2156-5-26
PMCID: PMC516768  PMID: 15339343
24.  Indian Ocean Crossroads: Human Genetic Origin and Population Structure in the Maldives 
The Maldives are an 850 km-long string of atolls located centrally in the northern Indian Ocean basin. Because of this geographic situation, the present-day Maldivian population has potential for uncovering genetic signatures of historic migration events in the region. We therefore studied autosomal DNA-, mitochondrial DNA-, and Y-chromosomal DNA markers in a representative sample of 141 unrelated Maldivians, with 119 from six major settlements. We found a total of 63 different mtDNA haplotypes that could be allocated to 29 mtDNA haplogroups, mostly within the M, R, and U clades. We found 66 different Y-STR haplotypes in 10 Y-chromosome haplogroups, predominantly H1, J2, L, R1a1a, and R2. Parental admixture analysis for mtDNA- and Y-haplogroup data indicates a strong genetic link between the Maldive Islands and mainland South Asia, and excludes significant gene flow from Southeast Asia. Paternal admixture from West Asia is detected, but cannot be distinguished from admixture from South Asia. Maternal admixture from West Asia is excluded. Within the Maldives, we find a subtle genetic substructure in all marker systems that is not directly related to geographic distance or linguistic dialect. We found reduced Y-STR diversity and reduced male-mediated gene flow between atolls, suggesting independent male founder effects for each atoll. Detected reduced female-mediated gene flow between atolls confirms a Maldives-specific history of matrilocality. In conclusion, our new genetic data agree with the commonly reported Maldivian ancestry in South Asia, but furthermore suggest multiple, independent immigration events and asymmetrical migration of females and males across the archipelago. Am J Phys Anthropol 151:58–67, 2013. © 2013 Wiley Periodicals, Inc.
doi:10.1002/ajpa.22256
PMCID: PMC3652038  PMID: 23526367
Y chromosome; mitochondrial DNA; migration; Indo-Aryan languages; South Asia
25.  Fighting malaria in Madhya Pradesh (Central India): Are we loosing the battle? 
Malaria Journal  2009;8:93.
Malaria control in Madhya Pradesh is complex because of vast tracts of forest with tribal settlement. Fifty four million individuals of various ethnic origins, accounting for 8% of the total population of India, contributed 30% of total malaria cases, 60% of total falciparum cases and 50% of malaria deaths in the country. Ambitious goals to control tribal malaria by launching "Enhanced Malaria Control Project" (EMCP) by the National Vector Borne Disease Control Programme (NVBDCP), with the World Bank assistance, became effective in September 1997 in eight north Indian states. Under EMCP, the programme used a broader mix of new interventions, i.e. insecticide-treated bed nets, spraying houses with effective residual insecticides, use of larvivorous fishes, rapid diagnostic tests for prompt diagnosis, treatment of the sick with effective radical treatment and increased public awareness and IEC. However, the challenge is to scale up these services.
A retrospective analysis of data on malaria morbidity and associated mortality reported under the existing surveillance system of the Madhya Pradesh (Central India) for the years 1996–2007 was carried out to determine the impact of EMCP on malaria morbidity and associated mortality. Analysis revealed that despite the availability of effective intervention tools for the prevention and control of malaria, falciparum malaria remains uncontrolled and deaths due to malaria have increased. Precisely, the aim of this epidemiological analysis is to draw lessons applicable to all international aid efforts, bureaucracy, policy makers and programme managers in assessing its project performance as a new Global Malaria Action Plan is launched with ambitious goal of reducing malaria and its elimination by scaling up the use of existing tools.
doi:10.1186/1475-2875-8-93
PMCID: PMC2687456  PMID: 19419588

Results 1-25 (477775)