PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1696060)

Clipboard (0)
None

Related Articles

1.  Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis 
PLoS Medicine  2015;12(8):e1001865.
Background
Observational epidemiological studies indicate that maternal height is associated with gestational age at birth and fetal growth measures (i.e., shorter mothers deliver infants at earlier gestational ages with lower birth weight and birth length). Different mechanisms have been postulated to explain these associations. This study aimed to investigate the casual relationships behind the strong association of maternal height with fetal growth measures (i.e., birth length and birth weight) and gestational age by a Mendelian randomization approach.
Methods and Findings
We conducted a Mendelian randomization analysis using phenotype and genome-wide single nucleotide polymorphism (SNP) data of 3,485 mother/infant pairs from birth cohorts collected from three Nordic countries (Finland, Denmark, and Norway). We constructed a genetic score based on 697 SNPs known to be associated with adult height to index maternal height. To avoid confounding due to genetic sharing between mother and infant, we inferred parental transmission of the height-associated SNPs and utilized the haplotype genetic score derived from nontransmitted alleles as a valid genetic instrument for maternal height. In observational analysis, maternal height was significantly associated with birth length (p = 6.31 × 10−9), birth weight (p = 2.19 × 10−15), and gestational age (p = 1.51 × 10−7). Our parental-specific haplotype score association analysis revealed that birth length and birth weight were significantly associated with the maternal transmitted haplotype score as well as the paternal transmitted haplotype score. Their association with the maternal nontransmitted haplotype score was far less significant, indicating a major fetal genetic influence on these fetal growth measures. In contrast, gestational age was significantly associated with the nontransmitted haplotype score (p = 0.0424) and demonstrated a significant (p = 0.0234) causal effect of every 1 cm increase in maternal height resulting in ~0.4 more gestational d. Limitations of this study include potential influences in causal inference by biological pleiotropy, assortative mating, and the nonrandom sampling of study subjects.
Conclusions
Our results demonstrate that the observed association between maternal height and fetal growth measures (i.e., birth length and birth weight) is mainly defined by fetal genetics. In contrast, the association between maternal height and gestational age is more likely to be causal. In addition, our approach that utilizes the genetic score derived from the nontransmitted maternal haplotype as a genetic instrument is a novel extension to the Mendelian randomization methodology in casual inference between parental phenotype (or exposure) and outcomes in offspring.
Using a Mendelian randomization approach, Ge Zhang and colleagues examine the causal relationship between maternal height, birth size, and gestational age at birth.
Editors' Summary
Background
Soon after the birth of a baby, doting parents send messages to friends and relatives or post information on social media sites to let everyone know when their new baby boy or girl was born. They may also post information about how heavy he/she was at birth and his/her length. These pregnancy outcomes, together with gestational age at birth (the length of time that a baby has spent developing in its mother’s womb), affect the baby’s immediate health and survival. Importantly, however, these pregnancy outcomes are also associated with the risk of long-term adverse health outcomes such as obesity, cardiometabolic disorders (heart disease and conditions such as diabetes that affect how the body makes energy from food), and neuropsychiatric conditions (mental disorders attributable to diseases of the nervous system, such as depression). For example, some studies have shown an association between low birth weight and an increased risk of type 2 diabetes later in life.
Why Was This Study Done?
Identification of the environmental and genetic factors that causally influence gestational age, length, and weight at birth would improve our understanding of why these pregnancy outcomes are associated with disease during adulthood and could help in the design of strategies to prevent these diseases. Epidemiological studies (investigations that examine disease patterns in populations) suggest that, compared to tall mothers, short mothers tend to deliver their babies at earlier gestational ages, with lower birth weights and lengths. Epidemiological studies cannot show, however, whether variations in maternal height cause variations in pregnancy outcomes. Other characteristics shared by tall mothers might actually determine the size and gestational age of their offspring (confounding). Here, the researchers use “Mendelian randomization” to assess the causal effect of maternal height on the size and gestational age at birth of babies. Because gene variants are inherited randomly, they are not prone to confounding. So, if maternal height actually affects gestational age and size at birth, genetic variants (instruments) that affect maternal height should be associated with differences in gestational age and size at birth, provided confounding due to the transmission of parental alleles (variant forms of genes; people have two alleles of every gene, one inherited from each parent) is avoided by adjusting for the baby’s genotype.
What Did the Researchers Do and Find?
The researchers used phenotype data (observable characteristics such as maternal height and birth weight of the baby) and single nucleotide polymorphism (SNP; a type of genetic variant) data obtained from 3,486 Nordic mother/baby pairs. Analysis of the phenotype data indicated that maternal height was significantly associated with length, weight, and gestational age at birth (a significant association is unlikely to have arisen by chance). For their Mendelian randomization analysis, the researchers constructed a genetic score based on 697 SNPs known to be associated with adult height. To avoid confounding due to genetic sharing between the mother and baby, they determined which of the height-associated alleles each baby had inherited from its mother and used the nontransmitted haplotype score as a genetic instrument for maternal height (a haplotype is a set of DNA variations that are inherited together). Birth length and weight were significantly associated with both the maternal and paternal transmitted haplotype scores but not with the maternal nontransmitted haplotype score. However, gestational age was significantly but modestly associated with the maternal nontransmitted haplotype score.
What Do These Findings Mean?
The validity of the assumptions that underlie the Mendelian randomization approach and the design of the studies supplying the data for this analysis may affect the accuracy of the findings reported here. Nevertheless, these findings suggest that the observed association between maternal height and fetal growth measurements is mainly determined by the genetics of the baby. That is, differences in maternal height do not cause differences in birth weight or length. Rather, some of the gene variants that the baby inherits from its mother determine both its size and its mother’s height. These findings also provide weak evidence that the association between maternal height and gestational age is causal. Maternal height might, for example, causally influence gestational age by limiting the space available for the baby’s growth before birth. Finally, these findings introduce an extension to the Mendelian randomization approach that can be used to investigate causal associations between parental characteristics and offspring outcomes.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001865.
The March of Dimes, a not-for-profit organization for pregnancy and baby health, provides information about low birth weight and its consequences
Nemours, a not-for-profit organization for child health, provides information about the weight of newborn babies (in English and Spanish)
Wikipedia has pages on birth weight, gestational age, and Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides information and links to additional resources about birth weight and a brief explanation of gestational age (in English and Spanish)
doi:10.1371/journal.pmed.1001865
PMCID: PMC4540580  PMID: 26284790
2.  Population Stratification and Patterns of Linkage Disequilibrium 
Genetic epidemiology  2009;33(Suppl 1):S88-S92.
Although the importance of selecting cases and controls from the same population has been recognized for decades, the recent advent of genome-wide association studies has heightened awareness of this issue. Because these studies typically deal with large samples, small differences in allele frequencies between cases and controls can easily reach statistical significance. When, unbeknownst to a researcher, cases and controls have different substructures, the number of false-positive findings is inflated. There have been three recent developments of purely statistical approaches to assessing the ancestral comparability of case and control samples: genomic control, structured association, and multivariate reduction analyses. The widespread use of high-throughput technology has allowed the quick and accurate genotyping of the large number of markers required by these methods.
Group 13 dealt with four population stratification issues: single-nucleotide polymorphism marker selection, association testing, non-standard methods, and linkage disequilibrium calculations in stratified or mixed ethnicity samples. We demonstrated that there are continuous axes of ethnic variation in both datasets of Genetic Analysis Workshop 16. Furthermore, ignoring this structure created p-value inflation for a variety of phenotypes. Principal-components analysis (or multidimensional scaling) can control inflation as covariates in a logistic regression. One can weight for local ancestry estimation and allow the use of related individuals. Problems arise in the presence of extremely high association or unusually strong linkage disequilibrium (e.g., in chromosomal inversions). Our group also reported a method for performing an association test controlling for substructure when genome-wide markers are not available to explicitly compute stratification.
doi:10.1002/gepi.20478
PMCID: PMC3133943  PMID: 19924707
genetic association; genome-wide association study; principal components; multidimensional scaling; ethnic substructure
3.  Inflammation, Insulin Resistance, and Diabetes—Mendelian Randomization Using CRP Haplotypes Points Upstream 
PLoS Medicine  2008;5(8):e155.
Background
Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables.
Methods and Findings
We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29–1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p = 0.52–0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p = 0.007–0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p = 0.25–0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight linkage disequilibrium with our tagging SNPs also demonstrated null associations.
Conclusions
Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than the downstream marker CRP.
Using a Mendelian randomization approach, Eric Brunner and colleagues show that the associations between serum C-reactive protein and insulin resistance, glycemia, and diabetes are likely to be noncausal.
Editors' Summary
Background.
Diabetes—a common, long-term (chronic) disease that causes heart, kidney, nerve, and eye problems and shortens life expectancy—is characterized by high levels of sugar (glucose) in the blood. In people without diabetes, blood sugar levels are controlled by the hormone insulin. Insulin is released by the pancreas after eating and “instructs” insulin-responsive muscle and fat cells to take up the glucose from the bloodstream that is produced by the digestion of food. In the early stages of type 2 diabetes (the commonest type of diabetes), the muscle and fat cells become nonresponsive to insulin (a condition called insulin resistance), and blood sugar levels increase. The pancreas responds by making more insulin—people with insulin resistance have high blood levels of both insulin and glucose. Eventually, however, the insulin-producing cells in the pancreas start to malfunction, insulin secretion decreases, and frank diabetes develops.
Why Was This Study Done?
Globally, about 200 million people have diabetes, but experts believe this number will double by 2030. Ways to prevent or delay the onset of diabetes are, therefore, urgently needed. One major risk factor for insulin resistance and diabetes is being overweight. According to one theory, increased body fat causes mild, chronic tissue inflammation, which leads to insulin resistance. Consistent with this idea, people with higher than normal amounts of the inflammatory protein C-reactive protein (CRP) in their blood have a high risk of developing diabetes. If inflammation does cause diabetes, then drugs that inhibit CRP might prevent diabetes. However, simply measuring CRP and determining whether the people with high levels develop diabetes cannot prove that CRP causes diabetes. Those people with high blood levels of CRP might have other unknown factors in common (confounding factors) that are the real causes of diabetes. In this study, the researchers use “Mendelian randomization” to examine whether increased blood CRP causes diabetes. Some variants of CRP (the gene that encodes CRP) increase the amount of CRP in the blood. Because these variants are inherited randomly, there is no likelihood of confounding factors, and an association between these variants and the development of insulin resistance and diabetes indicates, therefore, that increased CRP levels cause diabetes.
What Did the Researchers Do and Find?
The researchers measured blood CRP levels in more than 5,000 people enrolled in the Whitehall II study, which is investigating factors that affect disease development. They also used the “homeostasis model assessment-insulin resistance” (HOMA-IR) method to estimate insulin sensitivity from blood glucose and insulin measurements, and measured levels of hemoglobin A1c (HbA1c, hemoglobin with sugar attached—a measure of long-term blood sugar control) in these people. Finally, they looked at three “single polynucleotide polymorphisms” (SNPs, single nucleotide changes in a gene's DNA sequence; combinations of SNPs that are inherited as a block are called haplotypes) in CRP in each study participant. Common haplotypes of CRP were related to blood serum CRP levels and, as previously reported, increased blood CRP levels were associated with diabetes and with HOMA-IR and HbA1c values indicative of insulin resistance and poor blood sugar control, respectively. By contrast, CRP haplotypes were not related to HOMA-IR or HbA1c values. Similarly, pooled analysis of CRP haplotypes and diabetes in Whitehall II and another large study on health determinants (the Northwick Park Heart Study II) showed no association between CRP variants and diabetes risk. Finally, data from the Wellcome Trust Case Control Consortium also showed no association between CRP haplotypes and diabetes risk.
What Do These Findings Mean?
Together, these findings suggest that increased blood CRP levels are not responsible for the development of insulin resistance or diabetes, at least in European populations. It may be that there is a causal relationship between CRP levels and diabetes risk in other ethnic populations—further Mendelian randomization studies are needed to discover whether this is the case. For now, though, these findings suggest that drugs targeted against CRP are unlikely to prevent or delay the onset of diabetes. However, they do not discount the possibility that proteins involved earlier in the inflammatory process might cause diabetes and might thus represent good drug targets for diabetes prevention.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050155.
This study is further discussed in a PLoS Medicine Perspective by Bernard Keavney
The MedlinePlus encyclopedia provides information about diabetes and about C-reactive protein (in English and Spanish)
US National Institute of Diabetes and Digestive and Kidney Diseases provides patient information on all aspects of diabetes, including information on insulin resistance (in English and Spanish)
The International Diabetes Federation provides information about diabetes, including information on the global diabetes epidemic
The US Centers for Disease Control and Prevention provides information for the public and professionals on all aspects of diabetes (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0050155
PMCID: PMC2504484  PMID: 18700811
4.  Trans-population Analysis of Genetic Mechanisms of Ethnic Disparities in Neuroblastoma Survival 
Background
Black patients with neuroblastoma have a higher prevalence of high-risk disease and worse outcome than white patients. We sought to investigate the relationship between genetic variation and the disparities in survival observed in neuroblastoma.
Methods
The analytic cohort was composed of 2709 patients. Principal components were used to assign patients to genomic ethnic clusters for survival analyses. Locus-specific ancestry was calculated for use in association analysis. The shorter spans of linkage disequilibrium in African populations may facilitate the fine mapping of causal variants in regions previously implicated by genome-wide association studies conducted primarily in patients of European descent. Thus, we evaluated 13 single nucleotide polymorphisms known to be associated with susceptibility to high-risk neuroblastoma from genome-wide association studies and all variants with highly divergent allele frequencies in reference African and European populations near the known susceptibility loci. All statistical tests were two-sided.
Results
African genomic ancestry was associated with high-risk neuroblastoma (P = .007) and lower event-free survival (P = .04, hazard ratio = 1.4, 95% confidence interval = 1.05 to 1.80). rs1033069 within SPAG16 (sperm associated antigen 16) was determined to have higher risk allele frequency in the African reference population and statistically significant association with high-risk disease in patients of European and African ancestry (P = 6.42×10−5, false discovery rate < 0.0015) in the overall cohort. Multivariable analysis using an additive model demonstrated that the SPAG16 single nucleotide polymorphism contributes to the observed ethnic disparities in high-risk disease and survival.
Conclusions
Our study demonstrates that common genetic variation influences neuroblastoma phenotype and contributes to the ethnic disparities in survival observed and illustrates the value of trans-population mapping.
doi:10.1093/jnci/djs503
PMCID: PMC3691940  PMID: 23243203
5.  Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes 
Ng, Maggie C. Y. | Shriner, Daniel | Chen, Brian H. | Li, Jiang | Chen, Wei-Min | Guo, Xiuqing | Liu, Jiankang | Bielinski, Suzette J. | Yanek, Lisa R. | Nalls, Michael A. | Comeau, Mary E. | Rasmussen-Torvik, Laura J. | Jensen, Richard A. | Evans, Daniel S. | Sun, Yan V. | An, Ping | Patel, Sanjay R. | Lu, Yingchang | Long, Jirong | Armstrong, Loren L. | Wagenknecht, Lynne | Yang, Lingyao | Snively, Beverly M. | Palmer, Nicholette D. | Mudgal, Poorva | Langefeld, Carl D. | Keene, Keith L. | Freedman, Barry I. | Mychaleckyj, Josyf C. | Nayak, Uma | Raffel, Leslie J. | Goodarzi, Mark O. | Chen, Y-D Ida | Taylor, Herman A. | Correa, Adolfo | Sims, Mario | Couper, David | Pankow, James S. | Boerwinkle, Eric | Adeyemo, Adebowale | Doumatey, Ayo | Chen, Guanjie | Mathias, Rasika A. | Vaidya, Dhananjay | Singleton, Andrew B. | Zonderman, Alan B. | Igo, Robert P. | Sedor, John R. | Kabagambe, Edmond K. | Siscovick, David S. | McKnight, Barbara | Rice, Kenneth | Liu, Yongmei | Hsueh, Wen-Chi | Zhao, Wei | Bielak, Lawrence F. | Kraja, Aldi | Province, Michael A. | Bottinger, Erwin P. | Gottesman, Omri | Cai, Qiuyin | Zheng, Wei | Blot, William J. | Lowe, William L. | Pacheco, Jennifer A. | Crawford, Dana C. | Grundberg, Elin | Rich, Stephen S. | Hayes, M. Geoffrey | Shu, Xiao-Ou | Loos, Ruth J. F. | Borecki, Ingrid B. | Peyser, Patricia A. | Cummings, Steven R. | Psaty, Bruce M. | Fornage, Myriam | Iyengar, Sudha K. | Evans, Michele K. | Becker, Diane M. | Kao, W. H. Linda | Wilson, James G. | Rotter, Jerome I. | Sale, Michèle M. | Liu, Simin | Rotimi, Charles N. | Bowden, Donald W.
PLoS Genetics  2014;10(8):e1004517.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94
Author Summary
Despite the higher prevalence of type 2 diabetes (T2D) in African Americans than in Europeans, recent genome-wide association studies (GWAS) were examined primarily in individuals of European ancestry. In this study, we performed meta-analysis of 17 GWAS in 8,284 cases and 15,543 controls to explore the genetic architecture of T2D in African Americans. Following replication in additional 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry, we identified two novel and three previous reported T2D loci reaching genome-wide significance. We also examined 158 loci previously reported to be associated with T2D or regulating glucose homeostasis. While 56% of these loci were shared between African Americans and the other populations, the strongest associations in African Americans are often found in nearby single nucleotide polymorphisms (SNPs) instead of the original SNPs reported in other populations due to differential genetic architecture across populations. Our results highlight the importance of performing genetic studies in non-European populations to fine map the causal genetic variants.
doi:10.1371/journal.pgen.1004517
PMCID: PMC4125087  PMID: 25102180
Genetic epidemiology  2013;37(8):10.1002/gepi.21764.
Population stratification is of primary interest in genetic studies to infer human evolution history and to avoid spurious findings in association testing. Although it is well studied with high-density single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWASs), next-generation sequencing brings both new opportunities and challenges to uncovering population structures in finer scales. Several recent studies have noticed different confounding effects from variants of different minor allele frequencies (MAFs). In this paper, using a low-coverage sequencing dataset from the 1000 Genomes Project, we compared a popular method, principal component analysis (PCA), with a recently proposed spectral clustering technique, called spectral dimensional reduction (SDR), in detecting and adjusting for population stratification at the level of ethnic subgroups. We investigated the varying performance of adjusting for population stratification with different types and sets of variants when testing on different types of variants. One main conclusion is that principal components based on all variants or common variants were generally most effective in controlling inflations caused by population stratification; in particular, contrary to many speculations on the effectiveness of rare variants, we did not find much added value with the use of only rare variants. In addition, SDR was confirmed to be more robust than PCA, especially when applied to rare variants.
doi:10.1002/gepi.21764
PMCID: PMC3864649  PMID: 24123217
1000 Genomes Project; Association testing; Common variants; Principal component analysis; Rare variants; Spectral analysis
PLoS Medicine  2014;11(9):e1001713.
In this study, Proitsi and colleagues use a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset Alzheimer's Disease (LOAD) and find that genetic predisposition to increased plasma cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk.
Please see later in the article for the Editors' Summary
Background
Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD.
Methods and Findings
We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n = 10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10−8 and trait specific scores using SNPs associated exclusively with each trait at p<5×10−8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR] = 1.005, 95% CI 0.82–1.24, p = 0.962 per 1 unit increase in HDL-c; OR = 0.901, 95% CI 0.65–1.25, p = 0.530 per 1 unit increase in LDL-c; OR = 1.104, 95% CI 0.89–1.37, p = 0.362 per 1 unit increase in triglycerides; and OR = 0.954, 95% CI 0.76–1.21, p = 0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance.
Conclusions
Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Currently, about 44 million people worldwide have dementia, a group of brain disorders characterized by an irreversible decline in memory, communication, and other “cognitive” functions. Dementia mainly affects older people and, because people are living longer, experts estimate that more than 135 million people will have dementia by 2050. The commonest form of dementia is Alzheimer disease. In this type of dementia, protein clumps called plaques and neurofibrillary tangles form in the brain and cause its degeneration. The earliest sign of Alzheimer disease is usually increasing forgetfulness. As the disease progresses, affected individuals gradually lose their ability to deal with normal daily activities such as dressing. They may become anxious or aggressive or begin to wander. They may also eventually lose control of their bladder and of other physical functions. At present, there is no cure for Alzheimer disease although some of its symptoms can be managed with drugs. Most people with the disease are initially cared for at home by relatives and other unpaid carers, but many patients end their days in a care home or specialist nursing home.
Why Was This Study Done?
Several lines of evidence suggest that lipid metabolism (how the body handles cholesterol and other fats) is altered in patients whose Alzheimer disease develops after the age of 60 years (late onset Alzheimer disease, LOAD). In particular, epidemiological studies (observational investigations that examine the patterns and causes of disease in populations) have found an association between high amounts of cholesterol in the blood in midlife and the risk of LOAD. However, observational studies cannot prove that abnormal lipid metabolism (dyslipidemia) causes LOAD. People with dyslipidemia may share other characteristics that cause both dyslipidemia and LOAD (confounding) or LOAD might actually cause dyslipidemia (reverse causation). Here, the researchers use “Mendelian randomization” to examine whether lifetime changes in lipid metabolism caused by genes have a causal impact on LOAD risk. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the effect of a modifiable risk factor and the outcome of interest. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if dyslipidemia causes LOAD, genetic variants that affect lipid metabolism should be associated with an altered risk of LOAD.
What Did the Researchers Do and Find?
The researchers investigated whether genetic predisposition to raised lipid levels increased the risk of LOAD in 10,578 participants (3,914 patients with LOAD, 1,675 elderly people without LOAD, and 4,989 population controls) using data collected in six genome wide studies looking for gene variants associated with Alzheimer disease. The researchers constructed a genotype risk score (GRS) for each participant using genetic risk markers for four types of blood lipids on the basis of the presence of single nucleotide polymorphisms (SNPs, a type of gene variant) in their DNA. When the researchers used statistical methods to investigate the association between the GRS and LOAD among all the study participants, they found no association between the GRS and LOAD.
What Do These Findings Mean?
These findings suggest that the genetic predisposition to raised blood levels of four types of lipid is not causally associated with LOAD risk. The accuracy of this finding may be affected by several limitations of this study, including the small proportion of lipid variance explained by the GRS and the validity of several assumptions that underlie all Mendelian randomization studies. Moreover, because all the participants in this study were white, these findings may not apply to people of other ethnic backgrounds. Given their findings, the researchers suggest that the observed epidemiological associations between abnormal lipid levels in the blood and variation in lipid levels for reasons other than genetics, or to LOAD risk could be secondary to variation in lipid levels for reasons other than genetics, or to LOAD, a possibility that can be investigated by studying blood lipid levels and other markers of lipid metabolism over time in large groups of patients with LOAD. Importantly, however, these findings provide new information about the role of lipids in LOAD development that may eventually lead to new therapeutic and public-health interventions for Alzheimer disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001713.
The UK National Health Service Choices website provides information (including personal stories) about Alzheimer's disease
The UK not-for-profit organization Alzheimer's Society provides information for patients and carers about dementia, including personal experiences of living with Alzheimer's disease
The US not-for-profit organization Alzheimer's Association also provides information for patients and carers about dementia and personal stories about dementia
Alzheimer's Disease International is the international federation of Alzheimer disease associations around the world; it provides links to individual associations, information about dementia, and links to World Alzheimer Reports
MedlinePlus provides links to additional resources about Alzheimer's disease (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001713
PMCID: PMC4165594  PMID: 25226301
BMC Proceedings  2011;5(Suppl 9):S35.
Because of the low frequency of rare genetic variants in observed data, the statistical power of detecting their associations with target traits is usually low. The collapsing test of collective effect of multiple rare variants is an important and useful strategy to increase the power; in addition, family data may be enriched with causal rare variants and therefore provide extra power. However, when family data are used, both population structure and familial relatedness need to be adjusted for the possible inflation of false positives. Using a unified mixed linear model and family data, we compared six methods to detect the association between multiple rare variants and quantitative traits. Through the analysis of 200 replications of the quantitative trait Q2 from the Genetic Analysis Workshop 17 data set simulated for 697 subjects from 8 extended families, and based on quantile-quantile plots under the null and receiver operating characteristic curves, we compared the false-positive rate and power of these methods. We observed that adjusting for pedigree-based kinship gives the best control for false-positive rate, whereas adjusting for marker-based identity by state slightly outperforms in terms of power. An adjustment based on a principal components analysis slightly improves the false-positive rate and power. Taking into account type-1 error, power, and computational efficiency, we find that adjusting for pedigree-based kinship seems to be a good choice for the collective test of association between multiple rare variants and quantitative traits using family data.
doi:10.1186/1753-6561-5-S9-S35
PMCID: PMC3287871  PMID: 22373066
BMC Proceedings  2011;5(Suppl 9):S66.
Statistical tests on rare variant data may well have type I error rates that differ from their nominal levels. Here, we use the Genetic Analysis Workshop 17 data to estimate type I error rates and powers of three models for identifying rare variants associated with a phenotype: (1) by using the number of minor alleles, age, and smoking status as predictor variables; (2) by using the number of minor alleles, age, smoking status, and the identity of the population of the subject as predictor variables; and (3) by using the number of minor alleles, age, smoking status, and ancestry adjustment using 10 principal component scores. We studied both quantitative phenotype and a dichotomized phenotype. The model with principal component adjustment has type I error rates that are closer to the nominal level of significance of 0.05 for single-nucleotide polymorphisms (SNPs) in noncausal genes for the selected phenotype than the model directly adjusting for population. The principal component adjustment model type I error rates are also closer to the nominal level of 0.05 for noncausal SNPs located in causal genes for the phenotype. The power for causal SNPs with the principal component adjustment model is comparable to the power of the other methods. The power using the underlying quantitative phenotype is greater than the power using the dichotomized phenotype.
doi:10.1186/1753-6561-5-S9-S66
PMCID: PMC3287905  PMID: 22373457
PLoS Medicine  2014;11(10):e1001751.
In this study, Richards and colleagues undertook a Mendelian randomization study to determine whether vitamin D binding protein (DBP) levels have a causal effect on common calcemic and cardiometabolic diseases. They concluded that DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except Vit D levels.
Please see later in the article for the Editors' Summary
Background
Observational studies have shown that vitamin D binding protein (DBP) levels, a key determinant of 25-hydroxy-vitamin D (25OHD) levels, and 25OHD levels themselves both associate with risk of disease. If 25OHD levels have a causal influence on disease, and DBP lies in this causal pathway, then DBP levels should likewise be causally associated with disease. We undertook a Mendelian randomization study to determine whether DBP levels have causal effects on common calcemic and cardiometabolic disease.
Methods and Findings
We measured DBP and 25OHD levels in 2,254 individuals, followed for up to 10 y, in the Canadian Multicentre Osteoporosis Study (CaMos). Using the single nucleotide polymorphism rs2282679 as an instrumental variable, we applied Mendelian randomization methods to determine the causal effect of DBP on calcemic (osteoporosis and hyperparathyroidism) and cardiometabolic diseases (hypertension, type 2 diabetes, coronary artery disease, and stroke) and related traits, first in CaMos and then in large-scale genome-wide association study consortia. The effect allele was associated with an age- and sex-adjusted decrease in DBP level of 27.4 mg/l (95% CI 24.7, 30.0; n = 2,254). DBP had a strong observational and causal association with 25OHD levels (p = 3.2×10−19). While DBP levels were observationally associated with calcium and body mass index (BMI), these associations were not supported by causal analyses. Despite well-powered sample sizes from consortia, there were no associations of rs2282679 with any other traits and diseases: fasting glucose (0.00 mmol/l [95% CI −0.01, 0.01]; p = 1.00; n = 46,186); fasting insulin (0.01 pmol/l [95% CI −0.00, 0.01,]; p = 0.22; n = 46,186); BMI (0.00 kg/m2 [95% CI −0.01, 0.01]; p = 0.80; n = 127,587); bone mineral density (0.01 g/cm2 [95% CI −0.01, 0.03]; p = 0.36; n = 32,961); mean arterial pressure (−0.06 mm Hg [95% CI −0.19, 0.07]); p = 0.36; n = 28,775); ischemic stroke (odds ratio [OR] = 1.00 [95% CI 0.97, 1.04]; p = 0.92; n = 12,389/62,004 cases/controls); coronary artery disease (OR = 1.02 [95% CI 0.99, 1.05]; p = 0.31; n = 22,233/64,762); or type 2 diabetes (OR = 1.01 [95% CI 0.97, 1.05]; p = 0.76; n = 9,580/53,810).
Conclusions
DBP has no demonstrable causal effect on any of the diseases or traits investigated here, except 25OHD levels. It remains to be determined whether 25OHD has a causal effect on these outcomes independent of DBP.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Vitamin D deficiency is an increasingly common public health concern. According to some estimates, more than a billion people worldwide may be vitamin D deficient. Indeed, many people living in the US and Europe (in particular, elderly people, breastfed infants, people with dark skin, and obese individuals) have serum (circulating) 25-hydroxy-vitamin D (25OHD) levels below 50 nmol/l, the threshold for vitamin D deficiency. Vitamin D helps the body absorb calcium, a mineral that is essential for healthy bones. Consequently, vitamin D deficiency can lead to calcemic diseases such as rickets (a condition that affects bone development in children), osteomalacia (soft bones in adults), and osteoporosis (a condition in which the bones weaken and become susceptible to fracture). We get most of our vitamin D needs from our skin, which makes vitamin D after exposure to sunlight. Vitamin D is also found naturally in oily fish and eggs, and is added to some other foods, including cereals and milk, but some people need to take vitamin D supplements to avoid vitamin D deficiency.
Why Was This Study Done?
Observational studies have reported that the low levels of serum 25OHD and serum vitamin D binding protein (DBP, a key determinant of serum 25OHD level) are both associated with the risk of several common diseases and traits. Such studies have implicated vitamin D deficiency in cardiometabolic disease (cardiovascular diseases that affect the heart and/or blood vessels and metabolic diseases that affect the cellular chemical reactions needed to sustain life), in some cancers, and in Alzheimer disease. But observational studies cannot prove that vitamin D deficiency or DBP levels actually cause any of these diseases. So, for example, an observational study might report an association between vitamin D deficiency and type 2 diabetes (a metabolic disease), but the individuals who develop type 2 diabetes might share another unknown characteristic that is actually responsible for disease development (a confounding factor). Alternatively, type 2 diabetes might reduce circulating vitamin D levels (reverse causation). Here, the researchers undertake a Mendelian randomization study to determine whether circulating DBP levels have causal effects on calcemic and cardiometabolic diseases. In Mendelian randomization, causality is inferred from associations between genetic variants that mimic the influence of a modifiable environmental exposure and the outcome of interest. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if low DBP levels lead to low serum 25OHD levels, and vitamin D levels have a causal effect on common diseases, genetic variants associated with low DBP levels should be associated with the development of common diseases.
What Did the Researchers Do and Find?
The researchers analyzed the association between a genetic variant called single nucleotide polymorphism (SNP) rs2282679, which is known to alter DBP levels, and calcemic and cardiometabolic diseases and related traits in 2,254 participants in the Canadian Multicentre Osteoporosis Study (CaMos). The researchers report that there was a strong association between SNP rs2282679 and both serum DBP and 25OHD levels among the CaMos participants. However, there were no significant associations (associations unlikely to have occurred by chance) between SNP rs2282679 and calcium level, osteoporosis, or several cardiometabolic diseases, including heart attacks and diabetes. Moreover, when the researchers examined publically available genome-wide association study data collected by several international consortia investigating genetic influences on disease, they found no significant associations between rs2282679 and a wide range of calcemic and cardiometabolic diseases.
What Do These Findings Mean?
In this Mendelian randomization study, DBP level had no demonstrable causal effect on any of the calcemic or cardiometabolic diseases or traits investigated, except 25OHD level. Because most of the participants in CaMos and the international consortia were of European descent, these findings are applicable only to people of European ancestry. Moreover, like all Mendelian randomization studies, the reliability of these findings depends on several assumptions made by the researchers. Notably, although this study strongly suggests that DBP level does not have a causal influence on several common diseases, it remains to be determined whether 25OHD has a causal effect on any calcemic or cardiometabolic outcomes independent of DBP level.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001751.
The UK National Health Service Choices website provides information about vitamin D and about how to get vitamin D from sunshine; “Behind the Headlines” articles describe a recent observational study that reported an association between vitamin D deficiency and Alzheimer disease and the media coverage of this study, other health claims made for vitamin D, and a randomized control trial that questioned the role of vitamin D in disease
The US National Institutes of Health Office of Dietary Supplements provides information about vitamin D (in English and Spanish)
The US Centers for Disease Control and Prevention provides information about the vitamin D status of the US population
MedlinePlus has links to further information about vitamin D (in English and Spanish)
Information about the Canadian Multicentre Osteoporosis Study is available
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001751
PMCID: PMC4211663  PMID: 25350643
Srivastava, A. K. | Wang, Y. | Huang, R. | Skinner, C. | Thompson, T. | Pollard, L. | Wood, T. | Luo, F. | Stevenson, R. | Polimanti, R. | Gelernter, J. | Lin, X. | Lim, I. Y. | Wu, Y. | Teh, A. L. | Chen, L. | Aris, I. M. | Soh, S. E. | Tint, M. T. | MacIsaac, J. L. | Yap, F. | Kwek, K. | Saw, S. M. | Kobor, M. S. | Meaney, M. J. | Godfrey, K. M. | Chong, Y. S. | Holbrook, J. D. | Lee, Y. S. | Gluckman, P. D. | Karnani, N. | Kapoor, A. | Lee, D. | Chakravarti, A. | Maercker, C. | Graf, F. | Boutros, M. | Stamoulis, G. | Santoni, F. | Makrythanasis, P. | Letourneau, A. | Guipponi, M. | Panousis, N. | Garieri, M. | Ribaux, P. | Falconnet, E. | Borel, C. | Antonarakis, S. E. | Kumar, S. | Curran, J. | Blangero, J. | Chatterjee, S. | Kapoor, A. | Akiyama, J. | Auer, D. | Berrios, C. | Pennacchio, L. | Chakravarti, A. | Donti, T. R. | Cappuccio, G. | Miller, M. | Atwal, P. | Kennedy, A. | Cardon, A. | Bacino, C. | Emrick, L. | Hertecant, J. | Baumer, F. | Porter, B. | Bainbridge, M. | Bonnen, P. | Graham, B. | Sutton, R. | Sun, Q. | Elsea, S. | Hu, Z. | Wang, P. | Zhu, Y. | Zhao, J. | Xiong, M. | Bennett, David A. | Hidalgo-Miranda, A. | Romero-Cordoba, S. | Rodriguez-Cuevas, S. | Rebollar-Vega, R. | Tagliabue, E. | Iorio, M. | D’Ippolito, E. | Baroni, S. | Kaczkowski, B. | Tanaka, Y. | Kawaji, H. | Sandelin, A. | Andersson, R. | Itoh, M. | Lassmann, T. | Hayashizaki, Y. | Carninci, P. | Forrest, A. R. R. | Semple, C. A. | Rosenthal, E. A. | Shirts, B. | Amendola, L. | Gallego, C. | Horike-Pyne, M. | Burt, A. | Robertson, P. | Beyers, P. | Nefcy, C. | Veenstra, D. | Hisama, F. | Bennett, R. | Dorschner, M. | Nickerson, D. | Smith, J. | Patterson, K. | Crosslin, D. | Nassir, R. | Zubair, N. | Harrison, T. | Peters, U. | Jarvik, G. | Menghi, F. | Inaki, K. | Woo, X. | Kumar, P. | Grzeda, K. | Malhotra, A. | Kim, H. | Ucar, D. | Shreckengast, P. | Karuturi, K. | Keck, J. | Chuang, J. | Liu, E. T. | Ji, B. | Tyler, A. | Ananda, G. | Carter, G. | Nikbakht, H. | Montagne, M. | Zeinieh, M. | Harutyunyan, A. | Mcconechy, M. | Jabado, N. | Lavigne, P. | Majewski, J. | Goldstein, J. B. | Overman, M. | Varadhachary, G. | Shroff, R. | Wolff, R. | Javle, M. | Futreal, A. | Fogelman, D. | Bravo, L. | Fajardo, W. | Gomez, H. | Castaneda, C. | Rolfo, C. | Pinto, J. A. | Akdemir, K. C. | Chin, L. | Futreal, A. | Patterson, S. | Statz, C. | Mockus, S. | Nikolaev, S. N. | Bonilla, X. I. | Parmentier, L. | King, B. | Bezrukov, F. | Kaya, G. | Zoete, V. | Seplyarskiy, V. | Sharpe, H. | McKee, T. | Letourneau, A. | Ribaux, P. | Popadin, K. | Basset-Seguin, N. | Chaabene, R. Ben | Santoni, F. | Andrianova, M. | Guipponi, M. | Garieri, M. | Verdan, C. | Grosdemange, K. | Sumara, O. | Eilers, M. | Aifantis, I. | Michielin, O. | de Sauvage, F. | Antonarakis, S. | Likhitrattanapisal, S. | Lincoln, S. | Kurian, A. | Desmond, A. | Yang, S. | Kobayashi, Y. | Ford, J. | Ellisen, L. | Peters, T. L. | Alvarez, K. R. | Hollingsworth, E. F. | Lopez-Terrada, D. H. | Hastie, A. | Dzakula, Z. | Pang, A. W. | Lam, E. T. | Anantharaman, T. | Saghbini, M. | Cao, H. | Gonzaga-Jauregui, C. | Ma, L. | King, A. | Rosenzweig, E. Berman | Krishnan, U. | Reid, J. G. | Overton, J. D. | Dewey, F. | Chung, W. K. | Small, K. | DeLuca, A. | Cremers, F. | Lewis, R. A. | Puech, V. | Bakall, B. | Silva-Garcia, R. | Rohrschneider, K. | Leys, M. | Shaya, F. S. | Stone, E. | Sobreira, N. L. | Schiettecatte, F. | Ling, H. | Pugh, E. | Witmer, D. | Hetrick, K. | Zhang, P. | Doheny, K. | Valle, D. | Hamosh, A. | Jhangiani, S. N. | Akdemir, Z. Coban | Bainbridge, M. N. | Charng, W. | Wiszniewski, W. | Gambin, T. | Karaca, E. | Bayram, Y. | Eldomery, M. K. | Posey, J. | Doddapaneni, H. | Hu, J. | Sutton, V. R. | Muzny, D. M. | Boerwinkle, E. A. | Valle, D. | Lupski, J. R. | Gibbs, R. A. | Shekar, S. | Salerno, W. | English, A. | Mangubat, A. | Bruestle, J. | Thorogood, A. | Knoppers, B. M. | Takahashi, H. | Nitta, K. R. | Kozhuharova, A. | Suzuki, A. M. | Sharma, H. | Cotella, D. | Santoro, C. | Zucchelli, S. | Gustincich, S. | Carninci, P. | Mulvihill, J. J. | Baynam, G. | Gahl, W. | Groft, S. C. | Kosaki, K. | Lasko, P. | Melegh, B. | Taruscio, D. | Ghosh, R. | Plon, S. | Scherer, S. | Qin, X. | Sanghvi, R. | Walker, K. | Chiang, T. | Muzny, D. | Wang, L. | Black, J. | Boerwinkle, E. | Weinshilboum, R. | Gibbs, R. | Karpinets, T. | Calderone, T. | Wani, K. | Yu, X. | Creasy, C. | Haymaker, C. | Forget, M. | Nanda, V. | Roszik, J. | Wargo, J. | Haydu, L. | Song, X. | Lazar, A. | Gershenwald, J. | Davies, M. | Bernatchez, C. | Zhang, J. | Futreal, A. | Woodman, S. | Chesler, E. J. | Reynolds, T. | Bubier, J. A. | Phillips, C. | Langston, M. A. | Baker, E. J. | Xiong, M. | Ma, L. | Lin, N. | Amos, C. | Lin, N. | Wang, P. | Zhu, Y. | Zhao, J. | Calhoun, V. | Xiong, M. | Dobretsberger, O. | Egger, M. | Leimgruber, F. | Sadedin, S. | Oshlack, A. | Antonio, V. A. A. | Ono, N. | Ahmed, Z. | Bolisetty, M. | Zeeshan, S. | Anguiano, E. | Ucar, D. | Sarkar, A. | Nandineni, M. R. | Zeng, C. | Shao, J. | Cao, H. | Hastie, A. | Pang, A. W. | Lam, E. T. | Liang, T. | Pham, K. | Saghbini, M. | Dzakula, Z. | Chee-Wei, Y. | Dongsheng, L. | Lai-Ping, W. | Lian, D. | Hee, R. O. Twee | Yunus, Y. | Aghakhanian, F. | Mokhtar, S. S. | Lok-Yung, C. V. | Bhak, J. | Phipps, M. | Shuhua, X. | Yik-Ying, T. | Kumar, V. | Boon-Peng, H. | Campbell, I. | Young, M. -A. | James, P. | Rain, M. | Mohammad, G. | Kukreti, R. | Pasha, Q. | Akilzhanova, A. R. | Guelly, C. | Abilova, Z. | Rakhimova, S. | Akhmetova, A. | Kairov, U. | Trajanoski, S. | Zhumadilov, Z. | Bekbossynova, M. | Schumacher, C. | Sandhu, S. | Harkins, T. | Makarov, V. | Doddapaneni, H. | Glenn, R. | Momin, Z. | Dilrukshi, B. | Chao, H. | Meng, Q. | Gudenkauf, B. | Kshitij, R. | Jayaseelan, J. | Nessner, C. | Lee, S. | Blankenberg, K. | Lewis, L. | Hu, J. | Han, Y. | Dinh, H. | Jireh, S. | Walker, K. | Boerwinkle, E. | Muzny, D. | Gibbs, R. | Hu, J. | Walker, K. | Buhay, C. | Liu, X. | Wang, Q. | Sanghvi, R. | Doddapaneni, H. | Ding, Y. | Veeraraghavan, N. | Yang, Y. | Boerwinkle, E. | Beaudet, A. L. | Eng, C. M. | Muzny, D. M. | Gibbs, R. A. | Worley, K. C. C. | Liu, Y. | Hughes, D. S. T. | Murali, S. C. | Harris, R. A. | English, A. C. | Qin, X. | Hampton, O. A. | Larsen, P. | Beck, C. | Han, Y. | Wang, M. | Doddapaneni, H. | Kovar, C. L. | Salerno, W. J. | Yoder, A. | Richards, S. | Rogers, J. | Lupski, J. R. | Muzny, D. M. | Gibbs, R. A. | Meng, Q. | Bainbridge, M. | Wang, M. | Doddapaneni, H. | Han, Y. | Muzny, D. | Gibbs, R. | Harris, R. A. | Raveenedran, M. | Xue, C. | Dahdouli, M. | Cox, L. | Fan, G. | Ferguson, B. | Hovarth, J. | Johnson, Z. | Kanthaswamy, S. | Kubisch, M. | Platt, M. | Smith, D. | Vallender, E. | Wiseman, R. | Liu, X. | Below, J. | Muzny, D. | Gibbs, R. | Yu, F. | Rogers, J. | Lin, J. | Zhang, Y. | Ouyang, Z. | Moore, A. | Wang, Z. | Hofmann, J. | Purdue, M. | Stolzenberg-Solomon, R. | Weinstein, S. | Albanes, D. | Liu, C. S. | Cheng, W. L. | Lin, T. T. | Lan, Q. | Rothman, N. | Berndt, S. | Chen, E. S. | Bahrami, H. | Khoshzaban, A. | Keshal, S. Heidari | Bahrami, H. | Khoshzaban, A. | Keshal, S. Heidari | Alharbi, K. K. R. | Zhalbinova, M. | Akilzhanova, A. | Rakhimova, S. | Bekbosynova, M. | Myrzakhmetova, S. | Matar, M. | Mili, N. | Molinari, R. | Ma, Y. | Guerrier, S. | Elhawary, N. | Tayeb, M. | Bogari, N. | Qotb, N. | McClymont, S. A. | Hook, P. W. | Goff, L. A. | McCallion, A. | Kong, Y. | Charette, J. R. | Hicks, W. L. | Naggert, J. K. | Zhao, L. | Nishina, P. M. | Edrees, B. M. | Athar, M. | Al-Allaf, F. A. | Taher, M. M. | Khan, W. | Bouazzaoui, A. | Harbi, N. A. | Safar, R. | Al-Edressi, H. | Anazi, A. | Altayeb, N. | Ahmed, M. A. | Alansary, K. | Abduljaleel, Z. | Kratz, A. | Beguin, P. | Poulain, S. | Kaneko, M. | Takahiko, C. | Matsunaga, A. | Kato, S. | Suzuki, A. M. | Bertin, N. | Lassmann, T. | Vigot, R. | Carninci, P. | Plessy, C. | Launey, T. | Graur, D. | Lee, D. | Kapoor, A. | Chakravarti, A. | Friis-Nielsen, J. | Izarzugaza, J. M. | Brunak, S. | Chakraborty, A. | Basak, J. | Mukhopadhyay, A. | Soibam, B. S. | Das, D. | Biswas, N. | Das, S. | Sarkar, S. | Maitra, A. | Panda, C. | Majumder, P. | Morsy, H. | Gaballah, A. | Samir, M. | Shamseya, M. | Mahrous, H. | Ghazal, A. | Arafat, W. | Hashish, M. | Gruber, J. J. | Jaeger, N. | Snyder, M. | Patel, K. | Bowman, S. | Davis, T. | Kraushaar, D. | Emerman, A. | Russello, S. | Henig, N. | Hendrickson, C. | Zhang, K. | Rodriguez-Dorantes, M. | Cruz-Hernandez, C. D. | Garcia-Tobilla, C. D. P. | Solorzano-Rosales, S. | Jäger, N. | Chen, J. | Haile, R. | Hitchins, M. | Brooks, J. D. | Snyder, M. | Jiménez-Morales, S. | Ramírez, M. | Nuñez, J. | Bekker, V. | Leal, Y. | Jiménez, E. | Medina, A. | Hidalgo, A. | Mejía, J. | Halytskiy, V. | Naggert, J. | Collin, G. B. | DeMauro, K. | Hanusek, R. | Nishina, P. M. | Belhassa, K. | Belhassan, K. | Bouguenouch, L. | Samri, I. | Sayel, H. | moufid, FZ. | El Bouchikhi, I. | Trhanint, S. | Hamdaoui, H. | Elotmani, I. | Khtiri, I. | Kettani, O. | Quibibo, L. | Ahagoud, M. | Abbassi, M. | Ouldim, K. | Marusin, A. V. | Kornetov, A. N. | Swarovskaya, M. | Vagaiceva, K. | Stepanov, V. | De La Paz, E. M. Cutiongco | Sy, R. | Nevado, J. | Reganit, P. | Santos, L. | Magno, J. D. | Punzalan, F. E. | Ona, D. | Llanes, E. | Santos-Cortes, R. L. | Tiongco, R. | Aherrera, J. | Abrahan, L. | Pagauitan-Alan, P. | Morelli, K. H. | Domire, J. S. | Pyne, N. | Harper, S. | Burgess, R. | Zhalbinova, M. | Akilzhanova, A. | Rakhimova, S. | Bekbosynova, M. | Myrzakhmetova, S. | Gari, M. A. | Dallol, A. | Alsehli, H. | Gari, A. | Gari, M. | Abuzenadah, A. | Thomas, M. | Sukhai, M. | Garg, S. | Misyura, M. | Zhang, T. | Schuh, A. | Stockley, T. | Kamel-Reid, S. | Sherry, S. | Xiao, C. | Slotta, D. | Rodarmer, K. | Feolo, M. | Kimelman, M. | Godynskiy, G. | O’Sullivan, C. | Yaschenko, E. | Xiao, C. | Yaschenko, E. | Sherry, S. | Rangel-Escareño, C. | Rueda-Zarate, H. | Tayubi, I. A. | Mohammed, R. | Ahmed, I. | Ahmed, T. | Seth, S. | Amin, S. | Song, X. | Mao, X. | Sun, H. | Verhaak, R. G. | Futreal, A. | Zhang, J. | Whiite, S. J. | Chiang, T. | English, A. | Farek, J. | Kahn, Z. | Salerno, W. | Veeraraghavan, N. | Boerwinkle, E. | Gibbs, R. | Kasukawa, T. | Lizio, M. | Harshbarger, J. | Hisashi, S. | Severin, J. | Imad, A. | Sahin, S. | Freeman, T. C. | Baillie, K. | Sandelin, A. | Carninci, P. | Forrest, A. R. R. | Kawaji, H. | Salerno, W. | English, A. | Shekar, S. N. | Mangubat, A. | Bruestle, J. | Boerwinkle, E. | Gibbs, R. A. | Salem, A. H. | Ali, M. | Ibrahim, A. | Ibrahim, M. | Barrera, H. A. | Garza, L. | Torres, J. A. | Barajas, V. | Ulloa-Aguirre, A. | Kershenobich, D. | Mortaji, Shahroj | Guizar, Pedro | Loera, Eliezer | Moreno, Karen | De León, Adriana | Monsiváis, Daniela | Gómez, Jackeline | Cardiel, Raquel | Fernandez-Lopez, J. C. | Bonifaz-Peña, V. | Rangel-Escareño, C. | Hidalgo-Miranda, A. | Contreras, A. V. | Polfus, L. | Wang, X. | Philip, V. | Carter, G. | Abuzenadah, A. A. | Gari, M. | Turki, R. | Dallol, A. | Uyar, A. | Kaygun, A. | Zaman, S. | Marquez, E. | George, J. | Ucar, D. | Hendrickson, C. L. | Emerman, A. | Kraushaar, D. | Bowman, S. | Henig, N. | Davis, T. | Russello, S. | Patel, K. | Starr, D. B. | Baird, M. | Kirkpatrick, B. | Sheets, K. | Nitsche, R. | Prieto-Lafuente, L. | Landrum, M. | Lee, J. | Rubinstein, W. | Maglott, D. | Thavanati, P. K. R. | de Dios, A. Escoto | Hernandez, R. E. Navarro | Aldrate, M. E. Aguilar | Mejia, M. R. Ruiz | Kanala, K. R. R. | Abduljaleel, Z. | Khan, W. | Al-Allaf, F. A. | Athar, M. | Taher, M. M. | Shahzad, N. | Bouazzaoui, A. | Huber, E. | Dan, A. | Al-Allaf, F. A. | Herr, W. | Sprotte, G. | Köstler, J. | Hiergeist, A. | Gessner, A. | Andreesen, R. | Holler, E. | Al-Allaf, F. | Alashwal, A. | Abduljaleel, Z. | Taher, M. | Bouazzaoui, A. | Abalkhail, H. | Al-Allaf, A. | Bamardadh, R. | Athar, M. | Filiptsova, O. | Kobets, M. | Kobets, Y. | Burlaka, I. | Timoshyna, I. | Filiptsova, O. | Kobets, M. N. | Kobets, Y. | Burlaka, I. | Timoshyna, I. | Filiptsova, O. | Kobets, M. N. | Kobets, Y. | Burlaka, I. | Timoshyna, I. | Al-allaf, F. A. | Mohiuddin, M. T. | Zainularifeen, A. | Mohammed, A. | Abalkhail, H. | Owaidah, T. | Bouazzaoui, A.
Human Genomics  2016;10(Suppl 1):12.
Table of contents
O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder
A. K. Srivastava, Y. Wang, R. Huang, C. Skinner, T. Thompson, L. Pollard, T. Wood, F. Luo, R. Stevenson
O2 Phenome-wide association study for smoking- and drinking-associated genes in 26,394 American women with African, Asian, European, and Hispanic descents
R. Polimanti, J. Gelernter
O3 Effects of prenatal environment, genotype and DNA methylation on birth weight and subsequent postnatal outcomes: findings from GUSTO, an Asian birth cohort
X. Lin, I. Y. Lim, Y. Wu, A. L. Teh, L. Chen, I. M. Aris, S. E. Soh, M. T. Tint, J. L. MacIsaac, F. Yap, K. Kwek, S. M. Saw, M. S. Kobor, M. J. Meaney, K. M. Godfrey, Y. S. Chong, J. D. Holbrook, Y. S. Lee, P. D. Gluckman, N. Karnani, GUSTO study group
O4 High-throughput identification of specific qt interval modulating enhancers at the SCN5A locus
A. Kapoor, D. Lee, A. Chakravarti
O5 Identification of extracellular matrix components inducing cancer cell migration in the supernatant of cultivated mesenchymal stem cells
C. Maercker, F. Graf, M. Boutros
O6 Single cell allele specific expression (ASE) IN T21 and common trisomies: a novel approach to understand DOWN syndrome and other aneuploidies
G. Stamoulis, F. Santoni, P. Makrythanasis, A. Letourneau, M. Guipponi, N. Panousis, M. Garieri, P. Ribaux, E. Falconnet, C. Borel, S. E. Antonarakis
O7 Role of microRNA in LCL to IPSC reprogramming
S. Kumar, J. Curran, J. Blangero
O8 Multiple enhancer variants disrupt gene regulatory network in Hirschsprung disease
S. Chatterjee, A. Kapoor, J. Akiyama, D. Auer, C. Berrios, L. Pennacchio, A. Chakravarti
O9 Metabolomic profiling for the diagnosis of neurometabolic disorders
T. R. Donti, G. Cappuccio, M. Miller, P. Atwal, A. Kennedy, A. Cardon, C. Bacino, L. Emrick, J. Hertecant, F. Baumer, B. Porter, M. Bainbridge, P. Bonnen, B. Graham, R. Sutton, Q. Sun, S. Elsea
O10 A novel causal methylation network approach to Alzheimer’s disease
Z. Hu, P. Wang, Y. Zhu, J. Zhao, M. Xiong, David A Bennett
O11 A microRNA signature identifies subtypes of triple-negative breast cancer and reveals MIR-342-3P as regulator of a lactate metabolic pathway
A. Hidalgo-Miranda, S. Romero-Cordoba, S. Rodriguez-Cuevas, R. Rebollar-Vega, E. Tagliabue, M. Iorio, E. D’Ippolito, S. Baroni
O12 Transcriptome analysis identifies genes, enhancer RNAs and repetitive elements that are recurrently deregulated across multiple cancer types
B. Kaczkowski, Y. Tanaka, H. Kawaji, A. Sandelin, R. Andersson, M. Itoh, T. Lassmann, the FANTOM5 consortium, Y. Hayashizaki, P. Carninci, A. R. R. Forrest
O13 Elevated mutation and widespread loss of constraint at regulatory and architectural binding sites across 11 tumour types
C. A. Semple
O14 Exome sequencing provides evidence of pathogenicity for genes implicated in colorectal cancer
E. A. Rosenthal, B. Shirts, L. Amendola, C. Gallego, M. Horike-Pyne, A. Burt, P. Robertson, P. Beyers, C. Nefcy, D. Veenstra, F. Hisama, R. Bennett, M. Dorschner, D. Nickerson, J. Smith, K. Patterson, D. Crosslin, R. Nassir, N. Zubair, T. Harrison, U. Peters, G. Jarvik, NHLBI GO Exome Sequencing Project
O15 The tandem duplicator phenotype as a distinct genomic configuration in cancer
F. Menghi, K. Inaki, X. Woo, P. Kumar, K. Grzeda, A. Malhotra, H. Kim, D. Ucar, P. Shreckengast, K. Karuturi, J. Keck, J. Chuang, E. T. Liu
O16 Modeling genetic interactions associated with molecular subtypes of breast cancer
B. Ji, A. Tyler, G. Ananda, G. Carter
O17 Recurrent somatic mutation in the MYC associated factor X in brain tumors
H. Nikbakht, M. Montagne, M. Zeinieh, A. Harutyunyan, M. Mcconechy, N. Jabado, P. Lavigne, J. Majewski
O18 Predictive biomarkers to metastatic pancreatic cancer treatment
J. B. Goldstein, M. Overman, G. Varadhachary, R. Shroff, R. Wolff, M. Javle, A. Futreal, D. Fogelman
O19 DDIT4 gene expression as a prognostic marker in several malignant tumors
L. Bravo, W. Fajardo, H. Gomez, C. Castaneda, C. Rolfo, J. A. Pinto
O20 Spatial organization of the genome and genomic alterations in human cancers
K. C. Akdemir, L. Chin, A. Futreal, ICGC PCAWG Structural Alterations Group
O21 Landscape of targeted therapies in solid tumors
S. Patterson, C. Statz, S. Mockus
O22 Genomic analysis reveals novel drivers and progression pathways in skin basal cell carcinoma
S. N. Nikolaev, X. I. Bonilla, L. Parmentier, B. King, F. Bezrukov, G. Kaya, V. Zoete, V. Seplyarskiy, H. Sharpe, T. McKee, A. Letourneau, P. Ribaux, K. Popadin, N. Basset-Seguin, R. Ben Chaabene, F. Santoni, M. Andrianova, M. Guipponi, M. Garieri, C. Verdan, K. Grosdemange, O. Sumara, M. Eilers, I. Aifantis, O. Michielin, F. de Sauvage, S. Antonarakis
O23 Identification of differential biomarkers of hepatocellular carcinoma and cholangiocarcinoma via transcriptome microarray meta-analysis
S. Likhitrattanapisal
O24 Clinical validity and actionability of multigene tests for hereditary cancers in a large multi-center study
S. Lincoln, A. Kurian, A. Desmond, S. Yang, Y. Kobayashi, J. Ford, L. Ellisen
O25 Correlation with tumor ploidy status is essential for correct determination of genome-wide copy number changes by SNP array
T. L. Peters, K. R. Alvarez, E. F. Hollingsworth, D. H. Lopez-Terrada
O26 Nanochannel based next-generation mapping for interrogation of clinically relevant structural variation
A. Hastie, Z. Dzakula, A. W. Pang, E. T. Lam, T. Anantharaman, M. Saghbini, H. Cao, BioNano Genomics
O27 Mutation spectrum in a pulmonary arterial hypertension (PAH) cohort and identification of associated truncating mutations in TBX4
C. Gonzaga-Jauregui, L. Ma, A. King, E. Berman Rosenzweig, U. Krishnan, J. G. Reid, J. D. Overton, F. Dewey, W. K. Chung
O28 NORTH CAROLINA macular dystrophy (MCDR1): mutations found affecting PRDM13
K. Small, A. DeLuca, F. Cremers, R. A. Lewis, V. Puech, B. Bakall, R. Silva-Garcia, K. Rohrschneider, M. Leys, F. S. Shaya, E. Stone
O29 PhenoDB and genematcher, solving unsolved whole exome sequencing data
N. L. Sobreira, F. Schiettecatte, H. Ling, E. Pugh, D. Witmer, K. Hetrick, P. Zhang, K. Doheny, D. Valle, A. Hamosh
O30 Baylor-Johns Hopkins Center for Mendelian genomics: a four year review
S. N. Jhangiani, Z. Coban Akdemir, M. N. Bainbridge, W. Charng, W. Wiszniewski, T. Gambin, E. Karaca, Y. Bayram, M. K. Eldomery, J. Posey, H. Doddapaneni, J. Hu, V. R. Sutton, D. M. Muzny, E. A. Boerwinkle, D. Valle, J. R. Lupski, R. A. Gibbs
O31 Using read overlap assembly to accurately identify structural genetic differences in an ashkenazi jewish trio
S. Shekar, W. Salerno, A. English, A. Mangubat, J. Bruestle
O32 Legal interoperability: a sine qua non for international data sharing
A. Thorogood, B. M. Knoppers, Global Alliance for Genomics and Health - Regulatory and Ethics Working Group
O33 High throughput screening platform of competent sineups: that can enhance translation activities of therapeutic target
H. Takahashi, K. R. Nitta, A. Kozhuharova, A. M. Suzuki, H. Sharma, D. Cotella, C. Santoro, S. Zucchelli, S. Gustincich, P. Carninci
O34 The undiagnosed diseases network international (UDNI): clinical and laboratory research to meet patient needs
J. J. Mulvihill, G. Baynam, W. Gahl, S. C. Groft, K. Kosaki, P. Lasko, B. Melegh, D. Taruscio
O36 Performance of computational algorithms in pathogenicity predictions for activating variants in oncogenes versus loss of function mutations in tumor suppressor genes
R. Ghosh, S. Plon
O37 Identification and electronic health record incorporation of clinically actionable pharmacogenomic variants using prospective targeted sequencing
S. Scherer, X. Qin, R. Sanghvi, K. Walker, T. Chiang, D. Muzny, L. Wang, J. Black, E. Boerwinkle, R. Weinshilboum, R. Gibbs
O38 Melanoma reprogramming state correlates with response to CTLA-4 blockade in metastatic melanoma
T. Karpinets, T. Calderone, K. Wani, X. Yu, C. Creasy, C. Haymaker, M. Forget, V. Nanda, J. Roszik, J. Wargo, L. Haydu, X. Song, A. Lazar, J. Gershenwald, M. Davies, C. Bernatchez, J. Zhang, A. Futreal, S. Woodman
O39 Data-driven refinement of complex disease classification from integration of heterogeneous functional genomics data in GeneWeaver
E. J. Chesler, T. Reynolds, J. A. Bubier, C. Phillips, M. A. Langston, E. J. Baker
O40 A general statistic framework for genome-based disease risk prediction
M. Xiong, L. Ma, N. Lin, C. Amos
O41 Integrative large-scale causal network analysis of imaging and genomic data and its application in schizophrenia studies
N. Lin, P. Wang, Y. Zhu, J. Zhao, V. Calhoun, M. Xiong
O42 Big data and NGS data analysis: the cloud to the rescue
O. Dobretsberger, M. Egger, F. Leimgruber
O43 Cpipe: a convergent clinical exome pipeline specialised for targeted sequencing
S. Sadedin, A. Oshlack, Melbourne Genomics Health Alliance
O44 A Bayesian classification of biomedical images using feature extraction from deep neural networks implemented on lung cancer data
V. A. A. Antonio, N. Ono, Clark Kendrick C. Go
O45 MAV-SEQ: an interactive platform for the Management, Analysis, and Visualization of sequence data
Z. Ahmed, M. Bolisetty, S. Zeeshan, E. Anguiano, D. Ucar
O47 Allele specific enhancer in EPAS1 intronic regions may contribute to high altitude adaptation of Tibetans
C. Zeng, J. Shao
O48 Nanochannel based next-generation mapping for structural variation detection and comparison in trios and populations
H. Cao, A. Hastie, A. W. Pang, E. T. Lam, T. Liang, K. Pham, M. Saghbini, Z. Dzakula
O49 Archaic introgression in indigenous populations of Malaysia revealed by whole genome sequencing
Y. Chee-Wei, L. Dongsheng, W. Lai-Ping, D. Lian, R. O. Twee Hee, Y. Yunus, F. Aghakhanian, S. S. Mokhtar, C. V. Lok-Yung, J. Bhak, M. Phipps, X. Shuhua, T. Yik-Ying, V. Kumar, H. Boon-Peng
O50 Breast and ovarian cancer prevention: is it time for population-based mutation screening of high risk genes?
I. Campbell, M.-A. Young, P. James, Lifepool
O53 Comprehensive coverage from low DNA input using novel NGS library preparation methods for WGS and WGBS
C. Schumacher, S. Sandhu, T. Harkins, V. Makarov
O54 Methods for large scale construction of robust PCR-free libraries for sequencing on Illumina HiSeqX platform
H. DoddapaneniR. Glenn, Z. Momin, B. Dilrukshi, H. Chao, Q. Meng, B. Gudenkauf, R. Kshitij, J. Jayaseelan, C. Nessner, S. Lee, K. Blankenberg, L. Lewis, J. Hu, Y. Han, H. Dinh, S. Jireh, K. Walker, E. Boerwinkle, D. Muzny, R. Gibbs
O55 Rapid capture methods for clinical sequencing
J. Hu, K. Walker, C. Buhay, X. Liu, Q. Wang, R. Sanghvi, H. Doddapaneni, Y. Ding, N. Veeraraghavan, Y. Yang, E. Boerwinkle, A. L. Beaudet, C. M. Eng, D. M. Muzny, R. A. Gibbs
O56 A diploid personal human genome model for better genomes from diverse sequence data
K. C. C. Worley, Y. Liu, D. S. T. Hughes, S. C. Murali, R. A. Harris, A. C. English, X. Qin, O. A. Hampton, P. Larsen, C. Beck, Y. Han, M. Wang, H. Doddapaneni, C. L. Kovar, W. J. Salerno, A. Yoder, S. Richards, J. Rogers, J. R. Lupski, D. M. Muzny, R. A. Gibbs
O57 Development of PacBio long range capture for detection of pathogenic structural variants
Q. Meng, M. Bainbridge, M. Wang, H. Doddapaneni, Y. Han, D. Muzny, R. Gibbs
O58 Rhesus macaques exhibit more non-synonymous variation but greater impact of purifying selection than humans
R. A. Harris, M. Raveenedran, C. Xue, M. Dahdouli, L. Cox, G. Fan, B. Ferguson, J. Hovarth, Z. Johnson, S. Kanthaswamy, M. Kubisch, M. Platt, D. Smith, E. Vallender, R. Wiseman, X. Liu, J. Below, D. Muzny, R. Gibbs, F. Yu, J. Rogers
O59 Assessing RNA structure disruption induced by single-nucleotide variation
J. Lin, Y. Zhang, Z. Ouyang
P1 A meta-analysis of genome-wide association studies of mitochondrial dna copy number
A. Moore, Z. Wang, J. Hofmann, M. Purdue, R. Stolzenberg-Solomon, S. Weinstein, D. Albanes, C.-S. Liu, W.-L. Cheng, T.-T. Lin, Q. Lan, N. Rothman, S. Berndt
P2 Missense polymorphic genetic combinations underlying down syndrome susceptibility
E. S. Chen
P4 The evaluation of alteration of ELAM-1 expression in the endometriosis patients
H. Bahrami, A. Khoshzaban, S. Heidari Keshal
P5 Obesity and the incidence of apolipoprotein E polymorphisms in an assorted population from Saudi Arabia population
K. K. R. Alharbi
P6 Genome-associated personalized antithrombotical therapy for patients with high risk of thrombosis and bleeding
M. Zhalbinova, A. Akilzhanova, S. Rakhimova, M. Bekbosynova, S. Myrzakhmetova
P7 Frequency of Xmn1 polymorphism among sickle cell carrier cases in UAE population
M. Matar
P8 Differentiating inflammatory bowel diseases by using genomic data: dimension of the problem and network organization
N. Mili, R. Molinari, Y. Ma, S. Guerrier
P9 Vulnerability of genetic variants to the risk of autism among Saudi children
N. Elhawary, M. Tayeb, N. Bogari, N. Qotb
P10 Chromatin profiles from ex vivo purified dopaminergic neurons establish a promising model to support studies of neurological function and dysfunction
S. A. McClymont, P. W. Hook, L. A. Goff, A. McCallion
P11 Utilization of a sensitized chemical mutagenesis screen to identify genetic modifiers of retinal dysplasia in homozygous Nr2e3rd7 mice
Y. Kong, J. R. Charette, W. L. Hicks, J. K. Naggert, L. Zhao, P. M. Nishina
P12 Ion torrent next generation sequencing of recessive polycystic kidney disease in Saudi patients
B. M. Edrees, M. Athar, F. A. Al-Allaf, M. M. Taher, W. Khan, A. Bouazzaoui, N. A. Harbi, R. Safar, H. Al-Edressi, A. Anazi, N. Altayeb, M. A. Ahmed, K. Alansary, Z. Abduljaleel
P13 Digital expression profiling of Purkinje neurons and dendrites in different subcellular compartments
A. Kratz, P. Beguin, S. Poulain, M. Kaneko, C. Takahiko, A. Matsunaga, S. Kato, A. M. Suzuki, N. Bertin, T. Lassmann, R. Vigot, P. Carninci, C. Plessy, T. Launey
P14 The evolution of imperfection and imperfection of evolution: the functional and functionless fractions of the human genome
D. Graur
P16 Species-independent identification of known and novel recurrent genomic entities in multiple cancer patients
J. Friis-Nielsen, J. M. Izarzugaza, S. Brunak
P18 Discovery of active gene modules which are densely conserved across multiple cancer types reveal their prognostic power and mutually exclusive mutation patterns
B. S. Soibam
P19 Whole exome sequencing of dysplastic leukoplakia tissue indicates sequential accumulation of somatic mutations from oral precancer to cancer
D. Das, N. Biswas, S. Das, S. Sarkar, A. Maitra, C. Panda, P. Majumder
P21 Epigenetic mechanisms of carcinogensis by hereditary breast cancer genes
J. J. Gruber, N. Jaeger, M. Snyder
P22 RNA direct: a novel RNA enrichment strategy applied to transcripts associated with solid tumors
K. Patel, S. Bowman, T. Davis, D. Kraushaar, A. Emerman, S. Russello, N. Henig, C. Hendrickson
P23 RNA sequencing identifies gene mutations for neuroblastoma
K. Zhang
P24 Participation of SFRP1 in the modulation of TMPRSS2-ERG fusion gene in prostate cancer cell lines
M. Rodriguez-Dorantes, C. D. Cruz-Hernandez, C. D. P. Garcia-Tobilla, S. Solorzano-Rosales
P25 Targeted Methylation Sequencing of Prostate Cancer
N. Jäger, J. Chen, R. Haile, M. Hitchins, J. D. Brooks, M. Snyder
P26 Mutant TPMT alleles in children with acute lymphoblastic leukemia from México City and Yucatán, Mexico
S. Jiménez-Morales, M. Ramírez, J. Nuñez, V. Bekker, Y. Leal, E. Jiménez, A. Medina, A. Hidalgo, J. Mejía
P28 Genetic modifiers of Alström syndrome
J. Naggert, G. B. Collin, K. DeMauro, R. Hanusek, P. M. Nishina
P31 Association of genomic variants with the occurrence of angiotensin-converting-enzyme inhibitor (ACEI)-induced coughing among Filipinos
E. M. Cutiongco De La Paz, R. Sy, J. Nevado, P. Reganit, L. Santos, J. D. Magno, F. E. Punzalan , D. Ona , E. Llanes, R. L. Santos-Cortes , R. Tiongco, J. Aherrera, L. Abrahan, P. Pagauitan-Alan; Philippine Cardiogenomics Study Group
P32 The use of “humanized” mouse models to validate disease association of a de novo GARS variant and to test a novel gene therapy strategy for Charcot-Marie-Tooth disease type 2D
K. H. Morelli, J. S. Domire, N. Pyne, S. Harper, R. Burgess
P34 Molecular regulation of chondrogenic human induced pluripotent stem cells
M. A. Gari, A. Dallol, H. Alsehli, A. Gari, M. Gari, A. Abuzenadah
P35 Molecular profiling of hematologic malignancies: implementation of a variant assessment algorithm for next generation sequencing data analysis and clinical reporting
M. Thomas, M. Sukhai, S. Garg, M. Misyura, T. Zhang, A. Schuh, T. Stockley, S. Kamel-Reid
P36 Accessing genomic evidence for clinical variants at NCBI
S. Sherry, C. Xiao, D. Slotta, K. Rodarmer, M. Feolo, M. Kimelman, G. Godynskiy, C. O’Sullivan, E. Yaschenko
P37 NGS-SWIFT: a cloud-based variant analysis framework using control-accessed sequencing data from DBGAP/SRA
C. Xiao, E. Yaschenko, S. Sherry
P38 Computational assessment of drug induced hepatotoxicity through gene expression profiling
C. Rangel-Escareño, H. Rueda-Zarate
P40 Flowr: robust and efficient pipelines using a simple language-agnostic approach;ultraseq; fast modular pipeline for somatic variation calling using flowr
S. Seth, S. Amin, X. Song, X. Mao, H. Sun, R. G. Verhaak, A. Futreal, J. Zhang
P41 Applying “Big data” technologies to the rapid analysis of heterogenous large cohort data
S. J. Whiite, T. Chiang, A. English, J. Farek, Z. Kahn, W. Salerno, N. Veeraraghavan, E. Boerwinkle, R. Gibbs
P42 FANTOM5 web resource for the large-scale genome-wide transcription start site activity profiles of wide-range of mammalian cells
T. Kasukawa, M. Lizio, J. Harshbarger, S. Hisashi, J. Severin, A. Imad, S. Sahin, T. C. Freeman, K. Baillie, A. Sandelin, P. Carninci, A. R. R. Forrest, H. Kawaji, The FANTOM Consortium
P43 Rapid and scalable typing of structural variants for disease cohorts
W. Salerno, A. English, S. N. Shekar, A. Mangubat, J. Bruestle, E. Boerwinkle, R. A. Gibbs
P44 Polymorphism of glutathione S-transferases and sulphotransferases genes in an Arab population
A. H. Salem, M. Ali, A. Ibrahim, M. Ibrahim
P46 Genetic divergence of CYP3A5*3 pharmacogenomic marker for native and admixed Mexican populations
J. C. Fernandez-Lopez, V. Bonifaz-Peña, C. Rangel-Escareño, A. Hidalgo-Miranda, A. V. Contreras
P47 Whole exome sequence meta-analysis of 13 white blood cell, red blood cell, and platelet traits
L. Polfus, CHARGE and NHLBI Exome Sequence Project Working Groups
P48 Association of adipoq gene with type 2 diabetes and related phenotypes in african american men and women: The jackson heart study
S. Davis, R. Xu, S. Gebeab, P Riestra, A Gaye, R. Khan, J. Wilson, A. Bidulescu
P49 Common variants in casr gene are associated with serum calcium levels in koreans
S. H. Jung, N. Vinayagamoorthy, S. H. Yim, Y. J. Chung
P50 Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with multiple exponential functions
Y. Zhou, S. Xu
P51 A Bayesian framework for generalized linear mixed models in genome-wide association studies
X. Wang, V. Philip, G. Carter
P52 Targeted sequencing approach for the identification of the genetic causes of hereditary hearing impairment
A. A. Abuzenadah, M. Gari, R. Turki, A. Dallol
P53 Identification of enhancer sequences by ATAC-seq open chromatin profiling
A. Uyar, A. Kaygun, S. Zaman, E. Marquez, J. George, D. Ucar
P54 Direct enrichment for the rapid preparation of targeted NGS libraries
C. L. Hendrickson, A. Emerman, D. Kraushaar, S. Bowman, N. Henig, T. Davis, S. Russello, K. Patel
P56 Performance of the Agilent D5000 and High Sensitivity D5000 ScreenTape assays for the Agilent 4200 Tapestation System
R. Nitsche, L. Prieto-Lafuente
P57 ClinVar: a multi-source archive for variant interpretation
M. Landrum, J. Lee, W. Rubinstein, D. Maglott
P59 Association of functional variants and protein physical interactions of human MUTY homolog linked with familial adenomatous polyposis and colorectal cancer syndrome
Z. Abduljaleel, W. Khan, F. A. Al-Allaf, M. Athar , M. M. Taher, N. Shahzad
P60 Modification of the microbiom constitution in the gut using chicken IgY antibodies resulted in a reduction of acute graft-versus-host disease after experimental bone marrow transplantation
A. Bouazzaoui, E. Huber, A. Dan, F. A. Al-Allaf, W. Herr, G. Sprotte, J. Köstler, A. Hiergeist, A. Gessner, R. Andreesen, E. Holler
P61 Compound heterozygous mutation in the LDLR gene in Saudi patients suffering severe hypercholesterolemia
F. Al-Allaf, A. Alashwal, Z. Abduljaleel, M. Taher, A. Bouazzaoui, H. Abalkhail, A. Al-Allaf, R. Bamardadh, M. Athar
doi:10.1186/s40246-016-0063-5
PMCID: PMC4896275  PMID: 27294413
Human genetics  2010;128(2):165-177.
It is well-known that population substructure may lead to confounding in case-control association studies. Here, we examined genetic structure in a large racially and ethnically diverse sample consisting of 5 ethnic groups of the Multiethnic Cohort study (African Americans, Japanese Americans, Latinos, European Americans and Native Hawaiians) using 2,509 SNPs distributed across the genome. Principal component analysis on 6,213 study participants, 18 Native Americans and 11 HapMap III populations revealed 4 important principal components (PCs): the first two separated Asians, Europeans and Africans, and the third and fourth corresponded to Native American and Native Hawaiian (Polynesian) ancestry, respectively. Individual ethnic composition derived from self-reported parental information matched well to genetic ancestry for Japanese and European Americans. STRUCTURE-estimated individual ancestral proportions for African Americans and Latinos are consistent with previous reports. We quantified the East Asian (mean 27%), European (mean 27%) and Polynesian (mean 46%) ancestral proportions for the first time, to our knowledge, for Native Hawaiians. Simulations based on realistic settings of case-control studies nested in the Multiethnic Cohort found that the effect of population stratification was modest and readily corrected by adjusting for race/ethnicity or by adjusting for top PCs derived from all SNPs or from ancestry informative markers; the power of these approaches was similar when averaged across causal variants simulated based on allele frequencies of the 2,509 genotyped markers. The bias may be large in case-only analysis of gene by gene interactions but it can be corrected by top PCs derived from all SNPs.
doi:10.1007/s00439-010-0841-4
PMCID: PMC3057055  PMID: 20499252
AIMs; African American; Native Hawaiian; Latino; admixture; principal component analysis
BMC Proceedings  2009;3(Suppl 7):S107.
Background
To account for population stratification in association studies, principal-components analysis is often performed on single-nucleotide polymorphisms (SNPs) across the genome. Here, we use Framingham Heart Study (FHS) Genetic Analysis Workshop 16 data to compare the performance of local ancestry adjustment for population stratification based on principal components (PCs) estimated from SNPs in a local chromosomal region with global ancestry adjustment based on PCs estimated from genome-wide SNPs.
Methods
Standardized height residuals from unrelated adults from the FHS Offspring Cohort were averaged from longitudinal data. PCs of SNP genotype data were calculated to represent individual's ancestry either 1) globally using all SNPs across the genome or 2) locally using SNPs in adjacent 20-Mbp regions within each chromosome. We assessed the extent to which there were differences in association studies of height depending on whether PCs for global, local, or both global and local ancestry were included as covariates.
Results
The correlations between local and global PCs were low (r < 0.12), suggesting variability between local and global ancestry estimates. Genome-wide association tests without any ancestry adjustment demonstrated an inflated type I error rate that decreased with adjustment for local ancestry, global ancestry, or both. A known spurious association was replicated for SNPs within the lactase gene, and this false-positive association was abolished by adjustment with local or global ancestry PCs.
Conclusion
Population stratification is a potential source of bias in this seemingly homogenous FHS population. However, local and global PCs derived from SNPs appear to provide adequate information about ancestry.
PMCID: PMC2795878  PMID: 20017971
Objective
Thrombosis is a serious complication of systemic lupus erythematosus (SLE). Studies that have investigated the genetics of thrombosis in SLE are limited. We undertook this study to assess the association of previously implicated candidate genes, particularly Toll-like receptor (TLR) genes, with pathogenesis of thrombosis.
Methods
We genotyped 3,587 SLE patients from 3 multiethnic populations for 77 single-nucleotide polymorphisms (SNPs) in 10 genes, primarily in TLRs 2, 4, 7, and 9, and we also genotyped 64 ancestry-informative markers (AIMs). We first analyzed association with arterial and venous thrombosis in the combined population via logistic regression, adjusting for top principal components of the AIMs and other covariates. We also subjected an associated SNP, rs893629, to meta-analysis (after stratification by ethnicity and study population) to confirm the association and to test for study population or ethnicity effects.
Results
In the combined analysis, the SNP rs893629 in the KIAA0922/TLR2 region was significantly associated with arterial thrombosis (logistic P = 6.4 × 10−5, false discovery rate P = 0.0044). Two additional SNPs in TLR2 were also suggestive: rs1816702 (logistic P = 0.002) and rs4235232 (logistic P = 0.009). In the meta-analysis by study population, the odds ratio (OR) for arterial thrombosis with rs893629 was 2.44 (95% confidence interval 1.58–3.76), without evidence for heterogeneity (P = 0.78). By ethnicity, the effect was most significant among African Americans (OR 2.42, P = 3.5 × 10−4) and European Americans (OR 3.47, P = 0.024).
Conclusion
TLR2 gene variation is associated with thrombosis in SLE, particularly among African Americans and European Americans. There was no evidence of association among Hispanics, and results in Asian Americans were limited due to insufficient sample size. These results may help elucidate the pathogenesis of this important clinical manifestation.
doi:10.1002/art.38520
PMCID: PMC4269184  PMID: 24578102
BMC Proceedings  2011;5(Suppl 9):S103.
Identifying rare variants that are responsible for complex disease has been promoted by advances in sequencing technologies. However, statistical methods that can handle the vast amount of data generated and that can interpret the complicated relationship between disease and these variants have lagged. We apply a zero-inflated Poisson regression model to take into account the excess of zeros caused by the extremely low frequency of the 24,487 exonic variants in the Genetic Analysis Workshop 17 data. We grouped the 697 subjects in the data set as Europeans, Asians, and Africans based on principal components analysis and found the total number of rare variants per gene for each individual. We then analyzed these collapsed variants based on the assumption that rare variants are enriched in a group of people affected by a disease compared to a group of unaffected people. We also tested the hypothesis with quantitative traits Q1, Q2, and Q4. Analyses performed on the combined 697 individuals and on each ethnic group yielded different results. For the combined population analysis, we found that UGT1A1, which was not part of the simulation model, was associated with disease liability and that FLT1, which was a causal locus in the simulation model, was associated with Q1. Of the causal loci in the simulation models, FLT1 and KDR were associated with Q1 and VNN1 was correlated with Q2. No significant genes were associated with Q4. These results show the feasibility and capability of our new statistical model to detect multiple rare variants influencing disease risk.
doi:10.1186/1753-6561-5-S9-S103
PMCID: PMC3287826  PMID: 22373445
PLoS ONE  2013;8(10):e77720.
Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn’s disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn’s disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals.
doi:10.1371/journal.pone.0077720
PMCID: PMC3798408  PMID: 24147066
PLoS Medicine  2015;12(6):e1001841.
Background
Potentially modifiable risk factors including obesity, diabetes, hypertension, and smoking are associated with Alzheimer disease (AD) and represent promising targets for intervention. However, the causality of these associations is unclear. We sought to assess the causal nature of these associations using Mendelian randomization (MR).
Methods and Findings
We used SNPs associated with each risk factor as instrumental variables in MR analyses. We considered type 2 diabetes (T2D, NSNPs = 49), fasting glucose (NSNPs = 36), insulin resistance (NSNPs = 10), body mass index (BMI, NSNPs = 32), total cholesterol (NSNPs = 73), HDL-cholesterol (NSNPs = 71), LDL-cholesterol (NSNPs = 57), triglycerides (NSNPs = 39), systolic blood pressure (SBP, NSNPs = 24), smoking initiation (NSNPs = 1), smoking quantity (NSNPs = 3), university completion (NSNPs = 2), and years of education (NSNPs = 1). We calculated MR estimates of associations between each exposure and AD risk using an inverse-variance weighted approach, with summary statistics of SNP–AD associations from the International Genomics of Alzheimer’s Project, comprising a total of 17,008 individuals with AD and 37,154 cognitively normal elderly controls. We found that genetically predicted higher SBP was associated with lower AD risk (odds ratio [OR] per standard deviation [15.4 mm Hg] of SBP [95% CI]: 0.75 [0.62–0.91]; p = 3.4 × 10−3). Genetically predicted higher SBP was also associated with a higher probability of taking antihypertensive medication (p = 6.7 × 10−8). Genetically predicted smoking quantity was associated with lower AD risk (OR per ten cigarettes per day [95% CI]: 0.67 [0.51–0.89]; p = 6.5 × 10−3), although we were unable to stratify by smoking history; genetically predicted smoking initiation was not associated with AD risk (OR = 0.70 [0.37, 1.33]; p = 0.28). We saw no evidence of causal associations between glycemic traits, T2D, BMI, or educational attainment and risk of AD (all p > 0.1). Potential limitations of this study include the small proportion of intermediate trait variance explained by genetic variants and other implicit limitations of MR analyses.
Conclusions
Inherited lifetime exposure to higher SBP is associated with lower AD risk. These findings suggest that higher blood pressure—or some environmental exposure associated with higher blood pressure, such as use of antihypertensive medications—may reduce AD risk.
Robert A. Scott and colleagues use genetic instruments to identify causal associations between known risk factors and Alzheimer's disease.
Editors' Summary
Background
Worldwide, about 44 million people have dementia, a group of brain degeneration disorders characterized by an irreversible decline in memory, communication, and other “cognitive” functions. Dementia mainly affects older people, and because people are living longer, experts estimate that more than 135 million people will have dementia by 2050. The most common form of dementia, which accounts for 60%–70% of cases, is Alzheimer disease (AD). The earliest sign of AD is often increasing forgetfulness. As the disease progresses, affected individuals gradually lose the ability to look after themselves, they may become anxious or aggressive, and they may have difficulty recognizing friends and relatives. People with late stage disease may lose control of their bladder and of other physical functions. At present, there is no cure for AD, although some of its symptoms can be managed with drugs. Most people with AD are initially cared for at home by relatives and other caregivers, but many affected individuals end their days in a care home or specialist nursing home.
Why Was This Study Done?
Researchers are interested in identifying risk factors for AD, particularly modifiable risk factors, because if such risk factors exist, it might be possible to limit the predicted increase in future AD cases. Epidemiological studies (investigations that examine patterns of disease in populations) have identified several potential risk factors for AD, including hypertension (high blood pressure), obesity, smoking, and dyslipidemia (changes in how the body handles fats). However, epidemiological studies cannot prove that a specific risk factor causes AD. For example, people with hypertension might share another characteristic that causes both hypertension and AD (confounding) or AD might cause hypertension (reverse causation). Information on causality is needed to decide which risk factors to target to help prevent AD. Here, the researchers use “Mendelian randomization” to examine whether differences in several epidemiologically identified risk factors for AD have a causal impact on AD risk. In Mendelian randomization, causal associations are inferred from the effects of genetic variants (which predict levels of modifiable risk factors) on the outcome of interest. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if hypertension actually causes AD, genetic variants that affect hypertension should be associated with an altered risk of AD.
What Did the Researchers Do and Find?
The researchers identified causal associations between potentially modifiable risk factors and AD risk by analyzing the occurrence of single nucleotide polymorphisms (SNPs, a type of gene variant) known to predict levels of each risk factor, in genetic data from 17,008 individuals with AD and 37,154 cognitively normal elderly controls collected by the International Genomics of Alzheimer’s Project. They report that genetically predicted higher systolic blood pressure (SBP; the pressure exerted on the inside of large blood vessels when the heart is pumping out blood) was associated with lower AD risk (and with a higher probability of taking antihypertensive medication). Predicted smoking quantity was also associated with lower AD risk, but there was no evidence of causal associations between any of the other risk factors investigated and AD risk.
What Do These Findings Mean?
In contrast to some epidemiological studies, these findings suggest that hypertension is associated with lower AD risk. However, because genetically predicted higher SBP was also associated with a higher probability of taking antihypertensive medication, it could be that exposure to such drugs, rather than having hypertension, reduces AD risk. Like all Mendelian randomization studies, the reliability of these findings depends on the validity of several assumptions made by the researchers and on the ability of the SNPs used in the analyses to explain variations in exposure to the various risk factors. Moreover, because all the participants in the International Genomics of Alzheimer’s Project are of European ancestry, these findings may not be valid for other ethnic groups. Given that hypertension is a risk factor for cardiovascular disease, the researchers do not advocate raising blood pressure as a measure to prevent AD (neither do they advocate that people smoke more cigarettes to lower AD risk). Rather, given the strong association between higher SBP gene scores and the probability of exposure to antihypertensive treatment, they suggest that the possibility that antihypertensive drugs might reduce AD risk independently of their effects on blood pressure should be investigated as a priority.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001841.
The UK National Health Service Choices website provides information (including personal stories) about Alzheimer disease
The UK not-for-profit organization Alzheimer’s Society provides information for patients and carers about dementia, including personal experiences of living with Alzheimer disease
The US not-for-profit organization Alzheimer’s Association also provides information for patients and carers about dementia and personal stories about dementia
Alzheimer’s Disease International is the federation of Alzheimer disease associations around the world; it provides links to individual Alzheimer associations, information about dementia, and links to world Alzheimer reports
MedlinePlus provides links to additional resources about Alzheimer disease (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
A PLOS Medicine Research Article by Proitsi et al. describes a Mendelian randomization study that looked for a causal association between dyslipidemia and Alzheimer disease
doi:10.1371/journal.pmed.1001841
PMCID: PMC4469461  PMID: 26079503
PLoS Medicine  2016;13(6):e1001976.
Background
C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal.
Methods and Findings
We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed.
The strengths (F-statistics) of the IVs were 31.92–3,761.29 and 82.32–9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79–0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94–0.98]; p < 1.72 × 10−6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10−4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10−4) showed a statistically significant (p < 2.45 × 10−4) protective effect with an OR of 0.97 (95% CI 0.95–0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84–0.94]; p < 2.4 × 10−5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74–0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70–0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00–1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01–1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05–1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11–1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06–0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003–0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004–0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008–0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses.
Conclusions
Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS—with persistence after correction for heterogeneity—for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes.
Using genetic instruments, Behrooz Z. Alizadeh and colleagues examine the hypothesis that increased CRP levels play a causal role in common somatic and psychiatric conditions.
Editors' Summary
Background
Inflammation is an important part of the human immune response, the network of cells and molecules that protects the body from attack by pathogens (infectious organisms) and from harmful substances and foreign particles (for example, splinters). When human cells are attacked by pathogens or injured by trauma or chemicals, molecules called inflammatory mediators induce fluid leakage from the blood vessels into the damaged tissue and attract “phagocytes” (a type of immune cell) to the site of infection or injury to “eat” the germs and dead or damaged cells. The end result is inflammation, which is characterized by swelling, redness, heat, and pain. The inflammatory response, although unpleasant, limits the damage caused by foreign invaders or chemicals by preventing further contact with body tissues. Sometimes, however, inflammation can be harmful. Persistent dysregulation of the inflammatory response is implicated in numerous somatic disorders (diseases that affect the body, such as cardiovascular disease) and neuropsychiatric disorders (mental disorders attributable to diseases of the nervous system, such as schizophrenia).
Why Was This Study Done?
Observational studies suggest that increased blood levels of C-reactive protein (CRP, an inflammatory protein) are associated with certain somatic and neuropsychiatric disorders. But observational studies cannot prove that changes in CRP levels actually cause any of these disorders. It could be that the individuals who develop a specific disease and who have a high CRP level also share another unknown characteristic that is actually responsible for disease development (confounding). Alternatively, it could be that the disease itself increases CRP levels (reverse causation). It is important to know whether CRP is causally involved in the development of specific diseases because it might then be possible to prevent or treat these diseases using drugs that control CRP levels. Here, the researchers undertake a Mendelian randomization study to determine whether CRP has a causal relationship with 32 common complex somatic and neuropsychiatric outcomes. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. So, if CRP levels actually cause a specific somatic or neuropsychiatric disease, genetic variants that affect CRP levels should be associated with an altered risk for that disease.
What Did the Researchers Do and Find?
The researchers used data collected by several consortia involved in large genome-wide association studies (studies that ask whether specific genetic changes across the whole human genome, or blueprint, are associated with specific diseases) to look for associations between 32 somatic and neuropsychiatric outcomes and two genetic risk scores (GRSs) for CRP level. GRSCRP consisted of four single nucleotide polymorphisms (SNPs; a type of genetic variant) in the gene encoding CRP; GRSGWAS consisted of 18 SNPs that were associated with CRP level in a genome-wide association study. The researchers report that a genetically increased CRP level was significantly associated with a reduced risk of schizophrenia (a significant association is one unlikely to have arisen by chance). In addition, they found a nominally significant association (an association that needs to be confirmed) between genetically increased CRP levels and an increased risk of knee osteoarthritis, raised diastolic and systolic blood pressure, and bipolar disorder. Notably, there was no evidence for an effect of genetically increased CRP levels on any of the other 27 outcomes studied.
What Do These Findings Mean?
These findings suggest that genetically raised levels of CRP are causally associated with protection against schizophrenia, an unexpected finding given other recent studies that suggest that raised CRP levels and brain inflammation predispose individuals to schizophrenia. The findings also provide preliminary evidence that genetically raised levels of CRP may be causally associated with an increased risk of raised blood pressure, knee arthritis, and bipolar disorder. The lack of any association between genetically raised levels of CRP and the other outcomes studied suggests, however, that many previously identified disease-associated rises in CRP levels might be a response to the disease process rather than a cause of these diseases. Like all Mendelian randomization studies, the reliability of these findings depends on the validity of several assumptions made by the researchers and on the ability of the GRSs used in the study to explain variations in CRP level. Importantly, however, these findings suggest that interventions designed to lower CRP level are unlikely to decrease the risk of people developing the majority of common complex somatic and neuropsychiatric outcomes.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001976.
Wikipedia has pages on inflammation, C-reactive protein, and Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The MedlinePlus encyclopedia has a page on C-reactive protein (in English and Spanish)
The American Heart Association provides a short article on inflammation and heart disease
A UK National Health Service “Behind the Headlines” article explains a recent study that found an association between immune activity in the brain and schizophrenia
doi:10.1371/journal.pmed.1001976
PMCID: PMC4915710  PMID: 27327646
Journal of Heredity  2009;100(Suppl 1):S28-S36.
Until recently, canine genetic research has not focused on population structure within breeds, which may confound the results of case–control studies by introducing spurious correlations between phenotype and genotype that reflect population history. Intrabreed structure may exist when geographical origin or divergent selection regimes influence the choices of potential mates for breeding dogs. We present evidence for intrabreed stratification from a genome-wide marker survey in a sample of unrelated dogs. We genotyped 76 Border Collies, 49 Australian Shepherds, 17 German Shepherd Dogs, and 17 Portuguese Water Dogs for our primary analyses using Affymetrix Canine v2.0 single-nucleotide polymorphism (SNP) arrays. Subsets of autosomal markers were examined using clustering algorithms to facilitate assignment of individuals to populations and estimation of the number of populations represented in the sample. SNPs passing stringent quality control filters were employed for explicitly phylogenetic analyses reconstructing relationships between individuals using maximum parsimony and Bayesian methods. We used simulation studies to explore the possible effects of intrabreed stratification on genome-wide association studies. These analyses demonstrate significant stratification in at least one of our primary breeds of interest, the Border Collie. Demographic and pedigree data suggest that this population substructure may result from geographic isolation or divergent selection regimes practiced by breeders with different breeding program goals. Simulation studies indicate that such stratification could result in false discovery rates significant enough to confound genome-wide association analyses. Intrabreed stratification should be accounted for when designing and interpreting the results of case–control association studies using purebred dogs.
doi:10.1093/jhered/esp012
PMCID: PMC4176315
Bayesian analysis; canine genetics; maximum parsimony; phylogenetics; population stratification; purebred dogs
PLoS ONE  2011;6(7):e21591.
Understanding the role of genetic variation in human diseases remains an important problem to be solved in genomics. An important component of such variation consist of variations at single sites in DNA, or single nucleotide polymorphisms (SNPs). Typically, the problem of associating particular SNPs to phenotypes has been confounded by hidden factors such as the presence of population structure, family structure or cryptic relatedness in the sample of individuals being analyzed. Such confounding factors lead to a large number of spurious associations and missed associations. Various statistical methods have been proposed to account for such confounding factors such as linear mixed-effect models (LMMs) or methods that adjust data based on a principal components analysis (PCA), but these methods either suffer from low power or cease to be tractable for larger numbers of individuals in the sample. Here we present a statistical model for conducting genome-wide association studies (GWAS) that accounts for such confounding factors. Our method scales in runtime quadratic in the number of individuals being studied with only a modest loss in statistical power as compared to LMM-based and PCA-based methods when testing on synthetic data that was generated from a generalized LMM. Applying our method to both real and synthetic human genotype/phenotype data, we demonstrate the ability of our model to correct for confounding factors while requiring significantly less runtime relative to LMMs. We have implemented methods for fitting these models, which are available at http://www.microsoft.com/science.
doi:10.1371/journal.pone.0021591
PMCID: PMC3134455  PMID: 21765897
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
Background
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
Conclusions
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001474.
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
doi:10.1371/journal.pmed.1001474
PMCID: PMC3692470  PMID: 23824655
Genetic epidemiology  2011;35(Suppl 1):S56-S60.
As part of Genetic Analysis Workshop 17 (GAW17), our group considered the application of novel and standard approaches to the analysis of genotype-phenotype association in next-generation sequencing data. Our group identified a major issue in the analysis of the GAW17 next-generation sequencing data: type I error and false-positive report probability rates higher than those expected based on empirical type I error levels (as high as 90%). Two main causes emerged: population stratification and long-range correlation (gametic phase disequilibrium) between rare variants. Population stratification was expected because of the diverse sample. Correlation between rare variants was attributable to both random causes (e.g., nearly 10,000 of 25,000 markers were private variants, and the sample size was small [n = 697]) and nonrandom causes (more correlation was observed than was expected by random chance). Principal components analysis was used to control for population structure and helped to minimize type I errors, but this was at the expense of identifying fewer causal variants. A novel multiple regression approach showed promise to handle correlation between markers. Further work is needed, first, to identify best practices for the control of type I errors in the analysis of sequencing data and then to explore and compare the many promising new aggregating approaches for identifying markers associated with disease phenotypes.
doi:10.1002/gepi.20650
PMCID: PMC3249221  PMID: 22128060
population structure; correlated markers; next-generation sequencing
PLoS Medicine  2011;8(10):e1001112.
Using mendelian randomization, Roman Pfister and colleagues demonstrate a potentially causal link between low levels of B-type natriuretic peptide (BNP), a hormone released by damaged hearts, and the development of type 2 diabetes.
Background
Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.
Methods and Findings
We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%–36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91–0.97) was similar to that expected (0.96, 0.93–0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74–0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15–0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.
Conclusions
Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, nearly 250 million people have diabetes, and this number is increasing rapidly. Diabetes is characterized by dangerous amounts of sugar (glucose) in the blood. Blood sugar levels are normally controlled by insulin, a hormone that the pancreas releases after meals (digestion of food produces glucose). In people with type 2 diabetes (the most common form of diabetes), blood sugar control fails because the fat and muscle cells that usually respond to insulin by removing sugar from the blood become insulin resistant. Type 2 diabetes can be controlled with diet and exercise, and with drugs that help the pancreas make more insulin or that make cells more sensitive to insulin. The long-term complications of diabetes, which include kidney failure and an increased risk of cardiovascular problems such as heart disease and stroke, reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes.
Why Was This Study Done?
Because the causes of type 2 diabetes are poorly understood, it is hard to devise ways to prevent the condition. Recently, B-type natriuretic peptide (BNP, a hormone released by damaged hearts) has been implicated in type 2 diabetes development in cross-sectional studies (investigations in which data are collected at a single time point from a population to look for associations between an illness and potential risk factors). Although these studies suggest that high levels of BNP may protect against type 2 diabetes, they cannot prove a causal link between BNP levels and diabetes because the study participants with low BNP levels may share some another unknown factor (a confounding factor) that is the real cause of both diabetes and altered BNP levels. Here, the researchers use an approach called “Mendelian randomization” to examine whether reduced BNP levels contribute to causing type 2 diabetes. It is known that a common genetic variant (rs198389) within the genome region that encodes BNP is associated with a reduced risk of type 2 diabetes. Because gene variants are inherited randomly, they are not subject to confounding. So, by investigating the association between BNP gene variants that alter NT-pro-BNP (a molecule created when BNP is being produced) levels and the development of type 2 diabetes, the researchers can discover whether BNP is causally involved in this chronic condition.
What Did the Researchers Do and Find?
The researchers analyzed the association between blood levels of NT-pro-BNP at baseline in 440 participants of the EPIC-Norfolk study (a prospective population-based study of lifestyle factors and the risk of chronic diseases) who subsequently developed diabetes and in 740 participants who did not develop diabetes. In this prospective case-cohort study, the risk of developing type 2 diabetes was associated with lower NT-pro-BNP levels. They also genotyped (sequenced) rs198389 in the participants of three case-control studies of type 2 diabetes (studies in which potential risk factors for type 2 diabetes were examined in people with type 2 diabetes and matched controls living in the East of England), and combined these results with those of eight similar published case-control studies. Finally, the researchers showed that the association between rs198389 and type 2 diabetes measured in the case-control studies was similar to the expected association calculated from the association between NT-pro-BNP level and type 2 diabetes obtained from the prospective case-cohort study and the association between rs198389 and BNP levels obtained from the EPIC-Norfolk study and other published studies.
What Do These Findings Mean?
The results of this Mendelian randomization study provide evidence for a causal, protective role of the BNP hormone system in the development of type 2 diabetes. That is, these findings suggest that low levels of BNP are partly responsible for the development of type 2 diabetes. Because the participants in all the individual studies included in this analysis were of European descent, these findings may not be generalizable to other ethnicities. Moreover, they provide no explanation of how alterations in the BNP hormone system might affect the development of type 2 diabetes. Nevertheless, the demonstration of a causal link between the BNP hormone system and type 2 diabetes suggests that BNP may be a potential target for interventions designed to prevent type 2 diabetes, particularly since the feasibility of altering BNP levels with drugs has already been proven in patients with cardiovascular disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001112.
The International Diabetes Federation provides information about all aspects of diabetes
The US National Diabetes Information Clearinghouse provides detailed information about diabetes for patients, health-care professionals, and the general public (in English and Spanish)
The UK National Health Service Choices website also provides information for patients and carers about type 2 diabetes and includes people's stories about diabetes
MedlinePlus provides links to further resources and advice about diabetes (in English and Spanish)
Wikipedia has pages on BNP and on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The charity Healthtalkonline has interviews with people about their experiences of diabetes; the charity Diabetes UK has a further selection of stories from people with diabetes
doi:10.1371/journal.pmed.1001112
PMCID: PMC3201934  PMID: 22039354
BMC Proceedings  2011;5(Suppl 9):S12.
The Genetic Analysis Workshop 17 data we used comprise 697 unrelated individuals genotyped at 24,487 single-nucleotide polymorphisms (SNPs) from a mini-exome scan, using real sequence data for 3,205 genes annotated by the 1000 Genomes Project and simulated phenotypes. We studied 200 sets of simulated phenotypes of trait Q2. An important feature of this data set is that most SNPs are rare, with 87% of the SNPs having a minor allele frequency less than 0.05. For rare SNP detection, in this study we performed a least absolute shrinkage and selection operator (LASSO) regression and F tests at the gene level and calculated the generalized degrees of freedom to avoid any selection bias. For comparison, we also carried out linear regression and the collapsing method, which sums the rare SNPs, modified for a quantitative trait and with two different allele frequency thresholds. The aim of this paper is to evaluate these four approaches in this mini-exome data and compare their performance in terms of power and false positive rates. In most situations the LASSO approach is more powerful than linear regression and collapsing methods. We also note the difficulty in determining the optimal threshold for the collapsing method and the significant role that linkage disequilibrium plays in detecting rare causal SNPs. If a rare causal SNP is in strong linkage disequilibrium with a common marker in the same gene, power will be much improved.
doi:10.1186/1753-6561-5-S9-S12
PMCID: PMC3287844  PMID: 22373385
BMC Proceedings  2014;8(Suppl 1):S55.
Inferring population genetic structure from large-scale genotyping of single-nucleotide polymorphisms or variants is an important technique for studying the history and distribution of extant human populations, but it is also a very important tool for adjusting tests of association. However, the structures inferred depend on the minor allele frequency of the variants; this is very important when considering the phenotypic association of rare variants.
Using the Genetic Analysis Workshop 18 data set for 142 unrelated individuals, which includes genotypes for many rare variants, we study the following hypothesis: the difference in detected structure is the result of a "scale" effect; that is, rare variants are likely to be shared only locally (smaller scale), while common variants can be spread over longer distances. The result is similar to that of using kernel principal component analysis, as the bandwidth of the kernel is changed. We show how different structures become evident as we consider rare or common variants.
doi:10.1186/1753-6561-8-S1-S55
PMCID: PMC4143691  PMID: 25519390

Results 1-25 (1696060)