PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1048473)

Clipboard (0)
None

Related Articles

1.  Identification of Genetic Association of Multiple Rare Variants Using Collapsing Methods 
Genetic Epidemiology  2011;35(Suppl 1):S101-S106.
Next-generation sequencing technology allows investigation of both common and rare variants in humans. Exomes are sequenced on the population level or in families to further study the genetics of human diseases. Genetic Analysis Workshop 17 (GAW17) provided exomic data from the 1000 Genomes Project and simulated phenotypes. These data enabled evaluations of existing and newly developed statistical methods for rare variant sequence analysis for which standard statistical methods fail because of the rareness of the alleles. Various alternative approaches have been proposed that overcome the rareness problem by combining multiple rare variants within a gene. These approaches are termed collapsing methods, and our GAW17 group focused on studying the performance of existing and novel collapsing methods using rare variants. All tested methods performed similarly, as measured by type I error and power. Inflated type I error fractions were consistently observed and might be caused by gametic phase disequilibrium between causal and noncausal rare variants in this relatively small sample as well as by population stratification. Incorporating prior knowledge, such as appropriate covariates and information on functionality of SNPs, increased the power of detecting associated genes. Overall, collapsing rare variants can increase the power of identifying disease-associated genes. However, studying genetic associations of rare variants remains a challenging task that requires further development and improvement in data collection, management, analysis, and computation.
doi:10.1002/gepi.20658
PMCID: PMC3289287  PMID: 22128049
1000 Genomes Project; association; collapsing methods; next-generation sequencing
2.  Gene-based multiple trait analysis for exome sequencing data 
BMC Proceedings  2011;5(Suppl 9):S75.
The common genetic variants identified through genome-wide association studies explain only a small proportion of the genetic risk for complex diseases. The advancement of next-generation sequencing technologies has enabled the detection of rare variants that are expected to contribute significantly to the missing heritability. Some genetic association studies provide multiple correlated traits for analysis. Multiple trait analysis has the potential to improve the power to detect pleiotropic genetic variants that influence multiple traits. We propose a gene-level association test for multiple traits that accounts for correlation among the traits. Gene- or region-level testing for association involves both common and rare variants. Statistical tests for common variants may have limited power for individual rare variants because of their low frequency and multiple testing issues. To address these concerns, we use the weighted-sum pooling method to test the joint association of multiple rare and common variants within a gene. The proposed method is applied to the Genetic Association Workshop 17 (GAW17) simulated mini-exome data to analyze multiple traits. Because of the nature of the GAW17 simulation model, increased power was not observed for multiple-trait analysis compared to single-trait analysis. However, multiple-trait analysis did not result in a substantial loss of power because of the testing of multiple traits. We conclude that this method would be useful for identifying pleiotropic genes.
doi:10.1186/1753-6561-5-S9-S75
PMCID: PMC3287915  PMID: 22373189
3.  Quality Control Issues and the Identification of Rare Functional Variants with Next-Generation Sequencing Data 
Genetic Epidemiology  2011;35(Suppl 1):S22-S28.
Next-generation sequencing of large numbers of individuals presents challenges in data preparation, quality control, and statistical analysis because of the rarity of the variants. The Genetic Analysis Workshop 17 (GAW17) data provide an opportunity to survey existing methods and compare these methods with novel ones. Specifically, the GAW17 Group 2 contributors investigate existing and newly proposed methods and study design strategies to identify rare variants, predict functional variants, and/or examine quality control. We introduce the eight Group 2 papers, summarize their approaches, and discuss their strengths and weaknesses. For these investigations, some groups used only the genotype data, whereas others also used the simulated phenotype data. Although the eight Group 2 contributions covered a wide variety of topics under the general idea of identifying rare variants, they can be grouped into three broad categories according to their common research interests: functionality of variants and quality control issues, family-based analyses, and association analyses of unrelated individuals. The aims of the first subgroup were quite different. These were population structure analyses that used rare variants to predict functionality and examine the accuracy of genotype calls. The aims of the family-based analyses were to select which families should be sequenced and to identify high-risk pedigrees; the aim of the association analyses was to identify variants or genes with regression-based methods. However, power to detect associations was low in all three association studies. Thus this work shows opportunities for incorporating rare variants into the genetic and statistical analyses of common diseases.
doi:10.1002/gepi.20645
PMCID: PMC3268158  PMID: 22128054
1000 Genomes Project; association; collection of rare variants; family data; next-generation sequencing; regression; quality control
4.  Collapsing-based and kernel-based single-gene analyses applied to Genetic Analysis Workshop 17 mini-exome data 
BMC Proceedings  2011;5(Suppl 9):S117.
Recently there has been great interest in identifying rare variants associated with common diseases. We apply several collapsing-based and kernel-based single-gene association tests to Genetic Analysis Workshop 17 (GAW17) rare variant association data with unrelated individuals without knowledge of the simulation model. We also implement modified versions of these methods using additional information, such as minor allele frequency (MAF) and functional annotation. For each of four given traits provided in GAW17, we use the Bayesian mixed-effects model to estimate the phenotypic variance explained by the given environmental and genotypic data and to infer an individual-specific genetic effect to use directly in single-gene association tests. After obtaining information on the GAW17 simulation model, we compare the performance of all methods and examine the top genes identified by those methods. We find that collapsing-based methods with weights based on MAFs are sensitive to the “lower MAF, larger effect size” assumption, whereas kernel-based methods are more robust when this assumption is violated. In addition, many false-positive genes identified by multiple methods often contain variants with exactly the same genotype distribution as the causal variants used in the simulation model. When the sample size is much smaller than the number of rare variants, it is more likely that causal and noncausal variants will share the same or similar genotype distribution. This likely contributes to the low power and large number of false-positive results of all methods in detecting causal variants associated with disease in the GAW17 data set.
doi:10.1186/1753-6561-5-S9-S117
PMCID: PMC3287841  PMID: 22373309
5.  Application of Bayesian network structure learning to identify causal variant SNPs from resequencing data 
BMC Proceedings  2011;5(Suppl 9):S109.
Using single-nucleotide polymorphism (SNP) genotypes from the 1000 Genomes Project pilot3 data provided for Genetic Analysis Workshop 17 (GAW17), we applied Bayesian network structure learning (BNSL) to identify potential causal SNPs associated with the Affected phenotype. We focus on the setting in which target genes that harbor causal variants have already been chosen for resequencing; the goal was to detect true causal SNPs from among the measured variants in these genes. Examining all available SNPs in the known causal genes, BNSL produced a Bayesian network from which subsets of SNPs connected to the Affected outcome were identified and measured for statistical significance using the hypergeometric distribution. The exploratory phase of analysis for pooled replicates sometimes identified a set of involved SNPs that contained more true causal SNPs than expected by chance in the Asian population. Analyses of single replicates gave inconsistent results. No nominally significant results were found in analyses of African or European populations. Overall, the method was not able to identify sets of involved SNPs that included a higher proportion of true causal SNPs than expected by chance alone. We conclude that this method, as currently applied, is not effective for identifying causal SNPs that follow the simulation model for the GAW17 data set, which includes many rare causal SNPs.
doi:10.1186/1753-6561-5-S9-S109
PMCID: PMC3287832  PMID: 22373088
6.  A weighted accumulation test for associating rare genetic variation with quantitative phenotypes 
BMC Proceedings  2011;5(Suppl 9):S6.
Currently there is a great deal of interest in developing methods for testing the role that rare variation plays in disease development. Here we propose a weighted association test that accumulates genetic variation across a signaling pathway. We evaluate our approach by analyzing simulated phenotype data from an exome sequencing study of 697 unrelated individuals from the Genetic Analysis Workshop 17 (GAW17) data set. Although our weighted approach identifies several interesting pathways associated with phenotype Q1, so does an alternative unweighted accumulation approach. Such a result is not unexpected because there is no systematic relationship between the allele frequency of a variant and its effect on phenotype in the GAW17 simulation model.
doi:10.1186/1753-6561-5-S9-S6
PMCID: PMC3287898  PMID: 22373271
7.  Genetics Analysis Workshop 16 Problem 2: the Framingham Heart Study data 
BMC Proceedings  2009;3(Suppl 7):S3.
Genetic Analysis Workshop 16 (GAW16) Problem 2 presented data from the Framingham Heart Study (FHS), an observational, prospective study of risk factors for cardiovascular disease begun in 1948. Data have been collected in three generations of family participants in the study and the data presented for GAW16 included phenotype data from all three generations, with four examinations of data collected repeatedly for the first two generations. The trait data consisted of information on blood pressure, hypertension treatment, lipid levels, diabetes and blood glucose, smoking, alcohol consumed, weight, and coronary heart disease incidence. Additionally, genotype data obtained through a genome-wide scan (FHS SHARe) of 550,000 single-nucleotide polymorphisms from Affymetrix chips were included with the GAW16 data. The genotype data were also used for GAW16 Problem 3, where simulated phenotypes were generated using the actual FHS genotypes. These data served to provide investigators with a rich resource to study the behavior of genome-wide scans with longitudinally collected family data and to develop and apply new procedures
PMCID: PMC2795927  PMID: 20018020
8.  Pairwise shared genomic segment analysis in high-risk pedigrees: application to Genetic Analysis Workshop 17 exome-sequencing SNP data 
BMC Proceedings  2011;5(Suppl 9):S9.
We applied our method of pairwise shared genomic segment (pSGS) analysis to high-risk pedigrees identified from the Genetic Analysis Workshop 17 (GAW17) mini-exome sequencing data set. The original shared genomic segment method focused on identifying regions shared by all case subjects in a pedigree; thus it can be sensitive to sporadic cases. Our new method examines sharing among all pairs of case subjects in a high-risk pedigree and then uses the mean sharing as the test statistic; in addition, the significance is assessed empirically based on the pedigree structure and linkage disequilibrium pattern of the single-nucleotide polymorphisms. Using all GAW17 replicates, we identified 18 unilineal high-risk pedigrees that contained excess disease (p < 0.01) and at least 15 meioses between case subjects. Eighteen rare causal variants were polymorphic in this set of pedigrees. Based on a significance threshold of 0.001, 72.2% (13/18) of these pedigrees were successfully identified with at least one region that contains a true causal variant. The regions identified included 4 of the possible 18 polymorphic causal variants. On average, 1.1 true positives and 1.7 false positives were identified per pedigree. In conclusion, we have demonstrated the potential of our new pSGS method for localizing rare disease causal variants in common disease using high-risk pedigrees and exome sequence data.
doi:10.1186/1753-6561-5-S9-S9
PMCID: PMC3287931  PMID: 22373081
9.  Incorporating Biological Information into Association Studies of Sequencing Data 
Genetic epidemiology  2011;35(0 1):S29-S34.
We summarize the methodological contributions from Group 3 of Genetic Analysis Workshop 17 (GAW17). The overarching goal of these methods was the evaluation and enhancement of state-of-the-art approaches in integration of biological knowledge into association studies of rare variants. We found that methods loosely fell into three major categories: (1) hypothesis testing of index scores based on aggregating rare variants at the gene level, (2) variable selection techniques that incorporate biological prior information, and (3) novel approaches that integrate external (i.e., not provided by GAW17) prior information, such as pathway and single-nucleotide polymorphism (SNP) annotations. Commonalities among the findings from these contributions are that gene-based analysis of rare variants is advantageous to single-SNP analysis and that the minor allele frequency threshold to identify rare variants may influence power and thus needs to be carefully considered. A consistent increase in power was also identified by considering only nonsynonymous SNPs in the analyses. Overall, we found that no single method had an appreciable advantage over the other methods. However, methods that carried out sensitivity analyses by comparing biologically informative to noninformative prior probabilities demonstrated that integrating biological knowledge into statistical analyses always, at the least, enabled subtle improvements in the performance of any statistical method applied to these simulated data. Although these statistical improvements reflect the simulation model assumed for GAW17, our hope is that the simulation models provide a reasonable representation of the underlying biology and that these methods can thus be of utility in real data.
doi:10.1002/gepi.20646
PMCID: PMC3635488  PMID: 22128055
exome sequencing; pathway analysis; gene association
10.  Genetic Analysis Workshop 17 mini-exome simulation 
BMC Proceedings  2011;5(Suppl 9):S2.
The data set simulated for Genetic Analysis Workshop 17 was designed to mimic a subset of data that might be produced in a full exome screen for a complex disorder and related risk factors in order to permit workshop participants to investigate issues of study design and statistical genetic analysis. Real sequence data from the 1000 Genomes Project formed the basis for simulating a common disease trait with a prevalence of 30% and three related quantitative risk factors in a sample of 697 unrelated individuals and a second sample of 697 individuals in large, extended pedigrees. Called genotypes for 24,487 autosomal markers assigned to 3,205 genes and simulated affection status, quantitative traits, age, sex, pedigree relationships, and cigarette smoking were provided to workshop participants. The simulating model included both common and rare variants with minor allele frequencies ranging from 0.07% to 25.8% and a wide range of effect sizes for these variants. Genotype-smoking interaction effects were included for variants in one gene. Functional variants were concentrated in genes selected from specific biological pathways and were selected on the basis of the predicted deleteriousness of the coding change. For each sample, unrelated individuals and family, 200 replicates of the phenotypes were simulated.
doi:10.1186/1753-6561-5-S9-S2
PMCID: PMC3287854  PMID: 22373155
11.  Detecting Rare Variant Associations: Methods for Testing Haplotypes and Multiallelic Genotypes 
Genetic Epidemiology  2011;35(Suppl 1):S85-S91.
We summarize the work done by the contributors to Group 13 at Genetic Analysis Workshop 17 (GAW17) and provide a synthesis of their data analyses. The Group 13 contributors used a variety of approaches to test associations of both rare variants and common single-nucleotide polymorphisms (SNPs) with the GAW17 simulated traits, implementing analytic methods that incorporate multiallelic genotypes and haplotypes. In addition to using a wide variety of statistical methods and approaches, the contributors exhibited a remarkable amount of flexibility and creativity in coding the variants and their genes and in evaluating their proposed approaches and methods. We describe and contrast their methods along three dimensions: (1) selection and coding of genetic entities for analysis, (2) method of analysis, and (3) evaluation of the results. The contributors consistently presented a strong rationale for using multiallelic analytic approaches. They indicated that power was likely to be increased by capturing the signals of multiple markers within genetic entities defined by sliding windows, haplotypes, genes, functional pathways, and the entire set of SNPs and rare variants taken in aggregate. Despite this variability, the methods were fairly consistent in their ability to identify two associated genes for each simulated trait. The first gene was selected for the largest number of causal alleles and the second for a high-frequency causal SNP. The presumed model of inheritance and choice of genetic entities are likely to have a strong effect on the outcomes of the analyses.
doi:10.1002/gepi.20656
PMCID: PMC3274416  PMID: 22128065
rare variants; sequence data; multiallelic data; Bayesian regression; penalized regression; tree-based clustering; pathway analysis; haplotypes
12.  Lessons Learned from Genetic Analysis Workshop 17: Transitioning from Genome-Wide Association Studies to Whole-Genome Statistical Genetic Analysis 
Genetic Epidemiology  2011;35(Suppl 1):S107-S114.
Genetic Analysis Workshop 17 (GAW17) focused on the transition from genome-wide association study designs and methods to the study designs and statistical genetic methods that will be required for the analysis of next-generation sequence data including both common and rare sequence variants. In the 166 contributions to GAW17, a wide variety of statistical methods were applied to simulated traits in population- and family-based samples, and results from these analyses were compared to the known generating model. In general, many of the statistical genetic methods used in the population-based sample identified causal sequence variants (SVs) when the estimated locus-specific heritability, as measured in the population-based sample, was greater than about 0.08. However, SVs with locus-specific heritabilities less than 0.03 were rarely identified consistently. In the family-based samples, many of the methods detected SVs that were rarer than those detected in the population-based sample, but the estimated locus-specific heritabilities for these rare SVs, as measured in the family-based samples, were substantially higher (>0.2) than their corresponding heritabilities in the population-based samples. Substantial inflation of the type I error rate was observed across a wide variety of statistical methods. Although many of the contributions found little inflation in type I error for Q4, a trait with no causal SVs, type I error rates for Q1 and Q2 were well above their nominal levels with the inflation for Q1 being higher than that for Q2. It seems likely that this inflation in type I error is due to correlations among SVs.
doi:10.1002/gepi.20659
PMCID: PMC3277851  PMID: 22128050
linkage; association; next-generation sequencing; computer simulation
13.  Prioritizing single-nucleotide variations that potentially regulate alternative splicing 
BMC Proceedings  2011;5(Suppl 9):S40.
Recent evidence suggests that many complex diseases are caused by genetic variations that play regulatory roles in controlling gene expression. Most genetic studies focus on nonsynonymous variations that can alter the amino acid composition of a protein and are therefore believed to have the highest impact on phenotype. Synonymous variations, however, can also play important roles in disease pathogenesis by regulating pre-mRNA processing and translational control. In this study, we systematically survey the effects of single-nucleotide variations (SNVs) on binding affinity of RNA-binding proteins (RBPs). Among the 10,113 synonymous SNVs identified in 697 individuals in the 1,000 Genomes Project and distributed by Genetic Analysis Workshop 17 (GAW17), we identified 182 variations located in alternatively spliced exons that can significantly change the binding affinity of nine RBPs whose binding preferences on 7-mer RNA sequences were previously reported. We found that the minor allele frequencies of these variations are similar to those of nonsynonymous SNVs, suggesting that they are in fact functional. We propose a workflow to identify phenotype-associated regulatory SNVs that might affect alternative splicing from exome-sequencing-derived genetic variations. Based on the affecting SNVs on the quantitative traits simulated in GAW17, we further identified two and four functional SNVs that are predicted to be involved in alternative splicing regulation in traits Q1 and Q2, respectively.
doi:10.1186/1753-6561-5-S9-S40
PMCID: PMC3287877  PMID: 22373210
14.  Microsatellite linkage analysis, single-nucleotide polymorphisms, and haplotype associations with ECB21 in the COGA data 
BMC Genetics  2005;6(Suppl 1):S94.
This study, part of the Genetic Analysis Workshop 14 (GAW14), explored real Collaborative Study on the Genetics of Alcoholism data for linkage and association mapping between genetic polymorphisms (microsatellite and single-nucleotide polymorphisms (SNPs)) and beta (16.5–20 Hz) oscillations of the brain rhythms (ecb21). The ecb21 phenotype underwent the statistical adjustments for the age of participants, and for attaining a normal distribution. A total of 1,000 subjects' available phenotypes were included in linkage analysis with microsatellite markers. Linkage analysis was performed only for chromosome 4 where a quantitative trait locus with 5.01 LOD score had been previously reported. Previous findings related this location with the γ-aminobutyric acid type A (GABAA) receptor. At the same location, our analysis showed a LOD score of 2.2. This decrease in the LOD score is the result of a drastic reduction (one-third) of the available GAW14 phenotypic data. We performed SNP and haplotype association analyses with the same phenotypic data under the linkage peak region on chromosome 4. Seven Affymetrix and two Illumina SNPs showed significant associations with ecb21 phenotype. A haplotype, a combination of SNPs TSC0044171 and TSC0551006 (the latter almost under the region of GABAA genes), showed a significant association with ecb21 (p = 0.015) and a relatively high frequency in the sample studied. Our results affirmed that the GABA region has potential of harboring genes that contribute quantitatively to the beta oscillation of the brain rhythms. The inclusion of the remaining 614 subjects, which in the GAW14 had missing data for the ecb21, can improve the strength of the associations as they have already shown that they contribute quite important information in the linkage analysis.
doi:10.1186/1471-2156-6-S1-S94
PMCID: PMC1866685  PMID: 16451710
15.  Genetic Analysis Workshop 16: Introduction to Workshop Summaries 
Genetic epidemiology  2009;33(Suppl 1):S1-S7.
Genetic Analysis Workshop 16 GAW16) was held September 17-20, 2008 in St. Louis, Missouri. The focus of GAW16 was on methods and challenges in analysis of single-nucleotide polymorphism (SNP) data from genome-wide scans. GAW16 attracted 221 participants from 12 countries. The 168 contributions were organized into 17 discussion groups of 6 to 17 papers each. Three data sets were available for analysis. Two of these were data from ongoing studies, generously provided by the investigators. The North American Rheumatoid Arthritis Consortium provided case-control data on rheumatoid arthritis, and the Framingham Heart Study made available information on cardiovascular risk factors for participants in three generations of pedigree data. The third data set included simulated phenotypes for participants in the Framingham Heart Study, using actual pedigree structures and genotypes. This volume includes a paper for each of the 17 discussion groups, summarizing their main findings.
doi:10.1002/gepi.20464
PMCID: PMC2987734  PMID: 19924709
single-nucleotide polymorphism; SNP; genome-wide scan; association; linkage; haplotype
16.  Rheumatoid arthritis, item response theory, Blom transformation, and mixed models 
BMC Proceedings  2007;1(Suppl 1):S116.
We studied rheumatoid arthritis (RA) in the North American Rheumatoid Arthritis Consortium (NARAC) data (1499 subjects; 757 families). Identical methods were applied for studying RA in the Genetic Analysis Workshop 15 (GAW15) simulated data (with a prior knowledge of the simulation answers). Fifty replications of GAW15 simulated data had 3497 ± 20 subjects in 1500 nuclear families. Two new statistical methods were applied to transform the original phenotypes on these data, the item response theory (IRT) to create a latent variable from nine classifying predictors and a Blom transformation of the anti-CCP (anti-cyclic citrinullated protein) variable. We performed linear mixed-effects (LME) models to study the additive associations of 404 Illumina-genotyped single-nucleotide polymorphisms (SNPs) on the NARAC data, and of 17,820 SNPs of the GAW15 simulated data. In the GAW15 simulated data, the association with anti-CCP Blom transformation showed a 100% sensitivity for SNP1 located in the major histocompatibility complex gene. In contrast, the association of SNP1 with the IRT latent variable showed only 24% sensitivity. From the simulated data, we conclude that the Blom transformation of the anti-CCP variable produced more reliable results than the latent variable from the qualitative combination of a group of RA risk factors. In the NARAC data, the significant RA-SNPs associations found with both phenotype-transformation methods provided a trend that may point toward dynein and energy control genes. Finer genotyping in the NARAC data would grant more exact evidence for the contributions of chromosome 6 to RA.
PMCID: PMC2367565  PMID: 18466457
17.  Rare variant collapsing in conjunction with mean log p-value and gradient boosting approaches applied to Genetic Analysis Workshop 17 data 
BMC Proceedings  2011;5(Suppl 9):S94.
In addition to methods that can identify common variants associated with susceptibility to common diseases, there has been increasing interest in approaches that can identify rare genetic variants. We use the simulated data provided to the participants of Genetic Analysis Workshop 17 (GAW17) to identify both rare and common single-nucleotide polymorphisms and pathways associated with disease status. We apply a rare variant collapsing approach and the usual association tests for common variants to identify candidates for further analysis using pathway-based and tree-based ensemble approaches. We use the mean log p-value approach to identify a top set of pathways and compare it to those used in simulation of GAW17 dataset. We conclude that the mean log p-value approach is able to identify those pathways in the top list and also related pathways. We also use the stochastic gradient boosting approach for the selected subset of single-nucleotide polymorphisms. When compared the result of this tree-based method with the list of single-nucleotide polymorphisms used in dataset simulation, in addition to correct SNPs we observe number of false positives.
doi:10.1186/1753-6561-5-S9-S94
PMCID: PMC3287936  PMID: 22373203
18.  Evaluation of association tests for rare variants using simulated data sets in the Genetic Analysis Workshop 17 data 
BMC Proceedings  2011;5(Suppl 9):S86.
We evaluate four association tests for rare variants—the combined multivariate and collapsing (CMC) method, two weighted-sum methods, and a variable threshold method—by applying them to the simulated data sets of unrelated individuals in the Genetic Analysis Workshop 17 (GAW17) data. The family-wise error rate (FWER) and average power are used as criteria for evaluation. Our results show that when all nonsynonymous SNPs (rare variants and common variants) in a gene are jointly analyzed, the CMC method fails to control the FWER; when only rare variants (single-nucleotide polymorphisms with minor allele frequency less than 0.05) are analyzed, all four methods can control FWER well. All four methods have comparable power, which is low for the analysis of the GAW17 data sets. Three of the methods (not including the CMC method) involve estimation of p-values using permutation procedures that either can be computationally intensive or generate inflated FWERs. We adapt a fast permutation procedure into these three methods. The results show that using the fast permutation procedure can produce FWERs and average powers close to the values obtained from the standard permutation procedure on the GAW17 data sets. The standard permutation procedure is computationally intensive.
doi:10.1186/1753-6561-5-S9-S86
PMCID: PMC3287927  PMID: 22373475
19.  A method to incorporate prior information into score test for genetic association studies 
BMC Bioinformatics  2014;15:24.
Background
The interest of the scientific community in investigating the impact of rare variants on complex traits has stimulated the development of novel statistical methodologies for association studies. The fact that many of the recently proposed methods for association studies suffer from low power to identify a genetic association motivates the incorporation of prior knowledge into statistical tests.
Results
In this article we propose a methodology to incorporate prior information into the region-based score test. Within our framework prior information is used to partition variants within a region into several groups, following which asymptotically independent group statistics are constructed and then combined into a global test statistic. Under the null hypothesis the distribution of our test statistic has lower degrees of freedom compared with those of the region-based score statistic. Theoretical power comparison, population genetics simulations and results from analysis of the GAW17 sequencing data set suggest that under some scenarios our method may perform as well as or outperform the score test and other competing methods.
Conclusions
An approach which uses prior information to improve the power of the region-based score test is proposed. Theoretical power comparison, population genetics simulations and the results of GAW17 data analysis showed that for some scenarios power of our method is on the level with or higher than those of the score test and other methods.
doi:10.1186/1471-2105-15-24
PMCID: PMC3904928  PMID: 24450486
Prior information; Association analysis; Score test; Rare variants
20.  Penalized regression approaches to testing for quantitative trait-rare variant association 
Frontiers in Genetics  2014;5:121.
In statistical data analysis, penalized regression is considered an attractive approach for its ability of simultaneous variable selection and parameter estimation. Although penalized regression methods have shown many advantages in variable selection and outcome prediction over other approaches for high-dimensional data, there is a relative paucity of the literature on their applications to hypothesis testing, e.g., in genetic association analysis. In this study, we apply several new penalized regression methods with a novel penalty, called Truncated L1-penalty (TLP) (Shen et al., 2012), for either variable selection, or both variable selection and parameter grouping, in a data-adaptive way to test for association between a quantitative trait and a group of rare variants. The performance of the new methods are compared with some existing tests, including some recently proposed global tests and penalized regression-based methods, via simulations and an application to the real sequence data of the Genetic Analysis Workshop 17 (GAW17). Although our proposed penalized methods can improve over some existing penalized methods, often they do not outperform some existing global association tests. Some possible problems with utilizing penalized regression methods in genetic hypothesis testing are discussed. Given the capability of penalized regression in selecting causal variants and its sometimes promising performance, further studies are warranted.
doi:10.3389/fgene.2014.00121
PMCID: PMC4026747  PMID: 24860593
GWAS; SSU test; SSUw test; Sum test; TLP
21.  Comparison of collapsing methods for the statistical analysis of rare variants 
BMC Proceedings  2011;5(Suppl 9):S115.
Novel technologies allow sequencing of whole genomes and are considered as an emerging approach for the identification of rare disease-associated variants. Recent studies have shown that multiple rare variants can explain a particular proportion of the genetic basis for disease. Following this assumption, we compare five collapsing approaches to test for groupwise association with disease status, using simulated data provided by Genetic Analysis Workshop 17 (GAW17). Variants are collapsed in different scenarios per gene according to different minor allele frequency (MAF) thresholds and their functionality. For comparing the different approaches, we consider the family-wise error rate and the power. Most of the methods could maintain the nominal type I error levels well for small MAF thresholds, but the power was generally low. Although the methods considered in this report are common approaches for analyzing rare variants, they performed poorly with respect to the simulated disease phenotype in the GAW17 data set.
doi:10.1186/1753-6561-5-S9-S115
PMCID: PMC3287839  PMID: 22373249
22.  Association tests for rare and common variants based on genotypic and phenotypic measures of similarity between individuals 
BMC Proceedings  2011;5(Suppl 9):S89.
Genome-wide association studies have helped us identify thousands of common variants associated with several widespread complex diseases. However, for most traits, these variants account for only a small fraction of phenotypic variance or heritability. Next-generation sequencing technologies are being used to identify additional rare variants hypothesized to have higher effect sizes than the already identified common variants, and to contribute significantly to the fraction of heritability that is still unexplained. Several pooling strategies have been proposed to test the joint association of multiple rare variants, because testing them individually may not be optimal. Within a gene or genomic region, if there are both rare and common variants, testing their joint association may be desirable to determine their synergistic effects. We propose new methods to test the joint association of several rare and common variants with binary and quantitative traits. Our association test for quantitative traits is based on genotypic and phenotypic measures of similarity between pairs of individuals. For the binary trait or case-control samples, we recently proposed an association test based on the genotypic similarity between individuals. Here, we develop a modified version of this test for rare variants. Our tests can be used for samples taken from multiple subpopulations. The power of our test statistics for case-control samples and quantitative traits was evaluated using the GAW17 simulated data sets. Type I error rates for the proposed tests are well controlled. Our tests are able to identify some of the important causal genes in the GAW17 simulated data sets.
doi:10.1186/1753-6561-5-S9-S89
PMCID: PMC3287930  PMID: 22373048
23.  Finding genes that influence quantitative traits with tree-based clustering 
BMC Proceedings  2011;5(Suppl 9):S98.
We present a new statistical method to identify genes in which one or more variants influence quantitative traits. We use the Genetic Analysis Workshop 17 (GAW17) data set of unrelated individuals as a test of the method on the raw GAW17 phenotypes and on residuals after fitting linear models to individual-based covariates. By performing appropriate randomization tests, we found many significant results for a proportion of the genes that contain variants that directly contribute to disease but that have an increased type I error for analyses of raw phenotypes. Power calculations show that our methods have the ability to reliably identify a subset of the loci contributing to disease. When we applied our method to derived phenotypes, we removed many false positives, giving appropriate type I error rates at little cost to power. The correlation between genome-wide heterozygosity and the value of the trait Q1 appears to drive much of the type I error in this data set.
doi:10.1186/1753-6561-5-S9-S98
PMCID: PMC3287940  PMID: 22373331
24.  Comparison of the power of haplotype-based versus single- and multilocus association methods for gene × environment (gene × sex) interactions and application to gene × smoking and gene × sex interactions in rheumatoid arthritis 
BMC Proceedings  2007;1(Suppl 1):S73.
Accounting for interactions with environmental factors in association studies may improve the power to detect genetic effects and may help identifying important environmental effect modifiers. The power of unphased genotype-versus haplotype-based methods in regions with high linkage disequilibrium (LD), as measured by D', for analyzing gene × environment (gene × sex) interactions was compared using the Genetic Analysis Workshop 15 (GAW15) simulated data on rheumatoid arthritis with prior knowledge of the answers. Stepwise and regular conditional logistic regression (CLR) was performed using a matched case-control sample for a HLA region interacting with sex. Haplotype-based analyses were performed using a haplotype-sharing-based Mantel statistic and a test for haplotype-trait association in a general linear model framework. A step-down minP algorithm was applied to derive adjusted p-values and to allow for power comparisons. These methods were also applied to the GAW15 real data set for PTPN22.
For markers in strong LD, stepwise CLR performed poorly because of the correlation/collinearity between the predictors in the model. The power was high for detecting genetic main effects using simple CLR models and haplotype-based methods and for detecting joint effects using CLR and Mantel statistics. Only the haplotype-trait association test had high power to detect the gene × sex interaction.
In the PTPN22 region with markers characterized by strong LD, all methods indicated a significant genotype × sex interaction in a sample of about 1000 subjects. The previously reported R620W single-nucleotide polymorphism was identified using logistic regression, but the haplotype-based methods did not provide any precise location information.
PMCID: PMC2367597  PMID: 18466575
25.  Exploring epistasis in candidate genes for rheumatoid arthritis 
BMC Proceedings  2007;1(Suppl 1):S70.
The identification of susceptibility genes for common, chronic disease presents great challenges. The development of novel statistical and computational methodologies to help identify these genes is an area of great necessity. Much research is ongoing and the Genetic Analysis Workshop (GAW) is a venue for the dissemination and comparison of many of these methods. GAW15 included real data sets to look for disease susceptibility genes for rheumatoid arthritis (RA). RA is a complex, chronic inflammatory disease with several replicated disease genes, but much of the genetic variation in the phenotype remains unexplained. We applied two computational methods, namely multifactor dimensionality reduction (MDR) and grammatical evolution neural networks (GENN), to three data sets from GAW15. While these analytic methods were applied with the intention of detecting of multilocus models of association, both methods identified a strong single locus effect of a single-nucleotide polymorphism (SNP) in PTPN22 that is significantly associated with RA. This SNP has previously been associated with RA in several other published studies. These results demonstrate that both MDR and GENN are capable of identifying a single-locus main effect, in addition to multilocus models of association. This is the first published comparison of the two methods. Because GENN employs an evolutionary computation search strategy in comparison to the exhaustive search strategy of MDR, it is encouraging that the two methods produced similar results. This comparison should be extended in future studies with both simulated and real data.
PMCID: PMC2367541  PMID: 18466572

Results 1-25 (1048473)