PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1096973)

Clipboard (0)
None

Related Articles

1.  Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p 
Brain  2012;135(3):709-722.
Frontotemporal dementia and amyotrophic lateral sclerosis are closely related clinical syndromes with overlapping molecular pathogenesis. Several families have been reported with members affected by frontotemporal dementia, amyotrophic lateral sclerosis or both, which show genetic linkage to a region on chromosome 9p21. Recently, two studies identified the FTD/ALS gene defect on chromosome 9p as an expanded GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72). In the present study, we provide detailed analysis of the clinical features and neuropathology for 16 unrelated families with frontotemporal dementia caused by the C9ORF72 mutation. All had an autosomal dominant pattern of inheritance. Eight families had a combination of frontotemporal dementia and amyotrophic lateral sclerosis while the other eight had a pure frontotemporal dementia phenotype. Clinical information was available for 30 affected members of the 16 families. There was wide variation in age of onset (mean = 54.3, range = 34–74 years) and disease duration (mean = 5.3, range = 1–16 years). Early diagnoses included behavioural variant frontotemporal dementia (n = 15), progressive non-fluent aphasia (n = 5), amyotrophic lateral sclerosis (n = 9) and progressive non-fluent aphasia–amyotrophic lateral sclerosis (n = 1). Heterogeneity in clinical presentation was also common within families. However, there was a tendency for the phenotypes to converge with disease progression; seven subjects had final clinical diagnoses of both frontotemporal dementia and amyotrophic lateral sclerosis and all of those with an initial progressive non-fluent aphasia diagnosis subsequently developed significant behavioural abnormalities. Twenty-one affected family members came to autopsy and all were found to have transactive response DNA binding protein with Mr 43 kD (TDP-43) pathology in a wide neuroanatomical distribution. All had involvement of the extramotor neocortex and hippocampus (frontotemporal lobar degeneration-TDP) and all but one case (clinically pure frontotemporal dementia) had involvement of lower motor neurons, characteristic of amyotrophic lateral sclerosis. In addition, a consistent and relatively specific pathological finding was the presence of neuronal inclusions in the cerebellar cortex that were ubiquitin/p62-positive but TDP-43-negative. Our findings indicate that the C9ORF72 mutation is a major cause of familial frontotemporal dementia with TDP-43 pathology, that likely accounts for the majority of families with combined frontotemporal dementia/amyotrophic lateral sclerosis presentation, and further support the concept that frontotemporal dementia and amyotrophic lateral sclerosis represent a clinicopathological spectrum of disease with overlapping molecular pathogenesis.
doi:10.1093/brain/awr354
PMCID: PMC3286328  PMID: 22344582
frontotemporal dementia; frontotemporal lobar degeneration; amyotrophic lateral sclerosis; C9ORF72, TDP-43
2.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72 
Brain  2012;135(3):784-793.
A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ∼40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis–frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis–frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6–7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7–2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ∼60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis.
doi:10.1093/brain/awr366
PMCID: PMC3286333  PMID: 22366794
amyotrophic lateral sclerosis; familial ALS, C9ORF72 gene; phenotype–genotype correlation
3.  Characterization of a Family With c9FTD/ALS Associated With the GGGGCC Repeat Expansion in C9ORF72 
Archives of neurology  2012;69(9):1164-1169.
Background
The hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene was recently discovered as the pathogenic mechanism underlying many families with frontotemporal dementia (FTD) and/or amyotrophic lateral sclerosis (ALS) linked to chromosome 9 (c9FTD/ALS). We report the clinical, neuropsychological, and neuroimaging findings of a family with the C9ORF72 mutation and clinical diagnoses bridging the FTD, parkinsonism and ALS spectrum.
Objective
To characterize the antemortem characteristics of a family with c9FTD/ALS associated with the GGGGCC repeat expansion in C9ORF72
Design
Clinical series.
Setting
Tertiary care academic medical center.
Patients
The members of the family affected by the mutation with features of FTD and/or ALS.
Main Outcome Measures
Clinical, neuropsychological, and neuroimaging assessments.
Results
All three examined subjects had the hexanucleotide expansion detected in C9ORF72. All had personality/behavioral changes early in the course of the disease. One case had levodopa-unresponsive parkinsonism, and one had ALS. MRI showed symmetric bilateral frontal, temporal, insular and cingulate atrophy.
Conclusions
This report highlights the clinical and neuroimaging characteristics of a family with c9FTD/ALS. Further studies are needed to better understand the phenotypical variability and the clinico-neuroimaging-neuropathologic correlations.
doi:10.1001/archneurol.2012.772
PMCID: PMC3625860  PMID: 22637471
4.  Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72 
Brain  2012;135(3):751-764.
Intronic expansion of the GGGGCC hexanucleotide repeat within the C9ORF72 gene causes frontotemporal dementia and amyotrophic lateral sclerosis/motor neuron disease in both familial and sporadic cases. Initial reports indicate that this variant within the frontotemporal dementia/amyotrophic lateral sclerosis spectrum is associated with transactive response DNA binding protein (TDP-43) proteinopathy. The amyotrophic lateral sclerosis/motor neuron disease phenotype is not yet well characterized. We report the clinical and pathological phenotypes associated with pathogenic C9ORF72 mutations in a cohort of 563 cases from Northern England, including 63 with a family history of amyotrophic lateral sclerosis. One hundred and fifty-eight cases from the cohort (21 familial, 137 sporadic) were post-mortem brain and spinal cord donors. We screened DNA for the C9ORF72 mutation, reviewed clinical case histories and undertook pathological evaluation of brain and spinal cord. Control DNA samples (n = 361) from the same population were also screened. The C9ORF72 intronic expansion was present in 62 cases [11% of the cohort; 27/63 (43%) familial, 35/500 (7%) cases with sporadic amyotrophic lateral sclerosis/motor neuron disease]. Disease duration was significantly shorter in cases with C9ORF72-related amyotrophic lateral sclerosis (30.5 months) compared with non-C9ORF72 amyotrophic lateral sclerosis/motor neuron disease (36.3 months, P < 0.05). C9ORF72 cases included both limb and bulbar onset disease and all cases showed combined upper and lower motor neuron degeneration (amyotrophic lateral sclerosis). Thus, clinically, C9ORF72 cases show the features of a relatively rapidly progressive, but otherwise typical, variant of amyotrophic lateral sclerosis associated with both familial and sporadic presentations. Dementia was present in the patient or a close family member in 22/62 cases with C9ORF72 mutation (35%) based on diagnoses established from retrospective clinical case note review that may underestimate significant cognitive changes in late disease. All the C9ORF72 mutation cases showed classical amyotrophic lateral sclerosis pathology with TDP-43 inclusions in spinal motor neurons. Neuronal cytoplasmic inclusions and glial inclusions positive for p62 immunostaining in non-motor regions were strongly over-represented in the C9ORF72 cases. Extra-motor pathology in the frontal cortex (P < 0.0005) and the hippocampal CA4 subfield neurons (P < 0.0005) discriminated C9ORF72 cases strongly from the rest of the cohort. Inclusions in CA4 neurons were not present in non-C9ORF72 cases, indicating that this pathology predicts mutation status.
doi:10.1093/brain/awr365
PMCID: PMC3286332  PMID: 22366792
amyotrophic lateral sclerosis; C9ORF72; dementia; neurodegeneration
5.  Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions 
Brain  2014;137(7):2040-2051.
Expansion of GGGGCC repeats in C9orf72 causes familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but the underlying mechanism is unclear. Using RNA pulldown and immunohistochemistry in ALS biosamples, Cooper-Knock et al. identify proteins that bind to the repeat expansions. Disrupted RNA splicing and/or nuclear export may underlie C9orf72-ALS pathogenesis.
GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyotrophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72+), but not from those patients without a repeat expansion of C9orf72 (C9orf72−) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated with the clinical phenotype (t-test P < 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified foci in fibroblasts from an asymptomatic C9orf72+ carrier. We next performed pulldown assays, with GGGGCC5, in conjunction with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched. Immunohistochemistry in central nervous system tissue from C9orf72+ patients with amyotrophic lateral sclerosis demonstrated co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry demonstrated that neurons with and without RNA foci were equally likely to show nuclear depletion of TDP-43 (χ2 P = 0.75) or poly-GA dipeptide repeat protein inclusions (χ2 P = 0.46). Our findings suggest two non-exclusive pathogenic mechanisms: (i) functional depletion of RNA-processing proteins resulting in disruption of messenger RNA splicing; and (ii) licensing of expanded C9orf72 pre-messenger RNA for nuclear export by inappropriate association with messenger RNA export adaptor protein(s) leading to cytoplasmic repeat associated non-ATG translation and formation of potentially toxic dipeptide repeat protein.
doi:10.1093/brain/awu120
PMCID: PMC4065024  PMID: 24866055
amyotrophic lateral sclerosis; pathology; genetics; fluorescence imaging
6.  Frontotemporal dementia in a Brazilian Caucasian kindred with the C9orf72 mutation 
Archives of neurology  2012;69(9):1149-1153.
Objective
Describe the clinical features of a Brazilian C9orf72 frontotemporal dementia – amyotrophic lateral sclerosis (FTD-ALS) kindred, and compare them to other reported C9orf72 families and FTD-ALS causing mutations.
Design
Report of a kindred.
Setting
Dementia center at an University hospital.
Patients
One kindred encompassing 3 generations.
Results
The presence of a hexanucleotide (GGGGCC) expansion in C9orf72 was confirmed by repeat-primed PCR and Southern blot. The observed phenotypes were behavioral variant FTD and ALS with dementia, with significant variability in age of onset and duration of disease. Parkinsonian features with focal dystonia, visual hallucinations and more posterior atrophy on neuroimaging than is typical for FTD were seen.
Conclusions
bvFTD due to C9orf72 expansions displays some phenotypic heterogeneity, and may be associated with hallucinations, parkinsonism, focal dystonia, and posterior brain atrophy. Personality changes may precede by many years the diagnosis of dementia and may be a distinguishing feature of this mutation.
doi:10.1001/archneurol.2012.650
PMCID: PMC3625641  PMID: 22964910
7.  Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p 
Acta Neuropathologica  2012;123(3):409-417.
Two studies recently identified a GGGGCC hexanucleotide repeat expansion in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72) as the cause of chromosome 9p-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In a cohort of 231 probands with ALS, we identified the C9ORF72 mutation in 17 familial (27.4 %) and six sporadic (3.6%) cases. Patients with the mutation presented with typical motor features of ALS, although subjects with the C9ORF72 mutation had more frequent bulbar onset, compared to those without this mutation. Dementia was significantly more common in ALS patients and families with the C9ORF72 mutation and was usually early-onset FTD. There was striking clinical heterogeneity among the members of individual families with the mutation. The associated neuropathology was a combination of ALS with TDP-ir inclusions and FTLD-TDP. In addition to TDP-43-immunoreactive pathology, a consistent and specific feature of cases with the C9ORF72 mutation was the presence of ubiquitin-positive, TDP-43-negative inclusions in a variety of neuroanatomical regions, such as the cerebellar cortex. These findings support the C9ORF72 mutation as an important newly-recognized cause of ALS, provide a more detailed characterization of the associated clinical and pathological features and further demonstrate the clinical and molecular overlap between ALS and FTD.
doi:10.1007/s00401-011-0937-5
PMCID: PMC3322555  PMID: 22228244
amyotrophic lateral sclerosis; frontotemporal dementia; frontotemporal lobar degeneration; C9ORF72; TDP-43; chromosome 9p
8.  Expanded C9ORF72 Hexanucleotide Repeat in Depressive Pseudodementia 
JAMA neurology  2014;71(6):775-781.
Importance
Expanded hexanucleotide repeats in C9ORF72 are a common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. Repeat expansions have also been detected infrequently in other disorders, including Alzheimer’s disease, dementia with Lewy bodies and Parkinsonian disorders.
Objective
To assess the incidence of the expanded C9ORF72 repeat in cases of depressive pseudodementia.
Design
An immunohistochemical screen of autopsied brains collected between 1998 and 2013.
Setting
Brain bank at Mayo Clinic Florida, a large tertiary care research institution.
Participants
Thirty one neuropathologically normal individuals (no atrophy, neuronal loss, or gliosis beyond what would be expected for age) with an antemortem clinical history or diagnosis of depression and/or dementia.
Main Outcome Measures
Presence of the hexanucleotide repeat was established using immunohistochemistry with a highly disease-specific antibody (C9RANT), and was further validated in carriers using repeat-primed polymerase chain reaction and Southern blotting.
Results
Of the 31 cases studied, 2 (6.45%) individuals harbored the C9ORF72 repeat expansion. Both patients were men with refractory depression. One patient experienced drug-induced Parkinsonism and sudden-onset dementia, while the other patient had a more insidious disease course suspected to be Alzheimer’s disease. Clinical and neuropathologic features are described.
Conclusions and Relevance
This report expands the range of clinicopathologic presentations of C9ORF72 expanded hexanucleotide repeat to include psychiatric disorders such as depressive pseudodementia.
doi:10.1001/jamaneurol.2013.6368
PMCID: PMC4197801  PMID: 24756204
9.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study 
Lancet Neurology  2012;11(3):232-240.
Summary
Background
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons, associated with frontotemporal dementia (FTD) in about 14% of incident cases. We assessed the frequency of the recently identified C9orf72 repeat expansion in familial and apparently sporadic cases of ALS and characterised the cognitive and clinical phenotype of patients with this expansion.
Methods
A population-based register of patients with ALS has been in operation in Ireland since 1995, and an associated DNA bank has been in place since 1999. 435 representative DNA samples from the bank were screened using repeat-primed PCR for the presence of a GGGGCC repeat expansion in C9orf72. We assessed clinical, cognitive, behavioural, MRI, and survival data from 191 (44%) of these patients, who comprised a population-based incident group and had previously participated in a longitudinal study of cognitive and behavioural changes in ALS.
Findings
Samples from the DNA bank included 49 cases of known familial ALS and 386 apparently sporadic cases. Of these samples, 20 (41%) cases of familial ALS and 19 (5%) cases of apparently sporadic ALS had the C9orf72 repeat expansion. Of the 191 patients for whom phenotype data were available, 21 (11%) had the repeat expansion. Age at disease onset was lower in patients with the repeat expansion (mean 56·3 [SD 8·3] years) than in those without (61·3 [10·6] years; p=0·043). A family history of ALS or FTD was present in 18 (86%) of those with the repeat expansion. Patients with the repeat expansion had significantly more co-morbid FTD than patients without the repeat (50% vs 12%), and a distinct pattern of non-motor cortex changes on high-resolution 3 T magnetic resonance structural neuroimaging. Age-matched univariate analysis showed shorter survival (20 months vs 26 months) in patients with the repeat expansion. Multivariable analysis showed an increased hazard rate of 1·9 (95% 1·1–3·7; p=0·035) in those patients with the repeat expansion compared with patients without the expansion
Interpretation
Patients with ALS and the C9orf72 repeat expansion seem to present a recognisable phenotype characterised by earlier disease onset, the presence of cognitive and behavioural impairment, specific neuroimaging changes, a family history of neurodegeneration with autosomal dominant inheritance, and reduced survival. Recognition of patients with ALS who carry an expanded repeat is likely to be important in the context of appropriate disease management, stratification in clinical trials, and in recognition of other related phenotypes in family members.
Funding
Health Seventh Framework Programme, Health Research Board, Research Motor Neuron, Irish Motor Neuron Disease Association, The Motor Neurone Disease Association of Great Britain and Northern Ireland, ALS Association.
doi:10.1016/S1474-4422(12)70014-5
PMCID: PMC3315021  PMID: 22305801
10.  Prominent Phenotypic Variability Associated with Mutations in Progranulin 
Neurobiology of aging  2007;30(5):739-751.
Mutations in progranulin (PGRN) are associated with frontotemporal dementia with or without parkinsonism. We describe the prominent phenotypic variability within and among eight kindreds evaluated at Mayo Clinic Rochester and/or Mayo Clinic Jacksonville in whom mutations in PGRN were found. All available clinical, genetic, neuroimaging and neuropathologic data was reviewed. Age of onset ranged from 49 to 88 years and disease duration ranged from 1 to 14 years. Clinical diagnoses included frontotemporal dementia (FTD), primary progressive aphasia, FTD with parkinsonism, parkinsonism, corticobasal syndrome, Alzheimer’s disease, amnestic mild cognitive impairment, and others. One kindred exhibited maximal right cerebral hemispheric atrophy in all four affected individuals, while another had maximal left hemisphere involvement in all three of the affected. Neuropathologic examination of 13 subjects revealed frontotemporal lobar degeneration with ubiquitin-positive inclusions plus neuronal intranuclear inclusions in all cases. Age of onset, clinical phenotypes and MRI findings associated with most PGRN mutations varied significantly both within and among kindreds. Some kindreds with PGRN mutations exhibited lateralized topography of degeneration across all affected individuals.
doi:10.1016/j.neurobiolaging.2007.08.022
PMCID: PMC3164546  PMID: 17949857
Frontotemporal dementia; FTDP-17; Progranulin; PGRN; MRI
11.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics 
Brain  2012;135(3):794-806.
A major recent discovery was the identification of an expansion of a non-coding GGGGCC hexanucleotide repeat in the C9ORF72 gene in patients with frontotemporal dementia and amyotrophic lateral sclerosis. Mutations in two other genes are known to account for familial frontotemporal dementia: microtubule-associated protein tau and progranulin. Although imaging features have been previously reported in subjects with mutations in tau and progranulin, no imaging features have been published in C9ORF72. Furthermore, it remains unknown whether there are differences in atrophy patterns across these mutations, and whether regional differences could help differentiate C9ORF72 from the other two mutations at the single-subject level. We aimed to determine the regional pattern of brain atrophy associated with the C9ORF72 gene mutation, and to determine which regions best differentiate C9ORF72 from subjects with mutations in tau and progranulin, and from sporadic frontotemporal dementia. A total of 76 subjects, including 56 with a clinical diagnosis of behavioural variant frontotemporal dementia and a mutation in one of these genes (19 with C9ORF72 mutations, 25 with tau mutations and 12 with progranulin mutations) and 20 sporadic subjects with behavioural variant frontotemporal dementia (including 50% with amyotrophic lateral sclerosis), with magnetic resonance imaging were included in this study. Voxel-based morphometry was used to assess and compare patterns of grey matter atrophy. Atlas-based parcellation was performed utilizing the automated anatomical labelling atlas and Statistical Parametric Mapping software to compute volumes of 37 regions of interest. Hemispheric asymmetry was calculated. Penalized multinomial logistic regression was utilized to create a prediction model to discriminate among groups using regional volumes and asymmetry score. Principal component analysis assessed for variance within groups. C9ORF72 was associated with symmetric atrophy predominantly involving dorsolateral, medial and orbitofrontal lobes, with additional loss in anterior temporal lobes, parietal lobes, occipital lobes and cerebellum. In contrast, striking anteromedial temporal atrophy was associated with tau mutations and temporoparietal atrophy was associated with progranulin mutations. The sporadic group was associated with frontal and anterior temporal atrophy. A conservative penalized multinomial logistic regression model identified 14 variables that could accurately classify subjects, including frontal, temporal, parietal, occipital and cerebellum volume. The principal component analysis revealed similar degrees of heterogeneity within all disease groups. Patterns of atrophy therefore differed across subjects with C9ORF72, tau and progranulin mutations and sporadic frontotemporal dementia. Our analysis suggested that imaging has the potential to be useful to help differentiate C9ORF72 from these other groups at the single-subject level.
doi:10.1093/brain/aws001
PMCID: PMC3286334  PMID: 22366795
frontotemporal dementia; magnetic resonance imaging; C9ORF72; tau; progranulin
12.  C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts 
Neurology  2012;79(10):995-1001.
Objective:
To determine the frequency of a hexanucleotide repeat expansion in C9ORF72, a gene of unknown function implicated in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), in Australian FTD patient cohorts and to examine the clinical and neuropathologic phenotypes associated with this expansion.
Methods:
We examined a clinically ascertained FTD cohort (n = 89) and a neuropathologically ascertained cohort of frontotemporal lobar degeneration cases with TDP-43 pathology (FTLD-TDP) (n = 22) for the C9ORF72 hexanucleotide repeat expansion using a repeat primed PCR assay. All expansion-positive patients were genotyped for rs3849942, a surrogate marker for the chromosome 9p21 risk haplotype previously associated with FTD and ALS.
Results:
The C9ORF72 repeat expansion was detected in 10% of patients in the clinically diagnosed cohort, rising to 29% in those with a positive family history of early-onset dementia or ALS. The prevalence of psychotic features was significantly higher in expansion-positive cases (56% vs 14%). In the pathology cohort, 41% of TDP-43-positive cases harbored the repeat expansion, and all exhibited type B pathology. One of the 17 expansion-positive probands was homozygous for the “nonrisk” G allele of rs3849942.
Conclusions:
The C9ORF72 repeat expansion is a relatively common cause of FTD in Australian populations, and is especially common in those with FTD-ALS, psychotic features, and a strong family history. Detection of a repeat expansion on the 9p21 putative “nonrisk” haplotype suggests that not all mutation carriers are necessarily descended from a common founder and indicates that the expansion may have occurred on multiple haplotype backgrounds.
doi:10.1212/WNL.0b013e3182684634
PMCID: PMC3430710  PMID: 22875086
13.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features 
Brain  2012;135(3):736-750.
An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration–TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.
doi:10.1093/brain/awr361
PMCID: PMC3286330  PMID: 22366791
frontotemporal lobar degeneration; motor neuron disease; neurodegenerative disorders; neuroimaging; genetics
14.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 
Acta Neuropathologica  2011;122(6):673-690.
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology. Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND. Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72. Discovery of the mutation defines c9FTD/ALS. Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform. In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders. Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer type dementia. Clinical information was unavailable for one patient. Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP. The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions. The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis. The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis. FTLD-TDP patients were older and some were thought to have Alzheimer type dementia. In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and presence of hippocampal sclerosis. Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but within the FTLD group. Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72.
doi:10.1007/s00401-011-0907-y
PMCID: PMC3277860  PMID: 22083254
15.  Analysis of the C9orf72 repeat in Parkinson’s disease, essential tremor and restless legs syndrome 
Parkinsonism & related disorders  2012;19(2):198-201.
The hexanucleotide expanded repeat (GGGGCC) in intron 1 of the C9orf72 gene is recognized as the most common genetic form of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, as part of the clinical phenotype, some patients present with parkinsonism. The present study investigated the potential expansion or association of the C9orf72 repeat length with susceptibility to Parkinson’s disease and related disorders, essential tremor and restless legs syndrome. One restless legs syndrome patient was shown to harbor a repeat expansion, however on clinical follow-up this patient was observed to have developed frontotemporal dementia. There was no evidence of association of repeat length on disease risk or age-at-onset for any of the three disorders. Therefore the C9orf72 hexanucleotide repeat expansion appears to be specific to TDP-43 driven amyotrophic lateral sclerosis and dementia.
doi:10.1016/j.parkreldis.2012.09.013
PMCID: PMC3570692  PMID: 23084342
C9orf72; expanded repeat; PD; ET; RLS; genetic association
16.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS 
Acta Neuropathologica  2013;126(6):829-844.
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes “c9FTD/ALS” are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-013-1192-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-013-1192-8
PMCID: PMC3830741  PMID: 24129584
Amyotrophic lateral sclerosis; Bidirectional transcription; C9ORF72; Expanded repeat; Frontotemporal dementia; Repeat-associated non-ATG translation; RNA foci
17.  C9ORF72 expansion in a family with bipolar disorder 
Bipolar Disorders  2013;15(3):326-332.
Objective
To investigate the role in bipolar disorder of the C9ORF72 hexanucleotide repeat expansion responsible for frontotemporal lobe dementia and amyotrophic lateral sclerosis.
Methods
Eighty-nine subjects from a previously described panel of individuals with bipolar disorder ascertained for genetic studies were screened to detect expansion of the C9ORF72 repeat. One two-generation family with bipolar disorder and an expanded repeat was characterized in depth using molecular diagnostics, imaging, histopathology, and neurological and neuropsychological evaluation.
Results
One proband, with the typical clinical presentation of bipolar disorder, carried an expanded C9ORF72 allele of heterogeneous length between 14 and 20 kilobases (kb) as assessed by Southern blot. The expanded allele was inherited from a parent with atypical, late onset clinical features of bipolar disorder, who subsequently progressed to frontotemporal lobe dementia. The expansion in peripheral blood of the parent ranged from 8.5 to 20 kb. Cultured lymphoblastoid cells from this parent exhibited a homogeneous expansion of only 8.5 kb.
Conclusions
The disease course in the two generations described here demonstrates that expansion of the C9ORF72 may be associated with a form of bipolar disorder that presents clinically with classic phenomenology and progression to neurodegenerative disease. The frequency in our bipolar disorder cohort was only 1%, indicating that C9ORF72 is not a major contributor to bipolar disorder. DNA from cultured cells may be biased towards shorter repeats and nonrepresentative of the endogenous C9ORF72 expansion.
doi:10.1111/bdi.12063
PMCID: PMC3660726  PMID: 23551834
atypical bipolar; C9ORF72; repeat expansion
18.  C9ORF72 expansion in a family with bipolar disorder 
Bipolar disorders  2013;15(3):326-332.
Objective
To investigate the role in bipolar disorder of the C9ORF72 hexanucleotide repeat expansion responsible for frontotemporal lobe dementia and amyotrophic lateral sclerosis.
Methods
Eighty-nine subjects from a previously described panel of individuals with bipolar disorder ascertained for genetic studies were screened to detect expansion of the C9ORF72 repeat. One two-generation family with bipolar disorder with an expanded repeat was characterized in depth using molecular diagnostics, imaging, histopathology, neurological, and neuropsychological evaluation.
Results
One proband, with the typical clinical presentation of bipolar disorder, carried an expanded C9ORF72 allele of heterogeneous length between 14 and 20 kb as assessed by Southern blot. The expanded allele was inherited from a parent with atypical, late onset clinical features of bipolar disorder, who subsequently progressed to frontotemporal lobe dementia. The expansion in peripheral blood of the parent ranged from 8.5 kb to 20 kb. Cultured lymphoblastoid cells from this parent exhibited a homogenous expansion of only 8.5 kb.
Conclusions
The disease course in the two generations described here demonstrates that expansion of the C9ORF72 may be associated with a form of bipolar disorder that presents clinically with classic phenomenology and progression to neurodegenerative disease. The frequency in our bipolar disorder cohort was only 1%, indicating that C9ORF72 is not a major contributor to bipolar disorder. DNA from cultured cells may be biased towards shorter repeats and nonrepresentative of the endogenous C9ORF72 expansion.
doi:10.1111/bdi.12063
PMCID: PMC3660726  PMID: 23551834
atypical bipolar; C9ORF72; repeat expansion
19.  High frequency of the expanded C9ORF72 hexanucleotide repeat in familial and sporadic Greek ALS patients 
Neurobiology of Aging  2012;33(8):1851.e1-1851.e5.
An intronic expansion of a hexanucleotide GGGGCC repeat in the C9ORF72 gene has recently been shown to be an important cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in familial and sporadic cases. The frequency has only been defined in a small number of populations where the highest sporadic rate was identified in Finland (21.1%) and the lowest in mainland Italy (4.1%). We examined the C9ORF72 expansion in a series of 146 Greek ALS cases, 10.95% (n = 16) of cases carried the pathological expansion defined as greater than 30 repeats. In the 10 familial ALS probands, 50% (n = 5) of them carried a pathologically large expansion. In the remaining 136 sporadic ALS cases, 11 were carriers (8.2%). None of the 228 Greek controls carried an expanded repeat. The phenotype of our cases was spinal (13/16) or bulbar (3/16) ALS, the familial cases were all spinal ALS and none of our cases had behavioral frontotemporal dementia. Expansions in the C9ORF72 gene therefore represent a common cause of ALS in Greece and this test will be diagnostically very important to implement in the Greek population. The frequency is higher than other populations with the exception of Finland and this may be due to Greece being a relatively isolated population.
doi:10.1016/j.neurobiolaging.2012.02.021
PMCID: PMC3657168  PMID: 22445326
ALS; C9ORF72; Expansion; Hexanucleotide; Greek population
20.  Progressive Amnestic Dementia, Hippocampal Sclerosis, and Mutation in C9ORF72 
Acta neuropathologica  2013;126(4):545-554.
The most common cause of familial frontotemporal lobar degeneration with TAR DNA-binding protein-43 pathology (FTLD-TDP) has been found to be an expansion of a hexanucleotide repeat (GGGGCC) in a noncoding region of the gene C9ORF72. Hippocampal sclerosis (HpScl) is a common finding in FTLD-TDP. Our objective was to screen for the presence of C9ORF72 hexanucleotide repeat expansions in a pathologically-confirmed cohort of “pure” hippocampal sclerosis cases (n=33), outside the setting of FTLD-TDP and Alzheimer’s disease (AD). Using a recently described repeat-associated non-ATG (RAN) translation (C9RANT) antibody that was found to be highly specific for c9FTD/ALS, we identified a single “pure” HpScl autopsy case with a repeat expansion in C9ORF72 (c9HpScl). Mutation screening was also performed with repeat-primed polymerase chain reaction and further confirmed with southern blotting. The c9HpScl patient had a 14-year history of a slowly progressive amnestic syndrome and a clinical diagnosis of probable AD. Neuropsychological testing revealed memory impairment, but no deficits in other cognitive domains. Autopsy showed hippocampal sclerosis with TDP-43 immunoreactive neuronal inclusions relatively limited to limbic lobe structures. Neuritic pathology immunoreactive for p62 was more frequent than TDP-43 in amygdala and hippocampus. Frequent p62 positive neuronal inclusions were present in cerebellar granule neurons as is typical of C9ORF72 mutation carriers. There was no significant FTLD or motor neuron disease. C9RANT was found to be sensitive and specific in this autopsy-confirmed series of HpScl cases. The findings in this patient suggest that the clinical and pathologic spectrum of C9ORF72 repeat expansion is wider than frontotemporal dementia and motor neuron disease, including cases of progressive amnestic dementia with restricted TDP-43 pathology associated with HpScl.
doi:10.1007/s00401-013-1161-2
PMCID: PMC3926101  PMID: 23922030
Hippocampus; C9ORF72; memory; neuropathology; frontotemporal lobar degeneration; C9RANT
21.  Cognitive and behavioral features of c9FTD/ALS 
Numerous kindreds with familial frontotemporal dementia or amyotrophic lateral sclerosis or both have been linked to chromosome 9 (c9FTD/ALS), and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 (C9ORF72) was identified in the summer of 2011 as the pathogenic mechanism. An avalanche of papers on this disorder is in progress, and a relatively distinctive phenotype is taking form. In this review, we present an illustrative case and summarize the demographic, inheritance, clinical, and behavioral aspects and presumed pathologic underpinnings of c9FTD/ALS on the basis of the available data on more than 250 patients with frontotemporal lobar degeneration syndromes, parkinsonism, or ALS or a combination of these disorders.
doi:10.1186/alzrt132
PMCID: PMC3506943  PMID: 22817642
22.  Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons 
Acta Neuropathologica  2013;126(3):385-399.
The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had >1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization, two iPSC lines from each subject were selected, differentiated into postmitotic neurons, and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs, iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover, repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-013-1149-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-013-1149-y
PMCID: PMC3753484  PMID: 23836290
ALS; Autophagy; C9ORF72; FTD; Hexanucleotide repeats; iPSCs; Neurodegeneration; Neurons; p62; RAN translation; RNA foci
23.  Clinical Characteristics of C9ORF72-Linked Frontotemporal Lobar Degeneration 
Background
The most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) has been linked to a hexanucleotide repeat expansion in the C9ORF72 gene. The frequency of the C9ORF72 expansion in Finland is among the highest in the world.
Methods
We assessed 73 Finnish patients with FTLD in order to examine the clinical characteristics associated with the expanded C9ORF72. Demographic and clinical features were evaluated. As a potential disease modifier, the apolipoprotein E (APOE) genotype was also assessed. Neuropathological analysis was available on 2 expansion carriers and 1 non-carrier.
Results
The C9ORF72 expansion was present in 20 of 70 (29%) probands. Significant associations with the C9ORF72 expansion were observed for concomitant ALS and positive family history of dementia or ALS. Psychoses were detected in both carriers and non-carriers (21 vs. 10%, p = 0.25). The APOE ε4 allele did not cluster among expansion carriers. Numerous p62-positive neuronal inclusions were detected in the cerebellar cortex of the 2 expansion carriers.
Conclusion
In line with the suggested C9ORF72 core phenotype, we also detected a high frequency of neuropsychiatric symptoms; however, these symptoms seem not be specific to C9ORF72-associated FTLD. FTLD should be considered in cases of middle-age-onset psychosis.
doi:10.1159/000351859
PMCID: PMC3776392  PMID: 24052799
Association study; Clinical features; Frontotemporal dementia; Frontotemporal lobar degeneration; Genetics
24.  C9ORF72 hexanucleotide repeat expansions in clinical Alzheimer’s disease 
JAMA neurology  2013;70(6):736-741.
Objective
Hexanucleotide repeat expansions in C9ORF72 underlie a significant fraction of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This study investigates the frequency of C9ORF72 repeat expansions in clinically diagnosed late-onset Alzheimer’s disease (AD).
Design, setting and patients
This case-control study genotyped the C9ORF72 repeat expansion in 872 unrelated familial AD cases and 888 controls recruited as part of the NIA-LOAD cohort, a multi-site collaboration studying 1000 families with two or more individuals clinically diagnosed with late-onset-AD.
Main Outcome Measure
We determined the presence or absence of the C9ORF72 repeat expansion by repeat-primed PCR, the length of the longest non-expanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers.
Results
Three families showed large C9ORF72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the NIA-LOAD series, the C9ORF72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions.
Interpretation
C9ORF72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and highlight the necessity of screening “FTD genes” in clinical AD cases with strong family history.
doi:10.1001/2013.jamaneurol.537
PMCID: PMC3681841  PMID: 23588422
25.  C9orf72 repeat expansions are a rare genetic cause of parkinsonism 
Brain  2013;136(Pt 2):385-391.
The recently identified C9ORF72 gene accounts for a large proportion of amyotrophic lateral sclerosis and frontotemporal lobar degenerations. Since several forms of these disorders are associated with parkinsonism, we hypothesized that some patients with Parkinson’s disease or other forms of parkinsonism might carry pathogenic C9OFR72 expansions. Therefore, we looked for C9ORF72 repeat expansions in 1,446 parkinsonian unrelated patients consisted of 1,225 clinically diagnosed with Parkinson’s disease, 123 with progressive supranuclear palsy, 21 with corticobasal degeneration syndrome, 43 with Lewy body dementia and 25 with multiple system atrophy-parkinsonism. Of the 1,446 parkinsonian patients, five carried C9ORF72 expansions: three patients with typical Parkinson’s disease, one with corticobasal degeneration syndrome and another with progressive supranuclear palsy. This study shows that: i) although rare, C9ORF72 repeat expansions may be associated with clinically typical Parkinson’s disease, but also with other parkinsonism; ii) in several patients, parkinsonism was dopa-responsive and remained pure, without associated dementia, for more than 10 years; iii) interestingly, all C9ORF72 repeat expansion carriers had positive family histories of parkinsonism, degenerative dementias or amyotrophic lateral sclerosis. This study also provides the tools for identifying parkinsonian patients with C9ORF72 expansions, with important consequences for genetic counseling.
doi:10.1093/brain/aws357
PMCID: PMC3984141  PMID: 23413259
Adolescent; Adult; Aged; Aged, 80 and over; Female; Humans; Male; Middle Aged; Open Reading Frames; genetics; Parkinson Disease; diagnosis; genetics; Pedigree; Proteins; genetics; Trinucleotide Repeat Expansion; genetics; Young Adult; parkinsonism; C9ORF72; dementia

Results 1-25 (1096973)