PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (998894)

Clipboard (0)
None

Related Articles

1.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features 
Brain  2012;135(3):736-750.
An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration–TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.
doi:10.1093/brain/awr361
PMCID: PMC3286330  PMID: 22366791
frontotemporal lobar degeneration; motor neuron disease; neurodegenerative disorders; neuroimaging; genetics
2.  Frontal asymmetry in behavioral variant FTD: clinicoimaging & pathogenetic correlates 
Neurobiology of aging  2012;34(2):636-639.
We aimed to assess associations between clinical, imaging, pathological and genetic features and frontal lobe asymmetry in behavioral variant frontotemporal dementia (bvFTD). Volumes of the left and right dorsolateral, medial and orbital frontal lobes were measured in 80 bvFTD subjects and subjects were classified into three groups according to the degree of asymmetry (asymmetric left, asymmetric right, symmetric) using cluster analysis. The majority of subjects were symmetric (65%), with 20% asymmetric left and 15% asymmetric right. There were no clinical differences across groups, although there was a trend for greater behavioral dyscontrol in right asymmetric compared to left asymmetric subjects. More widespread atrophy involving the parietal lobe was observed in the symmetric group. Genetic features differed across groups with symmetric frontal lobes associated with C9ORF72 and tau mutations, while asymmetric frontal lobes were associated with progranulin mutations. These findings therefore suggest that neuroanatomical patterns of frontal lobe atrophy in bvFTD are influenced by specific gene mutations.
doi:10.1016/j.neurobiolaging.2012.03.009
PMCID: PMC3404265  PMID: 22502999
Frontotemporal dementia; frontal lobes; MRI; asymmetry; microtubule associated protein tau; progranulin; C9ORF72; pathology
3.  Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN 
Neurology  2009;72(9):813-820.
Objective:
To compare patterns of gray matter loss in subjects with mutations in the progranulin (PGRN) gene to subjects with mutations in the microtubule-associated protein tau (MAPT) gene.
Methods:
We identified all subjects seen at the Mayo Clinic, Rochester, MN, who had screened positive for mutations in PGRN or MAPT and had a head MRI. Twelve cases with mutations in the PGRN gene were matched by time from disease onset to scan to 12 subjects with mutations in the MAPT gene. Voxel-based morphometry was used to assess patterns of gray matter loss in the PGRN and MAPT groups compared to a control cohort, and compared to each other. MAPT subjects were younger than the PGRN subjects; therefore, each group was also compared to a specific age-matched control group.
Results:
Both PGRN and MAPT groups showed gray matter loss in frontal, temporal, and parietal lobes compared to controls, although loss was predominantly identified in posterior temporal and parietal lobes in PGRN and anteromedial temporal lobes in MAPT. The MAPT group had greater loss compared to healthy subjects of the same age than the PGRN subjects when compared to healthy subjects of the same age. The MAPT subjects showed greater gray matter loss in the medial temporal lobes, insula, and putamen than the PGRN subjects.
Conclusion:
These results increase understanding of the biology of these disorders and suggest that patterns of atrophy on MRI may be useful to aid in the differentiation of groups of PGRN and MAPT mutation carriers.
GLOSSARY
= Alzheimer disease;
= Alzheimer's Disease Patient Registry;
= Alzheimer's Disease Research Center;
= behavioral variant frontotemporal dementia;
= bvFTD with parkinsonism;
= corticobasal syndrome;
= Clinical Dementia Rating scale sum of boxes;
= Dementia Rating Scale;
= frontotemporal lobar degeneration;
= microtubule-associated protein tau;
= mild cognitive impairment;
= Mini-Mental State Examination;
= progranulin;
= primary progressive aphasia;
= Short Test of Mental Status;
= voxel-based morphometry.
doi:10.1212/01.wnl.0000343851.46573.67
PMCID: PMC2677544  PMID: 19255408
4.  Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? 
Neurology  2010;75(24):2212-2220.
Objective:
To determine whether TDP-43 type is associated with distinct patterns of brain atrophy on MRI in subjects with pathologically confirmed frontotemporal lobar degeneration (FTLD).
Methods:
In this case-control study, we identified all subjects with a pathologic diagnosis of FTLD with TDP-43 immunoreactive inclusions (FTLD-TDP) and at least one volumetric head MRI scan (n = 42). In each case we applied published criteria for subclassification of FTLD-TDP into FTLD-TDP types 1-3. Voxel-based morphometry was used to compare subjects with each of the different FTLD-TDP types to age- and gender-matched normal controls (n = 30). We also assessed different pathologic and genetic variants within, and across, the different types.
Results:
Twenty-two subjects were classified as FTLD-TDP type 1, 9 as type 2, and 11 as type 3. We identified different patterns of atrophy across the types with type 1 showing frontotemporal and parietal atrophy, type 2 predominantly anterior temporal lobe atrophy, and type 3 predominantly posterior frontal atrophy. Within the FTLD-TDP type 1 group, those with a progranulin mutation had significantly more lateral temporal lobe atrophy than those without. All type 2 subjects were diagnosed with semantic dementia. Subjects with a pathologic diagnosis of FTLD with motor neuron degeneration had a similar pattern of atrophy, regardless of whether they were type 1 or type 3.
Conclusions:
Although there are different patterns of atrophy across the different FTLD-TDP types, it appears that genetic and pathologic factors may also affect the patterns of atrophy.
GLOSSARY
= Alzheimer disease;
= Alzheimer's Disease Research Center;
= behavioral variant frontotemporal dementia;
= corticobasal syndrome;
= Clinical Dementia Rating scale sum of boxes;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration with motor neuron degeneration;
= frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions;
= Mini-Mental State Examination;
= neuronal cytoplasmic inclusion;
= progressive nonfluent aphasia;
= semantic dementia;
= Short Test of Mental Status;
= voxel-based morphometry.
doi:10.1212/WNL.0b013e31820203c2
PMCID: PMC3013590  PMID: 21172844
5.  Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study 
Brain  2009;132(11):2932-2946.
The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.
doi:10.1093/brain/awp232
PMCID: PMC2768663  PMID: 19762452
behavioural variant frontotemporal dementia; atrophy; cluster analysis; voxel-based morphometry
6.  Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration 
Brain  2011;134(9):2565-2581.
Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Pick's disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Pick's disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.
doi:10.1093/brain/awr198
PMCID: PMC3170537  PMID: 21908872
frontotemporal dementia; frontotemporal lobar degeneration; voxel-based morphometry; MRI; neural network
7.  Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations 
Neurology  2009;73(13):1058-1065.
Objective:
To use a case-control study to assess and compare patterns of gray matter loss across groups of subjects with different mutations in the microtubule-associated protein tau (MAPT) gene.
Methods:
We identified all subjects from Mayo Clinic, Rochester, Minnesota, that screened positive for mutations in MAPT and had a head MRI (n = 22). Voxel-based morphometry was used to assess patterns of gray matter atrophy in groups of subjects with the IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M mutations compared with age- and sex-matched controls.
Results:
All MAPT groups showed gray matter loss in the anterior temporal lobes, with varying degrees of involvement of the frontal and parietal lobes. Within the temporal lobe, the subjects with IVS10+16, IVS10+3, N279K, and S305N mutations (mutations that influence the alternative splicing of tau pre–messenger RNA) all showed gray matter loss focused on the medial temporal lobes. In contrast to these groups, the subjects with P301L or V337M mutations (mutations that affect the structure of the tau protein) both showed gray matter loss focused on the lateral temporal lobes, with a relative sparing of the medial temporal lobe.
Conclusion:
There seem to be differences in patterns of temporal lobe atrophy across the MAPT mutations, which may aid in the differentiation of the different mutation carriers. Furthermore, there seems to be a possible association between mutation function and pattern of temporal lobe atrophy.
GLOSSARY
= Alzheimer’s Disease Patient Registry;
= Alzheimer’s Disease Research Center;
= Auditory Verbal Learning Test;
= Boston Naming Test;
= behavioral variant frontotemporal dementia;
= behavioral variant frontotemporal dementia with parkinsonism;
= Clinical Dementia Rating Scale sum of boxes;
= disease duration;
= false discovery rate;
= frontotemporal lobar degeneration;
= microtubule-associated protein tau;
= Montreal Neurological Institute;
= messenger RNA;
= not applicable;
= primary progressive aphasia;
= Short Test of Mental Status;
= voxel-based morphometry.
doi:10.1212/WNL.0b013e3181b9c8b9
PMCID: PMC2754325  PMID: 19786698
8.  Two distinct subtypes of right temporal variant frontotemporal dementia 
Neurology  2009;73(18):1443-1450.
Background:
Right temporal frontotemporal dementia (FTD) is an anatomic variant of FTD associated with relatively distinct behavioral and cognitive symptoms. We aimed to determine whether right temporal FTD is a homogeneous clinical, imaging, and pathologic/genetic entity.
Methods:
In this case-control study, 101 subjects with FTD were identified. Atlas-based parcellation generated temporal, frontal, and parietal grey matter volumes which were used to identify subjects with a right temporal dominant atrophy pattern. Clinical, neuropsychological, genetic, and neuropathologic features were reviewed. The subjects with right temporal FTD were grouped by initial clinical diagnosis and voxel-based morphometry was used to assess grey matter loss in the different groups, compared to controls, and each other.
Results:
We identified 20 subjects with right temporal FTD. Twelve had been initially diagnosed with behavioral variant FTD (bvFTD), and the other 8 with semantic dementia (SMD). Personality change and inappropriate behaviors were more frequent in the bvFTD group, while prosopagnosia, word-finding difficulties, comprehension problems, and topographagnosia were more frequent in the SMD group. The bvFTD group showed greater loss in frontal lobes than the SMD group. The SMD group showed greater fusiform loss than the bvFTD group. All 8 bvFTD subjects with pathologic/genetic diagnosis showed abnormalities in tau protein (7 with tau mutations), while all three SMD subjects with pathology showed abnormalities in TDP-43 (p = 0.006).
Conclusions:
We have identified 2 subtypes of right temporal variant frontotemporal dementia (FTD) allowing further differentiation of FTD subjects with underlying tau pathology from those with TDP-43 pathology.
GLOSSARY
= Alzheimer Disease Patient Registry;
= Alzheimer Disease Research Center;
= behavioral variant frontotemporal dementia;
= Clinical Dementia Rating Scale sum of boxes;
= False Discovery Rate;
= frontotemporal dementia;
= Mini-Mental State Examination;
= Neuropsychiatric Inventory;
= semantic dementia;
= tissue probability map;
= voxel-based morphometry.
doi:10.1212/WNL.0b013e3181bf9945
PMCID: PMC2779005  PMID: 19884571
9.  Tau Pathology in Frontotemporal Lobar Degeneration with C9ORF72 Hexanucleotide Repeat Expansion 
Acta neuropathologica  2012;125(2):289-302.
An expanded GGGGCC hexanucleotide repeat in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration associated with TDP-43 pathology (FTLD-TDP). In addition to TDP-43-positive neuronal and glial inclusions, C9ORF72-linked FTLD-TDP has characteristic TDP-43-negative neuronal cytoplasmic and intranuclear inclusions as well as dystrophic neurites in the hippocampus and cerebellum. These lesions are immunopositive for ubiquitin and ubiquitin-binding proteins, such as sequestosome-1/p62 and ubiquilin-2. Studies examining the frequency of the C9ORF72 mutation in clinically probable Alzheimer’s disease (AD) have found a small proportion of AD cases with the mutation. This prompted us to systematically explore the frequency of Alzheimer type pathology in a series of 17 FTLD-TDP cases with mutations in C9ORF72 (FTLD-C9ORF72). We identified 4 cases with sufficient Alzheimer type pathology to meet criteria for intermediate-to-high likelihood AD. We compared AD pathology in the 17 FTLD-C9ORF72 to 13 cases of FTLD-TDP linked to mutations in the gene for progranulin (FTLD-GRN) and 36 cases of sporadic FTLD (sFTLD). FTLD-C9ORF72 cases had higher Braak neurofibrillary tangle stage than FTLD-GRN. Increased tau pathology in FTLD-C9ORF72 was assessed with thioflavin-S fluorescent microscopy-based neurofibrillary tangle counts and with image analysis of tau burden in temporal cortex and hippocampus. FTLD-C9ORF72 had significantly more neurofibrillary tangles and higher tau burden compared with FTLD-GRN. The differences were most marked in limbic regions. On the other hand, sFTLD and FTLD-C9ORF72 had a similar burden of tau pathology. These results suggest FTLD-C9ORF72 has increased propensity for tau pathology compared to FTLD-GRN, but not sFTLD. The accumulation of tau as well as lesions immunoreactive for ubiquitin and ubiquitin binding proteins (p62 and ubiquilin-2) suggests that mutations in C9ORF72 may involve disrupted protein degradation that favors accumulation of multiple different proteins.
doi:10.1007/s00401-012-1048-7
PMCID: PMC3551994  PMID: 23053135
frontotemporal lobar degeneration; C9ORF72; ubiquitin; p62; ubiquilin-2; tau
10.  Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations☆ 
Neuroimage  2010;53(3-3):1070-1076.
Neural network breakdown is a key issue in neurodegenerative disease, but the mechanisms are poorly understood. Here we investigated patterns of brain atrophy produced by defined molecular lesions in the two common forms of genetically mediated frontotemporal lobar degeneration (FTLD). Nine patients with progranulin (GRN) mutations and eleven patients with microtubule-associated protein tau (MAPT) mutations had T1 MR brain imaging. Brain volumetry and grey and white matter voxel-based morphometry (VBM) were used to assess patterns of cross-sectional atrophy in the two groups. In a subset of patients with longitudinal MRI rates of whole-brain atrophy were derived using the brain-boundary-shift integral and a VBM-like analysis of voxel-wise longitudinal volume change was performed. The GRN mutation group showed asymmetrical atrophy whereas the MAPT group showed symmetrical atrophy. Brain volumes were smaller in the GRN group with a faster rate of whole-brain atrophy. VBM delineated a common anterior cingulate–prefrontal–insular pattern of atrophy in both disease groups. Additional disease-specific profiles of grey and white matter loss were identified on both cross-sectional and longitudinal imaging: GRN mutations were associated with asymmetrical inferior frontal, temporal and inferior parietal lobe grey matter atrophy and involvement of long intrahemispheric association white matter tracts, whereas MAPT mutations were associated with symmetrical anteromedial temporal lobe and orbitofrontal grey matter atrophy and fornix involvement. The findings suggest that the effects of GRN and MAPT mutations are expressed in partly overlapping but distinct anatomical networks that link specific molecular dysfunction with clinical phenotype.
doi:10.1016/j.neuroimage.2009.12.088
PMCID: PMC2941039  PMID: 20045477
Frontotemporal dementia; Frontotemporal lobar degeneration; Progranulin; Tau
11.  Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration 
Neurology  2009;72(19):1653-1660.
Objective:
Predictable patterns of atrophy are associated with the clinical subtypes of frontotemporal dementia (FTD): behavioral variant (bvFTD), semantic dementia (SEMD), and progressive nonfluent aphasia (PNFA). Some studies of pathologic subtypes have also suggested specific atrophy patterns; however, results are inconsistent. Our aim was to test the hypothesis that clinical, but not pathologic, classification (FTD with ubiquitin inclusions [FTD-U] and FTD with tau inclusions [FTD-T]) is associated with predictable patterns of regional atrophy.
Methods:
Magnetic resonance scans of nine FTD-U and six FTD-T patients (histologically confirmed) were compared with 25 controls using voxel-based morphometry (VBM). Analyses were conducted with the patient group classified according to histologic or clinical variant. Additionally, three Alzheimer pathology patients who had the syndrome of SEMD in life (FTD-A) were analyzed.
Results:
The VBM studies in clinical variants confirmed established patterns of atrophy (SEMD, rostral temporal; bvFTD, mesial frontal; PNFA, left insula). FTD-U and FTD-T VBM results were very similar, showing severe atrophy in the temporal poles, mesial frontal lobe, and insulae. A conjunction analysis confirmed this similarity. Subgroup analysis found that SEMD associated with either FTD-T or FTD-U was associated with similar rostral temporal atrophy; however, FTD-A had a qualitatively different pattern of left hippocampal atrophy.
Conclusions:
While there is predictable atrophy for clinical variants of frontotemporal dementia (FTD), histologic FTD variants show no noticeable differences. Reports of specific atrophy profiles are likely the result of idiosyncrasies in small groups. Semantic dementia associated with Alzheimer pathology, however, presented a distinct atrophy pattern.
GLOSSARY
= Alzheimer disease;
= behavioral variant frontotemporal dementia;
= frontotemporal dementia;
= Alzheimer pathology with semantic dementia;
= frontotemporal dementia with tau inclusions;
= frontotemporal dementia with ubiquitin inclusions;
= frontotemporal lobar degeneration;
= Mini-Mental State Examination;
= progressive nonfluent aphasia;
= semantic dementia;
= voxel-based morphometry.
doi:10.1212/WNL.0b013e3181a55fa2
PMCID: PMC2827263  PMID: 19433738
12.  Frontotemporal lobar degeneration: current perspectives 
The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer’s disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management.
doi:10.2147/NDT.S38706
PMCID: PMC3928059  PMID: 24600223
review; frontotemporal dementia; frontotemporal lobar degeneration
13.  Neural substrates of episodic memory dysfunction in behavioural variant frontotemporal dementia with and without C9ORF72 expansions☆ 
NeuroImage : Clinical  2013;2:836-843.
The recently discovered hexanucleotide repeat expansion, C9ORF72, has been shown to be among the most common cause of familial behavioural variant frontotemporal dementia (bvFTD) and to be present in a significant minority of apparently sporadic cases. While mounting evidence points to prominent episodic memory dysfunction in bvFTD cases, recent reports have also suggested an amnestic profile in C9ORF72 mutation carriers. No study to date, however, has formally characterised the extent to which episodic memory is impaired in C9ORF72 mutation versus sporadic cases, or the underlying neural substrates of such deficits. We conducted a comparison of C9ORF72 (n = 8) and sporadic (n = 15) bvFTD cases using a battery of verbal and visual episodic memory tasks, and contrasted their performance with that of Alzheimer's disease (AD, n = 15) and healthy older control (n = 15) participants. Behaviourally, the two bvFTD groups displayed comparable episodic memory profiles, irrespective of task administered, with prominent impairments evident relative to Controls. Whole-brain voxel-based morphometry analyses revealed distinct neural correlates of episodic memory dysfunction in each patient group. Widespread atrophy in medial prefrontal, medial and lateral temporal cortices correlated robustly with episodic memory dysfunction in sporadic bvFTD cases. In contrast, atrophy in a distributed set of regions in the frontal, temporal, and parietal lobes including the posterior cingulate cortex, was implicated in episodic memory dysfunction in C9ORF72 cases. Our results demonstrate that while episodic memory is disrupted to the same extent irrespective of genetic predisposition in bvFTD, distinct neural changes specific to each patient group are evident. The involvement of medial and lateral parietal regions in episodic memory dysfunction in C9ORF72 cases is of particular significance and represents an avenue of considerable interest for future studies.
Highlights
•We assessed episodic memory in bvFTD patients with and without C9ORF72 mutations.•Episodic memory deficits were present in C9ORF72 cases relative to Controls.•C9ORF72 and sporadic bvFTD cases showed equivalent episodic memory profiles.•Neural substrates of memory disruption differed contingent on mutation status.•Medial and lateral parietal involvement in C9ORF72 memory deficits is notable.
doi:10.1016/j.nicl.2013.06.005
PMCID: PMC3778250  PMID: 24179835
Episodic memory; Frontotemporal dementia; Alzheimer's disease; C9ORF72 mutation; Neuroimaging
14.  Frontotemporal Lobar Degeneration 
CNS drugs  2010;24(5):375-398.
Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy.
The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathologic heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD genetics and molecular pathology make the prospect of biologically driven, disease-specific therapies for FTLD seem closer than ever.
doi:10.2165/11533100-000000000-00000
PMCID: PMC2916644  PMID: 20369906
15.  MRI Correlates of Protein Deposition and Disease Severity in Postmortem Frontotemporal Lobar Degeneration 
Neuro-degenerative diseases  2009;6(3):106-117.
Background
Frontotemporal lobar degeneration (FTLD) can be classified based on the presence of the microtubule-associated protein tau and the TAR DNA binding protein-43 (TDP-43). Future treatments will likely target these proteins, therefore it is important to identify biomarkers to help predict protein biochemistry.
Objective
To determine whether there is an MRI signature pattern of tau or TDP-43 using a large cohort of FTLD subjects and to investigate how patterns of atrophy change according to disease severity using a large autopsy-confirmed cohort of FTLD subjects.
Methods
Patterns of gray matter loss were assessed using voxel-based morphometry in 37 tau-positive and 44 TDP-43-positive subjects compared to 35 age and gender-matched controls, and compared to each other. Comparisons were also repeated in behavioral variant frontotemporal dementia (bvFTD) subjects (n = 15 tau-positive and n = 30 TDP-43-positive). Patterns of atrophy were also assessed according to performance on the Clinical Dementia Rating (CDR) scale and Mini-Mental State Examination (MMSE).
Results
The tau-positive and TDP-43-positive groups showed patterns of frontotemporal gray matter loss compared to controls with no differences observed between the groups, for all subjects and for bvFTD subjects. Patterns of gray matter loss increased in a graded manner by CDR and MMSE with loss in the frontal lobes, insula and hippocampus in mild subjects, spreading to the temporal and parietal cortices and striatum in more advanced disease.
Conclusion
There is no signature pattern of atrophy for tau or TDP-43; however, patterns of atrophy in FTLD progress with measures of clinical disease severity.
doi:10.1159/000209507
PMCID: PMC2745704  PMID: 19299900
Frontotemporal lobar degeneration; Autopsy; Tau; TAR DNA binding protein-43; Voxel-based morphometry; Clinical Dementia Rating Scale; Mini-Mental State Examination
16.  MRI correlates of protein deposition and disease severity in postmortem frontotemporal lobar degeneration 
Neuro-degenerative diseases  2009;6(3):106-117.
Background
Frontotemporal lobar degeneration (FTLD) can be classified based on the presence of the microtubule associated protein tau and the TAR DNA binding protein-43 (TDP-43). Future treatments will likely target these proteins; therefore it is important to identify biomarkers to help predict protein biochemistry.
Objective
To determine whether there is an MRI signature pattern of tau or TDP-43 using a large cohort of FTLD subjects and to investigate how patterns of atrophy change according to disease severity using a large autopsy-confirmed cohort of FTLD subjects.
Methods
Patterns of grey matter loss were assessed using voxel-based morphometry in 37 tau-positive and 44 TDP-43 positive subjects compared to 35 age and gender-matched controls, and compared to each other. Comparisons were also repeated in behavioral variant frontotemporal dementia (bvFTD) subjects (n=15 tau-positive and n=30 TDP-43 positive). Patterns of atrophy were also assessed according to performance on the clinical dementia rating (CDR) scale and mini-mental state examination (MMSE).
Results
The tau-positive and TDP-43 positive groups showed patterns of frontotemporal grey matter loss compared to controls with no differences observed between the groups, for all subjects and for bvFTD subjects. Patterns of grey matter loss increased in a graded manner by CDR and MMSE with loss in the frontal lobes, insula and hippocampus in mild subjects, spreading to the temporal and parietal cortices and striatum in more advanced disease.
Conclusion
There is no signature pattern of atrophy for tau or TDP-43; however patterns of atrophy in FTLD progress with measures of clinical disease severity.
doi:10.1159/000209507
PMCID: PMC2745704  PMID: 19299900
frontotemporal lobar degeneration; autopsy; tau; TAR DNA binding protein-43; voxel-based morphometry; Clinical Dementia Rating Scale; Mini-Mental State Examination
17.  TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia 
Neurology  2010;75(24):2204-2211.
Background:
We sought to describe the antemortem clinical and neuroimaging features among patients with frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP).
Methods:
Subjects were recruited from a consecutive series of patients with a primary neuropathologic diagnosis of FTLD-TDP and antemortem MRI. Twenty-eight patients met entry criteria: 9 with type 1, 5 with type 2, and 10 with type 3 FTLD-TDP. Four patients had too sparse FTLD-TDP pathology to be subtyped. Clinical, neuropsychological, and neuroimaging features of these cases were reviewed. Voxel-based morphometry was used to assess regional gray matter atrophy in relation to a group of 50 cognitively normal control subjects.
Results:
Clinical diagnosis varied between the groups: semantic dementia was only associated with type 1 pathology, whereas progressive nonfluent aphasia and corticobasal syndrome were only associated with type 3. Behavioral variant frontotemporal dementia and frontotemporal dementia with motor neuron disease were seen in type 2 or type 3 pathology. The neuroimaging analysis revealed distinct patterns of atrophy between the pathologic subtypes: type 1 was associated with asymmetric anterior temporal lobe atrophy (either left- or right-predominant) with involvement also of the orbitofrontal lobes and insulae; type 2 with relatively symmetric atrophy of the medial temporal, medial prefrontal, and orbitofrontal-insular cortices; and type 3 with asymmetric atrophy (either left- or right-predominant) involving more dorsal areas including frontal, temporal, and inferior parietal cortices as well as striatum and thalamus. No significant atrophy was seen among patients with too sparse pathology to be subtyped.
Conclusions:
FTLD-TDP subtypes have distinct clinical and neuroimaging features, highlighting the relevance of FTLD-TDP subtyping to clinicopathologic correlation.
GLOSSARY
= behavioral variant frontotemporal dementia;
= corticobasal syndrome;
= Clinical Dementia Rating;
= false discovery rate;
= frontotemporal dementia;
= frontotemporal lobar degeneration;
= frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions;
= fused in sarcoma;
= Mini-Mental State Examination;
= motor neuron disease;
= progressive nonfluent aphasia;
= TAR DNA-binding protein of 43 kDa;
= University of California, San Francisco;
= voxel-based morphometry.
doi:10.1212/WNL.0b013e318202038c
PMCID: PMC3013589  PMID: 21172843
18.  A pathogenic progranulin mutation and C9orf72 repeat expansion in a family with frontotemporal dementia 
Aims
Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disease and is the second most common form of young onset dementia after Alzheimer's disease (AD). An autosomal dominant pattern of inheritance is present in around 25–50% of FTLD cases indicating a strong genetic component. Major pathogenic mutations of FTLD have been demonstrated independently in the progranulin (GRN) gene and the C9orf72 hexanucleotide expansion repeat. In this study we present a family that have been identified as carrying both a GRN Cys31fs mutation and the C9orf72 hexanucleotide expansion repeat.
Methods
In the present study we describe the clinical and genetic details of family members and pathological features of two family members that have come to post-mortem.
Results
The mean age at disease onset was 57 years (48–61 years) and mean duration 4 years (2–7 years). The most common presenting syndrome was behavioural variant frontotemporal dementia. Brain imaging from available cases showed a symmetrical pattern of atrophy particularly affecting the frontal and temporal lobes. Pathologically two cases were classified as FTLD-TDP type A with TDP-43 positive inclusions, with additional p62-positive ‘star-like’ inclusions found in the hippocampal formation and cerebellum.
Conclusions
The type and distribution of the pathological lesions in these two cases were in keeping with FTLD cases carrying only the C9orf72 hexanucleotide repeat. However the driving force of the pathological process may be either pathogenic mutation or a combination of both converging on a singular mechanism.
doi:10.1111/nan.12100
PMCID: PMC4260146  PMID: 24286341
C9orf72; FTLD; progranulin; TDP-43
19.  Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions 
Introduction
Frontotemporal dementia (FTD) is a common cause of early-onset dementia with a significant genetic component, as underlined by the recent identification of repeat expansions in the gene C9ORF72 as a major cause of FTD and motor neuron disease. Understanding the neurobiology and clinical phenomenology of this novel mutation is currently a major research focus. However, few data are available concerning the longitudinal evolution of this genetic disease. Here we present longitudinal neuropsychological and neuroimaging data on a cohort of patients with pathological repeat expansions in C9ORF72.
Methods
Following a review of the University College London FTD DNA database, 20 cases were retrospectively identified with a C9ORF72 expansion. Twelve cases had longitudinal neuropsychology data available and six of these cases also had longitudinal volumetric brain magnetic resonance imaging. Cortical and subcortical volumes were extracted using FreeSurfer. Rates of whole brain, hemispheric, cerebellar and ventricular change were calculated for each subject. Nonlinear fluid registration of follow-up to baseline scan was performed to visualise longitudinal intra-subject patterns of brain atrophy and ventricular expansion.
Results
Patients had low average verbal and performance IQ at baseline that became impaired (< 5th percentile) at follow-up. In particular, visual memory, naming and dominant parietal skills all showed deterioration. Mean rates of whole brain atrophy (1.4%/year) and ventricular expansion (3.2 ml/year) were substantially greater in patients with the C9ORF72 mutation than in healthy controls; atrophy was symmetrical between the cerebral hemispheres within the C9ORF72 mutation group. The thalamus and cerebellum showed significant atrophy whereas no cortical areas were preferentially affected. Longitudinal fluid imaging in individual patients demonstrated heterogeneous patterns of progressive volume loss; however, ventricular expansion and cerebellar volume loss were consistent findings.
Conclusion
Disease evolution in C9ORF72-associated FTD is linked neuropsychologically with increasing involvement of parietal and amnestic functions, and neuroanatomically with rather diffuse and variable cortical and central atrophy but more consistent involvement of the cerebellum and thalamus. These longitudinal profiles are consistent with disease spread within a distributed subcortical network and demonstrate the feasibility of longitudinal biomarkers for tracking the evolution of the C9ORF72 mutation phenotype.
doi:10.1186/alzrt144
PMCID: PMC3580398  PMID: 23006986
20.  Progranulin is expressed within motor neurons and promotes neuronal cell survival 
BMC Neuroscience  2009;10:130.
Background
Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U) associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival.
Results
In situ hybridisation and immunohistochemical techniques revealed that the progranulin gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human progranulin gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months). This is mediated at least in part through an anti-apoptotic mechanism. Control cells, while expressing basal levels of progranulin do not survive in serum free conditions. Knockdown of progranulin expression using shRNA technology further reduced cell survival.
Conclusion
Neurons are among the most long-lived cells in the body and are subject to low levels of toxic challenges throughout life. We have demonstrated that progranulin is abundantly expressed in motor neurons and is cytoprotective over prolonged periods when over-expressed in a neuronal cell line. This work highlights the importance of progranulin as neuroprotective growth factor and may represent a therapeutic target for neurodegenerative diseases including motor neuron disease.
doi:10.1186/1471-2202-10-130
PMCID: PMC2779192  PMID: 19860916
21.  A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series 
Brain : a journal of neurology  2008;131(Pt 3):706-720.
Mutations in the progranulin gene (GRN) are a major cause of frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions (FTLD-U) but the distinguishing clinical and anatomical features of this subgroup remain unclear. In a large UK cohort we found five different frameshift and premature termination mutations likely to be causative of FTLD in 25 affected family members. A previously described 4-bp insertion mutation in GRN exon 2 comprised the majority of cases in our cohort (20/25), with four novel mutations being identified in the other five affected members. Additional novel missense changes were discovered, of uncertain pathogenicity, but deletion of the entire gene was not detected. The patient collection was investigated by a single tertiary referral centre and is enriched for familial early onset FTLD with a high proportion of patients undergoing neuropsychological testing, MRI and eventual neuropathological diagnosis. Age at onset was variable, but four mutation carriers presented in their 40s and when analysed as a group, the mean age at onset of disease in GRN mutation carriers was later than tau gene (MAPT) mutation carriers and duration of disease was shorter when compared with both MAPTand FTLD-U without mutation. The most common clinical presentation seen in GRN mutation carriers was behavioural variant FTLD with apathy as the dominant feature. However, many patients had language output impairment that was either a progressive non-fluent aphasia or decreased speech output consistent with a dynamic aphasia. Neurological and neuropsychological examination also suggests that parietal lobe dysfunction is a characteristic feature of GRN mutation and differentiates this group from other patients with FTLD. MR imaging showed evidence of strikingly asymmetrical atrophy with the frontal, temporal and parietal lobes all affected. Both right- and left-sided predominant atrophy was seen even within the same family. As a group, the GRN carriers showed more asymmetry than in other FTLD groups. All pathologically investigated cases showed extensive type 3 TDP-43-positive pathology, including frequent neuronal cytoplasmic inclusions, dystrophic neurites in both grey and white matter and also neuronal intranuclear inclusions. Finally, we confirmed a modifying effect of APOE-E4 genotype on clinical phenotype with a later onset in the GRN carriers suggesting that this gene has distinct phenotypic effects in different neurodegenerative diseases.
doi:10.1093/brain/awm320
PMCID: PMC2577762  PMID: 18234697
frontotemporal lobar degeneration; frontotemporal dementia; progranulin; progressive aphasia
22.  Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations 
Archives of neurology  2007;64(3):371-376.
Background
Mutations in the progranulin gene (PGRN) have recently been identified as a cause of frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) in some families.
Objective
To determine whether there is a difference in the patterns of atrophy in cases with FTLD-U with and without a mutation in PGRN.
Design
Case control study
Setting
Brain bank of a tertiary care medical center
Patients
All subjects that had screened positive for mutations in PGRN and had a volumetric MRI were identified (n=8, PGRN (+)). Subjects were then matched by clinical diagnosis to a group of eight subjects with a pathological diagnosis of FTLD-U that had screened negative for mutations in PGRN (PGRN (−)). All subjects were then age and gender-matched to a control subject.
Main outcome Measures
Voxel-based morphometry was used to assess the patterns of grey matter atrophy in the PGRN (+) and (−) groups compared to controls, and compared to each other.
Results
The PGRN (+) group showed a widespread and severe pattern of grey matter loss predominantly affecting the frontal, temporal and parietal lobes. In comparison, the PGRN (−) group showed a less severe pattern of loss restricted mainly to the temporal and frontal lobes. On direct comparison the PGRN (+) group showed greater loss in the frontal and parietal lobes compared to the PGRN (−) group.
Conclusions
This study suggests that PGRN mutations may be associated with a specific and severe pattern of cerebral atrophy in subjects with FTLD-U.
doi:10.1001/archneur.64.3.371
PMCID: PMC2752412  PMID: 17353379
Frontotemporal dementia; Voxel-based morphometry; Ubiquitin; Dentate; Progranulin
23.  Frontotemporal dementias: Recent advances and current controversies 
Annals of Indian Academy of Neurology  2010;13(Suppl2):S74-S80.
Frontotemporal dementia (FTD) syndromes comprise a heterogeneous group of neurodegenerative conditions characterized by atrophy in the frontal and temporal lobes. Three main clinical variants are recognized: Behavioral variant (bv-FTD), Semantic dementia (SD), and Progressive nonfluent aphasia (PNFA). However, logopenic/phonological (LPA) variant has been recently described, showing a distinctive pattern of brain atrophy and often associated to Alzheimer’s disease pathology. The diagnosis of FTD is challenging, since there is clinical, pathological, and genetic overlap between the variants and other neurodegenerative diseases, such as motoneuron disease (MND) and corticobasal degeneration (CBD). In addition, patients with gene mutations (tau and progranulin) display an inconsistent clinical phenotype and the correspondence between the clinical variant and its pathology is unpredictable. New cognitive tests based on social cognition and emotional recognition together with advances in molecular pathology and genetics have contributed to an improved understanding. There is now a real possibility of accurate biomarkers for early diagnosis. The present review concentrates on new insights and debates in FTD.
doi:10.4103/0972-2327.74249
PMCID: PMC3039165  PMID: 21369422
Frontotemporal dementia; progressive nonfluent aphasia; semantic dementia; taupathies; TDP-43
24.  Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN 
Neurology  2011;77(4):393-398.
Objective:
To use multiple serial MRI to assess rates and trajectories of brain and hippocampal atrophy in subjects with frontotemporal dementia (FTD) with progranulin (GRN) or microtubule-associated protein tau (MAPT) gene mutations.
Methods:
In this case-control study, we identified 8 subjects with mutations in GRN and 12 subjects with mutations in MAPT who had at least 2 serial MRIs. Serial MRIs were registered to baseline MRI for each subject using 9 df registration and rate of whole brain atrophy was calculated using the boundary-shift integral. Hippocampal volume was measured using Freesurfer. Mixed effects linear regression models were used to model volume change over time in both groups after adjusting for head size, age at baseline, and disease duration at baseline.
Results:
The annual rate of whole brain atrophy in the MAPT subjects was 2.4% per year (95% confidence interval [CI] 1.9–2.8). The GRN subjects showed a higher rate of whole brain atrophy at 3.5% per year (95% CI 2.8–4.2; p = 0.01). Rates of hippocampal atrophy were not different across the groups (MAPT = 7.8% [95% CI 3.9–12], GRN = 6.5% [95% CI 1.7–11], p = 0.66). Rates of whole brain atrophy in GRN, and hippocampal atrophy in MAPT, were associated with age, with older subjects showing slower rates of atrophy (p = 0.01 and p < 0.001).
Conclusions:
Subjects with FTD with GRN mutations have a faster rate of whole brain atrophy than subjects with FTD with MAPT mutations, with similar rates of hippocampal atrophy. Rates of atrophy in both groups were associated with age. These findings are important for future treatment trials in FTD that use rates of atrophy as an outcome measure.
doi:10.1212/WNL.0b013e318227047f
PMCID: PMC3140800  PMID: 21753165
25.  Altered functional connectivity in asymptomatic MAPT subjects 
Neurology  2011;77(9):866-874.
Objective:
To determine whether functional connectivity is altered in subjects with mutations in the microtubule associated protein tau (MAPT) gene who were asymptomatic but were destined to develop dementia, and to compare these findings to those in subjects with behavioral variant frontotemporal dementia (bvFTD).
Methods:
In this case-control study, we identified 8 asymptomatic subjects with mutations in MAPT and 8 controls who screened negative for mutations in MAPT. Twenty-one subjects with a clinical diagnosis of bvFTD were also identified and matched to 21 controls. All subjects had resting-state fMRI. In-phase functional connectivity was assessed between a precuneus seed in the default mode network (DMN) and a fronto-insular cortex seed in the salience network, and the rest of the brain. Atlas-based parcellation was used to assess functional connectivity and gray matter volume across specific regions of interest.
Results:
The asymptomatic MAPT subjects and subjects with bvFTD showed altered functional connectivity in the DMN, with reduced in-phase connectivity in lateral temporal lobes and medial prefrontal cortex, compared to controls. Increased in-phase connectivity was also observed in both groups in the medial parietal lobe. Only the bvFTD group showed altered functional connectivity in the salience network, with reduced connectivity in the fronto-insular cortex and anterior cingulate. Gray matter loss was observed across temporal, frontal, and parietal regions in bvFTD, but not in the asymptomatic MAPT subjects.
Conclusions:
Functional connectivity in the DMN is altered in MAPT subjects before the occurrence of both atrophy and clinical symptoms, suggesting that changes in functional connectivity are early features of the disease.
doi:10.1212/WNL.0b013e31822c61f2
PMCID: PMC3162637  PMID: 21849646

Results 1-25 (998894)