PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1103748)

Clipboard (0)
None

Related Articles

1.  Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease 
Brain  2010;133(11):3336-3348.
Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer’s dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer’s Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer’s dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were ‘amyloid positive’ (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were ‘amyloid negative’ (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan–Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer’s disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer’s disease co-existent with other pathologies.
doi:10.1093/brain/awq277
PMCID: PMC2965425  PMID: 20935035
mild cognitive impairment; amyloid imaging; magnetic resonance imaging; cerebrospinal fluid; Alzheimer’s disease biomarkers
2.  Imaging and acetylcholinesterase inhibitor response in dementia with Lewy bodies 
Brain  2012;135(8):2470-2477.
Acetylcholinesterase inhibitors are commonly used to treat patients with dementia with Lewy bodies. Hippocampal atrophy on magnetic resonance imaging and amyloid-β load on positron emission tomography are associated with the Alzheimer’s disease-related pathology in patients with dementia with Lewy bodies. To date, few studies have investigated imaging markers that predict treatment response in patients with dementia with Lewy bodies. Our objective was to determine whether imaging markers of Alzheimer’s disease-related pathology such as hippocampal volume, brain amyloid-β load on 11C Pittsburgh compound B positron emission tomography predict treatment response to acetylcholinesterase inhibitors in patients with dementia with Lewy bodies. We performed a retrospective analysis on consecutive treatment-naive patients with dementia with Lewy bodies (n = 54) from the Mayo Clinic Alzheimer’s Disease Research Centre who subsequently received acetylcholinesterase inhibitors and underwent magnetic resonance imaging with hippocampal volumetry. Baseline and follow-up assessments were obtained with the Mattis Dementia Rating Scale. Subjects were divided into three groups (reliable improvement, stable or reliable decline) using Dementia Rating Scale reliable change indices determined previously. Associations between hippocampal volumes and treatment response were tested with analysis of covariance adjusting for baseline Dementia Rating Scale, age, gender, magnetic resonance field strength and Dementia Rating Scale interval. Seven subjects underwent 11C Pittsburgh compound B imaging within 12 weeks of magnetic resonance imaging. Global cortical 11C Pittsburgh compound B retention (scaled to cerebellar retention) was calculated in these patients. Using a conservative psychometric method of assessing treatment response, there were 12 patients with reliable decline, 29 stable cases and 13 patients with reliable improvement. The improvers had significantly larger hippocampi than those that declined (P = 0.02) and the stable (P = 0.04) group. An exploratory analysis demonstrated larger grey matter volumes in the temporal and parietal lobes in improvers compared with those who declined (P < 0.05). The two patients who had a positive 11C Pittsburgh compound B positron emission tomography scan declined and those who had a negative 11C Pittsburgh compound B positron emission tomography scan improved or were stable after treatment. Patients with dementia with Lewy bodies who do not have the imaging features of coexistent Alzheimer’s disease-related pathology are more likely to cognitively improve with acetylcholinesterase inhibitor treatment.
doi:10.1093/brain/aws173
PMCID: PMC3407425  PMID: 22810436
dementia with Lewy bodies; acetylcholinesterase inhibitors; MRI; PiB; PET; amyloid
3.  Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease 
Brain  2010;134(1):301-317.
The accumulation of β-amyloid in the brain is an early event in Alzheimer’s disease. This study presents the first patient with Alzheimer’s disease who underwent positron emission tomography imaging with the amyloid tracer, Pittsburgh Compound B to visualize fibrillar β-amyloid in the brain. Here we relate the clinical progression, amyloid and functional brain positron emission tomography imaging with molecular neuropathological alterations at autopsy to gain new insight into the relationship between β-amyloid accumulation, inflammatory processes and the cholinergic neurotransmitter system in Alzheimer’s disease brain. The patient underwent positron emission tomography studies with 18F-fluorodeoxyglucose three times (at ages 53, 56 and 58 years) and twice with Pittsburgh Compound B (at ages 56 and 58 years), prior to death at 61 years of age. The patient showed a pronounced decline in cerebral glucose metabolism and cognition during disease progression, while Pittsburgh Compound B retention remained high and stable at follow-up. Neuropathological examination of the brain at autopsy confirmed the clinical diagnosis of pure Alzheimer’s disease. A comprehensive neuropathological investigation was performed in nine brain regions to measure the regional distribution of β-amyloid, neurofibrillary tangles and the levels of binding of 3H-nicotine and 125I-α-bungarotoxin to neuronal nicotinic acetylcholine receptor subtypes, 3H-L-deprenyl to activated astrocytes and 3H-PK11195 to microglia, as well as butyrylcholinesterase activity. Regional in vivo 11C-Pittsburgh Compound B-positron emission tomography retention positively correlated with 3H-Pittsburgh Compound B binding, total insoluble β-amyloid, and β-amyloid plaque distribution, but not with the number of neurofibrillary tangles measured at autopsy. There was a negative correlation between regional fibrillar β-amyloid and levels of 3H-nicotine binding. In addition, a positive correlation was found between regional 11C-Pittsburgh Compound B positron emission tomography retention and 3H-Pittsburgh Compound B binding with the number of glial fibrillary acidic protein immunoreactive cells, but not with 3H-L-deprenyl and 3H-PK-11195 binding. In summary, high 11C-Pittsburgh Compound B positron emission tomography retention significantly correlates with both fibrillar β-amyloid and losses of neuronal nicotinic acetylcholine receptor subtypes at autopsy, suggesting a closer involvement of β-amyloid pathology with neuronal nicotinic acetylcholine receptor subtypes than with inflammatory processes.
doi:10.1093/brain/awq349
PMCID: PMC3009843  PMID: 21149866
Alzheimer’s disease; autopsy brain; 11C-PIB positron emission tomography; inflammation; nicotinic acetylcholine receptors
4.  AMYLOID IMAGING IN AGING AND DEMENTIA: TESTING THE AMYLOID HYPOTHESIS IN VIVO 
Behavioural neurology  2009;21(1):117-128.
Amyloid imaging represents a major advance in neuroscience, enabling the detection and quantification of pathologic protein aggregations in the brain. In this review we survey current amyloid imaging techniques, focusing on positron emission tomography (PET) with 11carbon-labelled Pittsburgh Compound-B (11C-PIB), the most extensively studied and best validated tracer. PIB binds specifically to fibrillar beta-amyloid (Aβ) deposits, and is a sensitive marker for Aβ pathology in cognitively normal older individuals and patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). PIB-PET provides us with a powerful tool to examine in vivo the relationship between amyloid deposition, clinical symptoms, and structural and functional brain changes in the continuum between normal aging and AD. Amyloid imaging studies support a model in which amyloid deposition is an early event on the path to dementia, beginning insidiously in cognitively normal individuals, and accompanied by subtle cognitive decline and functional and structural brain changes suggestive of incipient AD. As patients progress to dementia, clinical decline and neurodegeneration accelerate and proceed independently of amyloid accumulation. In the future, amyloid imaging is likely to supplement clinical evaluation in selecting patients for anti-amyloid therapies, while MRI and FDG-PET may be more appropriate markers of clinical progression.
doi:10.3233/BEN-2009-0232
PMCID: PMC2804478  PMID: 19847050
Amyloid imaging; PET; PIB; beta-amyloid; brain aging; MCI; Alzheimer's disease
5.  Comparison of analytical platforms for cerebrospinal fluid measures of Aβ1-42, total tau and p-tau181 for identifying Alzheimer’s disease amyloid plaque pathology 
Archives of neurology  2011;68(9):1137-1144.
OBJECTIVE
Cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD) are currently being considered for inclusion in revised diagnostic criteria for research and/or clinical purposes to increase the certainty of ante-mortem diagnosis. Establishing biomarker validity requires demonstration that the assays are true markers of underlying disease pathology (e.g., amyloid plaques and/or neurofibrillary tangles) in living individuals.
DESIGN
We compared the performances of the two most commonly used platforms, INNOTEST® ELISA and INNO-BIA AlzBio3 for measurement of CSF amyloid-beta (Aβ) and tau(s), for identifying the presence of amyloid plaques in a research cohort (n=103). Values obtained for CSF Aβ1-42, total tau and phosphorylated tau181 (p-tau181) using the two assay platforms were compared to brain amyloid load as assessed by positron emission tomography using the amyloid imaging agent, Pittsburgh Compound B (PIB).
SUBJECTS
Research volunteers who are cognitively normal or have very mild to moderate AD dementia.
RESULTS
The two assay platforms yielded different (~2–6-fold) absolute values for the various analytes, but relative values were highly correlated. CSF Aβ1-42 correlated inversely, and tau and p-tau181 correlated positively, with the amount of cortical PIB binding, albeit to differing degrees. Both assays yielded similar patterns of CSF biomarker correlations with amyloid load. The ratios of total tau/Aβ1-42 and p-tau181/Aβ1-42 outperformed any single analyte, including Aβ1-2, in discriminating individuals with versus without cortical amyloid.
CONCLUSIONS
The INNOTEST® and INNO-BIA CSF platforms performed equally well in identifying individuals with underlying amyloid plaque pathology. Differences in absolute values, however, point to the need for assay-specific diagnostic cut-point values.
doi:10.1001/archneurol.2011.105
PMCID: PMC3154969  PMID: 21555603
Alzheimer’s disease; amyloid; biomarkers; cerebrospinal fluid; imaging (PET, MRI) in dementias; Pittsburgh Compound B
6.  Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography 
Brain  2011;134(6):1647-1657.
We assessed the relationship between consensus clinical diagnostic classification and neurochemical positron emission tomography imaging of striatal vesicular monoamine transporters and cerebrocortical deposition of aβ-amyloid in mild dementia. Seventy-five subjects with mild dementia (Mini-Mental State Examination score ≥ 18) underwent a conventional clinical evaluation followed by 11C-dihydrotetrabenazine positron emission tomography imaging of striatal vesicular monoamine transporters and 11C-Pittsburgh compound-B positron emission tomography imaging of cerebrocortical aβ-amyloid deposition. Clinical classifications were assigned by consensus of an experienced clinician panel. Neuroimaging classifications were assigned as Alzheimer’s disease, frontotemporal dementia or dementia with Lewy bodies on the basis of the combined 11C-dihydrotetrabenazine and 11C-Pittsburgh compound-B results. Thirty-six subjects were classified clinically as having Alzheimer’s disease, 25 as having frontotemporal dementia and 14 as having dementia with Lewy bodies. Forty-seven subjects were classified by positron emission tomography neuroimaging as having Alzheimer’s disease, 15 as having dementia with Lewy bodies and 13 as having frontotemporal dementia. There was only moderate agreement between clinical consensus and neuroimaging classifications across all dementia subtypes, with discordant classifications in ∼35% of subjects (Cohen’s κ = 0.39). Discordant classifications were least frequent in clinical consensus Alzheimer’s disease (17%), followed by dementia with Lewy bodies (29%) and were most common in frontotemporal dementia (64%). Accurate clinical classification of mild neurodegenerative dementia is challenging. Though additional post-mortem correlations are required, positron emission tomography imaging likely distinguishes subgroups corresponding to neurochemically defined pathologies. Use of these positron emission tomography imaging methods may augment clinical classifications and allow selection of more uniform subject groups in disease-modifying therapeutic trials and other prospective research involving subjects in the early stages of dementia.
doi:10.1093/brain/awr089
PMCID: PMC3102241  PMID: 21555336
Alzheimer’s disease; Lewy body dementia; frontotemporal dementia; amyloid; dopamine; diagnosis
7.  Increased metabolic vulnerability in early-onset Alzheimer’s disease is not related to amyloid burden 
Brain  2010;133(2):512-528.
Patients with early age-of-onset Alzheimer’s disease show more rapid progression, more generalized cognitive deficits and greater cortical atrophy and hypometabolism compared to late-onset patients at a similar disease stage. The biological mechanisms that underlie these differences are not well understood. The purpose of this study was to examine in vivo whether metabolic differences between early-onset and late-onset Alzheimer’s disease are associated with differences in the distribution and burden of fibrillar amyloid-β. Patients meeting criteria for probable Alzheimer’s disease (National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's; Disease and Related Disorders Association criteria) were divided based on estimated age at first symptom (less than or greater than 65 years) into early-onset (n = 21, mean age-at-onset 55.2 ± 5.9 years) and late-onset (n = 18, 72.0 ± 4.7 years) groups matched for disease duration and severity. Patients underwent positron emission tomography with the amyloid-β-ligand [11C]-labelled Pittsburgh compound-B and the glucose analogue [18F]-labelled fluorodeoxyglucose. A group of cognitively normal controls (n = 30, mean age 73.7 ± 6.4) was studied for comparison. [11C]-labelled Pittsburgh compound-B images were analysed using Logan graphical analysis (cerebellar reference) and [18F]-labelled fluorodeoxyglucose images were normalized to mean activity in the pons. Group differences in tracer uptake were assessed on a voxel-wise basis using statistical parametric mapping, and by comparing mean values in regions of interest. To account for brain atrophy, analyses were repeated after applying partial volume correction to positron emission tomography data. Compared to normal controls, both early-onset and late-onset Alzheimer’s disease patient groups showed increased [11C]-labelled Pittsburgh compound-B uptake throughout frontal, parietal and lateral temporal cortices and striatum on voxel-wise and region of interest comparisons (P < 0.05). However, there were no significant differences in regional or global [11C]-labelled Pittsburgh compound-B binding between early-onset and late-onset patients. In contrast, early-onset patients showed significantly lower glucose metabolism than late-onset patients in precuneus/posterior cingulate, lateral temporo–parietal and occipital corticies (voxel-wise and region of interest comparisons, P < 0.05). Similar results were found for [11C]-labelled Pittsburgh compound-B and [18F]-labelled fluorodeoxyglucose using atrophy-corrected data. Age-at-onset correlated positively with glucose metabolism in precuneus, lateral parietal and occipital regions of interest (controlling for age, education and Mini Mental State Exam, P < 0.05), while no correlations were found between age-at-onset and [11C]-labelled Pittsburgh compound-B binding. In summary, a comparable burden of fibrillar amyloid-β was associated with greater posterior cortical hypometabolism in early-onset Alzheimer’s disease. Our data are consistent with a model in which both early amyloid-β accumulation and increased vulnerability to amyloid-β pathology play critical roles in the pathogenesis of Alzheimer’s disease in young patients.
doi:10.1093/brain/awp326
PMCID: PMC2858015  PMID: 20080878
Alzheimer’s disease; age of onset; amyloid-β; [18F]-labelled fluorodeoxyglucose; [11C]-labelled Pittsburgh compound-B
8.  Within-patient correspondence of amyloid-β and intrinsic network connectivity in Alzheimer’s disease 
Brain  2014;137(7):2052-2064.
The cortical distribution of amyloid-β plaques in Alzheimer’s disease strikingly resembles frontal-parietal intrinsic functional connectivity networks. Using a novel method to trace the distribution of amyloid-β plaques within single patients, Myers et al. reveal a marked negative effect on intrinsic connectivity in several networks that have not typically been investigated.
There is striking overlap between the spatial distribution of amyloid-β pathology in patients with Alzheimer’s disease and the spatial distribution of high intrinsic functional connectivity in healthy persons. This overlap suggests a mechanistic link between amyloid-β and intrinsic connectivity, and indeed there is evidence in patients for the detrimental effects of amyloid-β plaque accumulation on intrinsic connectivity in areas of high connectivity in heteromodal hubs, and particularly in the default mode network. However, the observed spatial extent of amyloid-β exceeds these tightly circumscribed areas, suggesting that previous studies may have underestimated the negative impact of amyloid-β on intrinsic connectivity. We hypothesized that the known positive baseline correlation between patterns of amyloid-β and intrinsic connectivity may mask the larger extent of the negative effects of amyloid-β on connectivity. Crucially, a test of this hypothesis requires the within-patient comparison of intrinsic connectivity and amyloid-β distributions. Here we compared spatial patterns of amyloid-β-plaques (measured by Pittsburgh compound B positron emission tomography) and intrinsic functional connectivity (measured by resting-state functional magnetic resonance imaging) in patients with prodromal Alzheimer’s disease via spatial correlations in intrinsic networks covering fronto-parietal heteromodal cortices. At the global network level, we found that amyloid-β and intrinsic connectivity patterns were positively correlated in the default mode and several fronto-parietal attention networks, confirming that amyloid-β aggregates in areas of high intrinsic connectivity on a within-network basis. Further, we saw an internetwork gradient of the magnitude of correlation that depended on network plaque-load. After accounting for this globally positive correlation, local amyloid-β-plaque concentration in regions of high connectivity co-varied negatively with intrinsic connectivity, indicating that amyloid-β pathology adversely reduces connectivity anywhere in an affected network as a function of local amyloid-β-plaque concentration. The local negative association between amyloid-β and intrinsic connectivity was much more pronounced than conventional group comparisons of intrinsic connectivity would suggest. Our findings indicate that the negative impact of amyloid-β on intrinsic connectivity in heteromodal networks is underestimated by conventional analyses. Moreover, our results provide first within-patient evidence for correspondent patterns of amyloid-β and intrinsic connectivity, with the distribution of amyloid-β pathology following functional connectivity gradients within and across intrinsic networks.
doi:10.1093/brain/awu103
PMCID: PMC4065018  PMID: 24771519
Alzheimer’s disease; amyloid-β plaques; intrinsic connectivity; resting-state functional MRI; PiB-PET
9.  Spatial patterns of brain amyloid-β burden and atrophy rate associations in mild cognitive impairment 
Brain  2011;134(4):1077-1088.
Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer’s disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by 11C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer’s disease pathology, encouraging for the use of 11C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of Alzheimer’s disease. These results may begin to shed light on the mechanisms by which amyloid-β deposition leads to neurodegeneration and cognitive decline and the development of a more specific Alzheimer’s disease-specific imaging signature for diagnosis and use of this knowledge in the development of new anti-therapies for Alzheimer’s disease.
doi:10.1093/brain/awr044
PMCID: PMC3069703  PMID: 21429865
MRI; 11C-PiB PET; Alzheimer’s disease; mild cognitive impairment; amyloid-β; amyloid; brain atrophy rate; multimodal brain imaging
10.  Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease: A multimodal imaging investigation 
NeuroImage : Clinical  2014;4:604-614.
Some cognitively healthy individuals develop brain amyloid accumulation, suggestive of incipient Alzheimer's disease (AD), but the effect of amyloid on other potentially informative imaging modalities, such as Diffusion Tensor Imaging (DTI), in characterizing brain changes in preclinical AD requires further exploration. In this study, a sample (N = 139, mean age 60.6, range 46 to 71) from the Wisconsin Registry for Alzheimer's Prevention (WRAP), a cohort enriched for AD risk factors, was recruited for a multimodal imaging investigation that included DTI and [C-11]Pittsburgh Compound B (PiB) positron emission tomography (PET). Participants were grouped as amyloid positive (Aβ+), amyloid indeterminate (Aβi), or amyloid negative (Aβ−) based on the amount and pattern of amyloid deposition. Regional voxel-wise analyses of four DTI metrics, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), and radial diffusivity (Dr), were performed based on amyloid grouping. Three regions of interest (ROIs), the cingulum adjacent to the corpus callosum, hippocampal cingulum, and lateral fornix, were selected based on their involvement in the early stages of AD. Voxel-wise analysis revealed higher FA among Aβ+ compared to Aβ− in all three ROIs and in Aβi compared to Aβ− in the cingulum adjacent to the corpus callosum. Follow-up exploratory whole-brain analyses were consistent with the ROI findings, revealing multiple regions where higher FA was associated with greater amyloid. Lower fronto-lateral gray matter MD was associated with higher amyloid burden. Further investigation showed a negative correlation between MD and PiB signal, suggesting that Aβ accumulation impairs diffusion. Interestingly, these findings in a largely presymptomatic sample are in contradistinction to relationships reported in the literature in symptomatic disease stages of Mild Cognitive Impairment and AD, which usually show higher MD and lower FA. Together with analyses showing that cognitive function in these participants is not associated with any of the four DTI metrics, the present results suggest an early relationship between PiB and DTI, which may be a meaningful indicator of the initiating or compensatory mechanisms of AD prior to cognitive decline.
Graphical abstract
Highlights
•Study cohort of preclinical subjects (N = 139) at risk for Alzheimer's disease•Examination of four DTI metrics in three groups based on global amyloid load•Greater amyloid load was associated with higher fractional anisotropy.•Diffusivity was negatively associated with amyloid in fronto-lateral gray matter.•DTI metrics were not correlated with cognition at this early disease stage.
doi:10.1016/j.nicl.2014.02.001
PMCID: PMC4053642  PMID: 24936411
DTI, Diffusion Tensor Imaging; PIB, Pittsburgh compound B; WRAP, Wisconsin Registry for Alzheimer's Prevention; FA, fractional anisotropy; MD, mean diffusivity; Da, axial diffusivity; Dr, radial diffusivity; APOE4, apolipoprotein E gene ε4; FH, (parental) family history; WM, white matter; GM, gray matter; Aβ+, amyloid positive; Aβi, amyloid indeterminate; Aβ−, amyloid negative; SPM, Statistical Parametric Mapping; FSL, FMRIB Software Library; PRELUDE, phase region expanding labeler for unwrapping discrete estimates; FUGUE, FMRIB's utility for geometrically unwarping EPIs; BET, Brain Extraction Tool; DTI-TK, Diffusion Tensor Imaging Toolkit; HARDI, high angular resolution diffusion imaging; DVR, distribution volume ratio; ICBM, International Consortium for Brain Mapping; ANTs, Advanced Normalization Tools; Cingulum–CC, cingulum adjacent to corpus callosum; Cingulum–HC, hippocampal cingulum (projecting to medial temporal lobe); PCC, posterior cingulate cortex; RAVLT, Rey Auditory Verbal Learning Test; TMT, Trail Making Test; ANCOVA, Analysis of Covariance; FWE, family wise error; WASI, Wechsler Abbreviated Scale of Intelligence; WRAT, Wide Range Achievement Test; Alzheimer's disease; Amyloid imaging; AD risk; White matter
11.  Progression of Cerebral Amyloid Load Is Associated with the Apolipoprotein E ε4 Genotype in Alzheimer’s Disease 
Biological psychiatry  2010;68(10):879-884.
Background
Pittsburgh Compound B ([11C] PiB) is a specific positron emission tomography (PET) marker of cerebral amyloid deposits. Only few data have been published on in vivo longitudinal changes of amyloid load in Alzheimer’s disease (AD) patients, with conflicting results. Therefore, little is known about the factors that influence these changes.
Methods
A group of 24 patients with probable AD diagnosed by combining established clinical criteria with an AD-typical pattern in [18F] fluoro-deoxyglucose PET underwent [11C] PiB-PET examinations at baseline and after 24 months. The difference of amyloid load between the two examinations and the association with clinical and neurobiological variables was examined with a regions-of-interest approach and voxel-based analyses.
Results
Cerebral [11C] PiB uptake ratio increased significantly by an annual rate of 3.92%. Although the increase occurred in all parts of the neocortex, no increase was detected in the archipallium. The increase was gene-dose-dependent (analysis of variance p = .012) to the number of apolipoprotein E ε4 alleles. Progression of dementia symptoms was correlated to the [11C] PiB increase in numerous regions associated with cognition.
Conclusions
The results of this study indicate that a significant increase of amyloid deposition occurs in patients with AD during a relatively short interval of its clinical course. The rate of amyloid aggregation rate is closely associated with the apolipoprotein E genotype, which might be important for the evaluation of antiamyloid drug treatment effects. The present study further emphasizes the value of amyloid-plaque imaging as a marker of disease progression and as a potential surrogate marker to be used in antiamyloid drug trials.
doi:10.1016/j.biopsych.2010.05.013
PMCID: PMC3045041  PMID: 20598287
Alzheimer’s disease; apolipoprotein E; Pittsburgh Compound B; positron emission tomography; prospective study
12.  Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease 
Brain  2013;136(3):844-858.
The factors driving clinical heterogeneity in Alzheimer’s disease are not well understood. This study assessed the relationship between amyloid deposition, glucose metabolism and clinical phenotype in Alzheimer’s disease, and investigated how these relate to the involvement of functional networks. The study included 17 patients with early-onset Alzheimer’s disease (age at onset <65 years), 12 patients with logopenic variant primary progressive aphasia and 13 patients with posterior cortical atrophy [whole Alzheimer’s disease group: age = 61.5 years (standard deviation 6.5 years), 55% male]. Thirty healthy control subjects [age = 70.8 (3.3) years, 47% male] were also included. Subjects underwent positron emission tomography with 11C-labelled Pittsburgh compound B and 18F-labelled fluorodeoxyglucose. All patients met National Institute on Ageing–Alzheimer’s Association criteria for probable Alzheimer’s disease and showed evidence of amyloid deposition on 11C-labelled Pittsburgh compound B positron emission tomography. We hypothesized that hypometabolism patterns would differ across variants, reflecting involvement of specific functional networks, whereas amyloid patterns would be diffuse and similar across variants. We tested these hypotheses using three complimentary approaches: (i) mass-univariate voxel-wise group comparison of 18F-labelled fluorodeoxyglucose and 11C-labelled Pittsburgh compound B; (ii) generation of covariance maps across all subjects with Alzheimer’s disease from seed regions of interest specifically atrophied in each variant, and comparison of these maps to functional network templates; and (iii) extraction of 11C-labelled Pittsburgh compound B and 18F-labelled fluorodeoxyglucose values from functional network templates. Alzheimer’s disease clinical groups showed syndrome-specific 18F-labelled fluorodeoxyglucose patterns, with greater parieto-occipital involvement in posterior cortical atrophy, and asymmetric involvement of left temporoparietal regions in logopenic variant primary progressive aphasia. In contrast, all Alzheimer’s disease variants showed diffuse patterns of 11C-labelled Pittsburgh compound B binding, with posterior cortical atrophy additionally showing elevated uptake in occipital cortex compared with early-onset Alzheimer’s disease. The seed region of interest covariance analysis revealed distinct 18F-labelled fluorodeoxyglucose correlation patterns that greatly overlapped with the right executive-control network for the early-onset Alzheimer’s disease region of interest, the left language network for the logopenic variant primary progressive aphasia region of interest, and the higher visual network for the posterior cortical atrophy region of interest. In contrast, 11C-labelled Pittsburgh compound B covariance maps for each region of interest were diffuse. Finally, 18F-labelled fluorodeoxyglucose was similarly reduced in all Alzheimer’s disease variants in the dorsal and left ventral default mode network, whereas significant differences were found in the right ventral default mode, right executive-control (both lower in early-onset Alzheimer’s disease and posterior cortical atrophy than logopenic variant primary progressive aphasia) and higher-order visual network (lower in posterior cortical atrophy than in early-onset Alzheimer’s disease and logopenic variant primary progressive aphasia), with a trend towards lower 18F-labelled fluorodeoxyglucose also found in the left language network in logopenic variant primary progressive aphasia. There were no differences in 11C-labelled Pittsburgh compound B binding between syndromes in any of the networks. Our data suggest that Alzheimer’s disease syndromes are associated with degeneration of specific functional networks, and that fibrillar amyloid-β deposition explains at most a small amount of the clinico-anatomic heterogeneity in Alzheimer’s disease.
doi:10.1093/brain/aws327
PMCID: PMC3580269  PMID: 23358601
Alzheimer’s disease; posterior cortical atrophy; logopenic variant of PPA; positron emission tomography (PET); functional networks
13.  Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications 
In the past decade, positron emission tomography (PET) with carbon-11-labeled Pittsburgh Compound B (PIB) has revolutionized the neuroimaging of aging and dementia by enabling in vivo detection of amyloid plaques, a core pathologic feature of Alzheimer's disease (AD). Studies suggest that PIB-PET is sensitive for AD pathology, can distinguish AD from non-AD dementia (for example, frontotemporal lobar degeneration), and can help determine whether mild cognitive impairment is due to AD. Although the short half-life of the carbon-11 radiolabel has thus far limited the use of PIB to research, a second generation of tracers labeled with fluorine-18 has made it possible for amyloid PET to enter the clinical era. In the present review, we summarize the literature on amyloid imaging in a range of neurodegenerative conditions. We focus on potential clinical applications of amyloid PET and its role in the differential diagnosis of dementia. We suggest that amyloid imaging will be particularly useful in the evaluation of mildly affected, clinically atypical or early age-at-onset patients, and illustrate this with case vignettes from our practice. We emphasize that amyloid imaging should supplement (not replace) a detailed clinical evaluation. We caution against screening asymptomatic individuals, and discuss the limited positive predictive value in older populations. Finally, we review limitations and unresolved questions related to this exciting new technique.
doi:10.1186/alzrt93
PMCID: PMC3308020  PMID: 22071129
14.  Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly 
Archives of neurology  2008;65(11):1509-1517.
Objective
To characterize the prevalence of amyloid deposition in a clinically unimpaired elderly population, as assessed by Pittsburgh Compound B (PiB) positron emission tomography (PET) imaging, and its relationship to cognitive function, measured with a battery of neuropsychological tests.
Design
Subjects underwent cognitive testing and PiB PET imaging (15 mCi for 90 minutes with an ECAT HR + scanner). Logan graphical analysis was applied to estimate regional PiB retention distribution volume, normalized to a cerebellar reference region volume, to yield distribution volume ratios (DVRs).
Setting
University medical center.
Participants
From a community-based sample of volunteers, 43 participants aged 65 to 88 years who did not meet diagnostic criteria for Alzheimer disease or mild cognitive impairment were included.
Main Outcome Measures
Regional PiB retention and cognitive test performance.
Results
Of 43 clinically unimpaired elderly persons imaged, 9 (21%) showed evidence of early amyloid deposition in at least 1 brain area using an objectively determined DVR cutoff. Demographic characteristics did not differ significantly between amyloid-positive and amyloid-negative participants, and neurocognitive performance was not significantly worse among amyloid-positive compared with amyloid-negative participants.
Conclusions
Amyloid deposition can be identified among cognitively normal elderly persons during life, and the prevalence of asymptomatic amyloid deposition may be similar to that of symptomatic amyloid deposition. In this group of participants without clinically significant impairment, amyloid deposition was not associated with worse cognitive function, suggesting that an elderly person with a significant amyloid burden can remain cognitively normal. However, this finding is based on relatively small numbers and needs to be replicated in larger cohorts. Longitudinal follow-up of these subjects will be required to support the potential of PiB imaging to identify preclinical Alzheimer disease, or, alternatively, to show that amyloid deposition is not sufficient to cause Alzheimer disease within some specified period.
doi:10.1001/archneur.65.11.1509
PMCID: PMC2636844  PMID: 19001171
15.  Atrophy Rates in Asymptomatic Amyloidosis: Implications for Alzheimer Prevention Trials 
PLoS ONE  2013;8(3):e58816.
There is considerable interest in designing therapeutic studies of individuals at risk of Alzheimer disease (AD) to prevent the onset of symptoms. Cortical β-amyloid plaques, the first stage of AD pathology, can be detected in vivo using positron emission tomography (PET), and several studies have shown that ∼1/3 of healthy elderly have significant β-amyloid deposition. Here we assessed whether asymptomatic amyloid-PET-positive controls have increased rates of brain atrophy, which could be harnessed as an outcome measure for AD prevention trials. We assessed 66 control subjects (age = 73.5±7.3 yrs; MMSE = 29±1.3) from the Australian Imaging Biomarkers & Lifestyle study who had a baseline Pittsburgh Compound B (PiB) PET scan and two 3T MRI scans ∼18-months apart. We calculated PET standard uptake value ratios (SUVR), and classified individuals as amyloid-positive/negative. Baseline and 18-month MRI scans were registered, and brain, hippocampal, and ventricular volumes and annualized volume changes calculated. Increasing baseline PiB-PET measures of β-amyloid load correlated with hippocampal atrophy rate independent of age (p = 0.014). Twenty-two (1/3) were PiB-positive (SUVR>1.40), the remaining 44 PiB-negative (SUVR≤1.31). Compared to PiB-negatives, PiB-positive individuals were older (76.8±7.5 vs. 71.7±7.5, p<0.05) and more were APOE4 positive (63.6% vs. 19.2%, p<0.01) but there were no differences in baseline brain, ventricle or hippocampal volumes, either with or without correction for total intracranial volume, once age and gender were accounted for. The PiB-positive group had greater total hippocampal loss (0.06±0.08 vs. 0.02±0.05 ml/yr, p = 0.02), independent of age and gender, with non-significantly higher rates of whole brain (7.1±9.4 vs. 4.7±5.5 ml/yr) and ventricular (2.0±3.0 vs. 1.1±1.0 ml/yr) change. Based on the observed effect size, recruiting 384 (95%CI 195–1080) amyloid-positive subjects/arm will provide 80% power to detect 25% absolute slowing of hippocampal atrophy rate in an 18-month treatment trial. We conclude that hippocampal atrophy may be a feasible outcome measure for secondary prevention studies in asymptomatic amyloidosis.
doi:10.1371/journal.pone.0058816
PMCID: PMC3599038  PMID: 23554933
16.  Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease 
Brain  2009;132(5):1355-1365.
The purpose of this study was to use serial imaging to gain insight into the sequence of pathologic events in Alzheimer's disease, and the clinical features associated with this sequence. We measured change in amyloid deposition over time using serial 11C Pittsburgh compound B (PIB) positron emission tomography and progression of neurodegeneration using serial structural magnetic resonance imaging. We studied 21 healthy cognitively normal subjects, 32 with amnestic mild cognitive impairment and 8 with Alzheimer's disease. Subjects were drawn from two sources—ongoing longitudinal registries at Mayo Clinic, and the Alzheimer's disease Neuroimaging Initiative (ADNI). All subjects underwent clinical assessments, MRI and PIB studies at two time points, approximately one year apart. PIB retention was quantified in global cortical to cerebellar ratio units and brain atrophy in units of cm3 by measuring ventricular expansion. The annual change in global PIB retention did not differ by clinical group (P = 0.90), and although small (median 0.042 ratio units/year overall) was greater than zero among all subjects (P < 0.001). Ventricular expansion rates differed by clinical group (P < 0.001) and increased in the following order: cognitively normal (1.3 cm3/year) <  amnestic mild cognitive impairment (2.5 cm3/year) <  Alzheimer's disease (7.7 cm3/year). Among all subjects there was no correlation between PIB change and concurrent change on CDR-SB (r = −0.01, P = 0.97) but some evidence of a weak correlation with MMSE (r =−0.22, P = 0.09). In contrast, greater rates of ventricular expansion were clearly correlated with worsening concurrent change on CDR-SB (r = 0.42, P < 0.01) and MMSE (r =−0.52, P < 0.01). Our data are consistent with a model of typical late onset Alzheimer's disease that has two main features: (i) dissociation between the rate of amyloid deposition and the rate of neurodegeneration late in life, with amyloid deposition proceeding at a constant slow rate while neurodegeneration accelerates and (ii) clinical symptoms are coupled to neurodegeneration not amyloid deposition. Significant plaque deposition occurs prior to clinical decline. The presence of brain amyloidosis alone is not sufficient to produce cognitive decline, rather, the neurodegenerative component of Alzheimer's disease pathology is the direct substrate of cognitive impairment and the rate of cognitive decline is driven by the rate of neurodegeneration. Neurodegeneration (atrophy on MRI) both precedes and parallels cognitive decline. This model implies a complimentary role for MRI and PIB imaging in Alzheimer's disease, with each reflecting one of the major pathologies, amyloid dysmetabolism and neurodegeneration.
doi:10.1093/brain/awp062
PMCID: PMC2677798  PMID: 19339253
Alzheimer's disease; amyloid imaging; magnetic resonance imaging, longitudinal imaging; mild cognitive impairment; Pittsburgh compound B
17.  In vivo characterization of the early states of the amyloid-beta network 
Brain  2013;136(7):2239-2252.
Alzheimer’s disease is a neurodegenerative disease that is associated with the abnormal accumulation of amyloid-β. Much is known about regional brain atrophy in Alzheimer’s disease, yet our knowledge about the network nature of Alzheimer’s disease-associated amyloid-β accumulation is limited. We use stepwise connectivity analysis of Pittsburgh Compound B positron emission tomography images to reveal the network properties of amyloid-β deposits in normal elderly subjects and clinical patients with Alzheimer’s disease. We found that amyloid-β accumulation in the medial temporal lobe is associated with accumulation in cortical regions such as orbitofrontal, lateral temporal and precuneus/posterior cingulate cortices in Alzheimer’s disease. In normal subjects, there was a predominant association between amyloid-β deposits in the hippocampus and the midline prefrontal/orbitofrontal regions, even in those with very low amyloid-β burden. Moreover, the orbitofrontal cortex, amygdala nucleus and hippocampus exhibit hub properties in the amyloid-β network that may be critical to understanding the putative spreading mechanisms of Alzheimer’s disease pathology in early stages.
doi:10.1093/brain/awt146
PMCID: PMC3692037  PMID: 23801740
Alzheimer’s disease; network; amyloid; graph theory; early stages
18.  In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease 
Brain  2013;136(7):2228-2238.
Neuroinflammation is a pathological hallmark of Alzheimer’s disease, but its role in cognitive impairment and its course of development during the disease are largely unknown. To address these unknowns, we used positron emission tomography with 11C-PBR28 to measure translocator protein 18 kDa (TSPO), a putative biomarker for inflammation. Patients with Alzheimer’s disease, patients with mild cognitive impairment and older control subjects were also scanned with 11C-Pittsburgh Compound B to measure amyloid burden. Twenty-nine amyloid-positive patients (19 Alzheimer’s, 10 mild cognitive impairment) and 13 amyloid-negative control subjects were studied. The primary goal of this study was to determine whether TSPO binding is elevated in patients with Alzheimer’s disease, and the secondary goal was to determine whether TSPO binding correlates with neuropsychological measures, grey matter volume, 11C-Pittsburgh Compound B binding, or age of onset. Patients with Alzheimer’s disease, but not those with mild cognitive impairment, had greater 11C-PBR28 binding in cortical brain regions than controls. The largest differences were seen in the parietal and temporal cortices, with no difference in subcortical regions or cerebellum. 11C-PBR28 binding inversely correlated with performance on Folstein Mini-Mental State Examination, Clinical Dementia Rating Scale Sum of Boxes, Logical Memory Immediate (Wechsler Memory Scale Third Edition), Trail Making part B and Block Design (Wechsler Adult Intelligence Scale Third Edition) tasks, with the largest correlations observed in the inferior parietal lobule. 11C-PBR28 binding also inversely correlated with grey matter volume. Early-onset (<65 years) patients had greater 11C-PBR28 binding than late-onset patients, and in parietal cortex and striatum 11C-PBR28 binding correlated with lower age of onset. Partial volume corrected and uncorrected results were generally in agreement; however, the correlation between 11C-PBR28 and 11C-Pittsburgh Compound B binding was seen only after partial volume correction. The results suggest that neuroinflammation, indicated by increased 11C-PBR28 binding to TSPO, occurs after conversion of mild cognitive impairment to Alzheimer’s disease and worsens with disease progression. Greater inflammation may contribute to the precipitous disease course typically seen in early-onset patients. 11C-PBR28 may be useful in longitudinal studies to mark the conversion from mild cognitive impairment or to assess response to experimental treatments of Alzheimer’s disease.
doi:10.1093/brain/awt145
PMCID: PMC3692038  PMID: 23775979
Alzheimer’s disease; mild cognitive impairment; neuroinflammation; positron emission tomography
19.  Amyloid imaging in prodromal Alzheimer's disease 
Patients with mild cognitive impairment are at an increased risk of progression to Alzheimer's disease. However, not all patients with mild cognitive impairment progress, and it is difficult to accurately identify those patients who are in the prodromal stage of Alzheimer's disease. In a recent paper, Koivunen and colleagues report that Pittsburgh compound-B, an amyloid-beta positron emission tomography ligand, predicts the progression of patients with mild cognitive impairment to Alzheimer's disease. Of 29 subjects with mild cognitive impairment, 21 (72%) had a positive Pittsburgh compound-B positron emission tomography baseline scan. In their study, 15 of these 21 (71%) patients progressed to Alzheimer's disease, whilst only 1 out of 8 (12.5%) Pittsburgh compound-B-negative patients with mild cognitive impairment did so. Moreover, in these mild cognitive impairment patients, the overall amyloid burden increased approximately 2.5% during the follow-up period. This is consistent with other longitudinal amyloid imaging studies that found a similar increase in amyloid deposition over time in patients with mild cognitive impairment. These studies together challenge current theories that propose a flattening of the increase of brain amyloid deposition already in the preclinical stage of Alzheimer's disease. These findings may have important implications for the design of future clinical trials aimed at preventing progression to Alzheimer's disease by lowering the brain amyloid-beta burden in patients with mild cognitive impairment.
doi:10.1186/alzrt88
PMCID: PMC3218803  PMID: 21936965
20.  Impact of Amyloid Imaging on Drug Development in Alzheimer’s Disease 
Nuclear medicine and biology  2007;34(7):809-822.
Imaging agents capable of assessing amyloid-beta (Aβ) content in vivo in the brains of Alzheimer’s disease (AD) subjects likely will be important as diagnostic agents to detect Aβ plaques in the brain, to help test the amyloid cascade hypothesis of AD, and as an aid to assess the efficacy of anti-amyloid therapeutics currently under development and in clinical trials. Positron emission tomography (PET) imaging studies of amyloid deposition in human subjects with several Aβ imaging agents are currently underway. We reported the first PET studies of the carbon-11-labeled thioflavin-T derivative Pittsburgh Compound B ([11C]PiB) in 2004, and this work has subsequently been extended to include a variety of subject groups including AD, mild cognitive impairment (MCI), and healthy controls. The ability to quantify regional Aβ plaque load in the brains of living human subjects has provided a means to begin to apply this technology as a diagnostic agent to detect regional concentrations of Aβ plaques and as a surrogate marker of therapeutic efficacy in anti-amyloid drug trials.
doi:10.1016/j.nucmedbio.2007.06.015
PMCID: PMC2078205  PMID: 17921032
Amyloid imaging; amyloid-beta; Aβ; PiB; Alzheimer’s disease; anti-amyloid therapy
21.  Amyloid Deposition Begins in the Striatum of Presenilin-1 Mutation Carriers from Two Unrelated Pedigrees 
The Journal of Neuroscience  2007;27(23):6174-6184.
The amyloid cascade hypothesis suggests that the aggregation and deposition of amyloid-β protein is an initiating event in Alzheimer's disease (AD). Using amyloid imaging technology, such as the positron emission tomography (PET) agent Pittsburgh compound-B (PiB), it is possible to explore the natural history of preclinical amyloid deposition in people at high risk for AD. With this goal in mind, asymptomatic (n = 5) and symptomatic (n = 5) carriers of presenilin-1 (PS1) mutations (C410Y or A426P) that lead to early-onset AD and noncarrier controls from both kindreds (n = 2) were studied with PiB–PET imaging and compared with sporadic AD subjects (n = 12) and controls from the general population (n = 18). We found intense and focal PiB retention in the striatum of all 10 PS1 mutation carriers studied (ages 35–49 years). In most PS1 mutation carriers, there also were increases in PiB retention compared with controls in cortical brain areas, but these increases were not as great as those observed in sporadic AD subjects. The two PS1 mutation carriers with a clinical diagnosis of early-onset AD did not show the typical regional pattern of PiB retention observed in sporadic AD. Postmortem evaluation of tissue from two parents of PS1C410Y subjects in this study confirmed extensive striatal amyloid deposition, along with typical cortical deposition. The early, focal striatal amyloid deposition observed in these PS1 mutation carriers is often is not associated with clinical symptoms.
doi:10.1523/JNEUROSCI.0730-07.2007
PMCID: PMC3265970  PMID: 17553989
Alzheimer's disease; positron emission tomography; amyloid-β; diagnosis; Pittsburgh Compound-B; striatum
22.  In vitro high affinity α-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain1 
Journal of Neurochemistry  2008;105(4):1428-1437.
Amyloid containing deposits are a defining neuropathological feature of a wide range of dementias and movement disorders. The positron emission tomography tracer PIB (Pittsburgh Compound-B, 2-[4′-(methylamino)phenyl]-6-hydroxybenzothiazole) was developed to target senile plaques, an amyloid containing pathological hallmark of Alzheimer's disease, formed from the amyloid-β peptide. Despite the fact that PIB was developed from the pan-amyloid staining dye thioflavin T, no detailed characterisation of its interaction with other amyloid structures has been reported. In this study, we demonstrate the presence of a high affinity binding site (Kd∼4 nM) for benzothiazole derivatives, including [3H]-PIB, on α-synuclein (AS) filaments generated in vitro, and further characterise this binding site through the use of radioligand displacement assays employing 4-N-methylamino-4′-hydroxystilbene (SB13) (Ki = 87 nM) and 2-(1-{6-[(2-fluoroethyl(methyl)amino]-2-naphthyl}ethylidene)malononitrile (FDDNP) (Ki = 210 nM). Despite the presence of a high-affinity binding site on AS filaments, no discernible interaction of [3H]-PIB was detected with amygdala sections from Parkinson's disease cases containing frequent AS-immunoreactive Lewy bodies and related neurities. These findings suggest that the density and/or accessibility of AS binding sites in vivo are significantly less than those associated with amyloid-β peptide lesions. Lewy bodies pathology is therefore unlikely to contribute significantly to the retention of PIB in positron emission tomography imaging studies.
J. Neurochem. (2008) 105, 1428–1437.
doi:10.1111/j.1471-4159.2008.05245.x
PMCID: PMC2408655  PMID: 18221373
α-synuclein; Alzheimer's disease; amyloid; imaging; Lewy body; Parkinson's disease
23.  Individual Subject Classification of Mixed Dementia from Pure Subcortical Vascular Dementia Based on Subcortical Shape Analysis 
PLoS ONE  2013;8(10):e75602.
Subcortical vascular dementia (SVaD), one of common causes of dementia, has concomitant Alzheimer's disease (AD) pathology in over 30%, termed “mixed dementia”. Identifying mixed dementia from SVaD is important because potential amyloid-targeted therapies may be effective for treatment in mixed dementia. The purpose of this study was to discriminate mixed dementia from pure SVaD using magnetic resonance imaging (MRI). We measured brain amyloid deposition using the 11C-Pittsburgh compound B positron emission tomography (PiB-PET) in 68 patients with SVaD. A PiB retention ratio greater than 1.5 was considered PiB(+). Hippocampal and amygdalar shape were used in the incremental learning method to discriminate mixed dementia from pure SVaD because these structures are known to be prominently involved by AD pathologies. Among 68 patients, 23 (33.8%) patients were positive for PiB binding. With use of hippocampal shape analysis alone, PiB(+) SVaD could be discriminated from PiB(-) SVaD with 77.9% accuracy (95.7% sensitivity and 68.9% specificity). With use of amygdalar shape, the discrimination accuracy was 75.0% (87.0% sensitivity and 68.9% specificity). When hippocampal and amygdalar shape were analyzed together, accuracy increased to 82.4% (95.7% sensitivity and 75.6% specificity). An incremental learning method using hippocampal and amygdalar shape distinguishes mixed dementia from pure SVaD. Furthermore, our results suggest that amyloid pathology and vascular pathology have different effects on the shape of the hippocampus and amygdala.
doi:10.1371/journal.pone.0075602
PMCID: PMC3794958  PMID: 24130724
24.  Development of Positron Emission Tomography β-Amyloid Plaque Imaging Agents 
Seminars in nuclear medicine  2012;42(6):423-432.
For 100 years, β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) have been recognized as the neuropathological hallmarks of Alzheimer’s disease (AD), and their presence or absence could only be assessed postmortem using stains and dyes that identified these microscopic structures. Approximately 10 years ago, the first successful Aβ plaque–specific positron emission tomography (PET) imaging study was conducted in a living human subject clinically diagnosed with probable AD using the 11C-labeled radiopharmaceutical Pittsburgh Compound B (PiB). Laboratory studies and preclinical evaluations to design PiB began a decade earlier than the first human PiB PET study and involved chemical modifications of different well-known dyes that bound specifically to the extended β-pleated sheets that comprise the fibrils of amyloid proteins such as Aβ plaques, NFTs, β-synuclein deposits, and prions. These preclinical studies were conducted in our laboratories at the University of Pittsburgh, starting with Congo red derivatives, followed by Chrysamine G derivatives, followed by X-series compounds, and finally with neutral derivatives of thioflavin-T. The in vitro and in vivo evaluations of the different derivatives as candidate PET radioligands for imaging Aβ plaques and neurofibrillary tangles in human brain are described in this review, along with the specific evaluation criteria by which the candidate radioligands were judged. Out of these studies came PiB, a PET radioligand that binds selectively and with high affinity to only fibrillar forms of Aβ. PiB has been used in many different human research protocols throughout the world and has demonstrated the usefulness of assessing the Aβ plaque status of subjects many years before the clinical diagnosis of probable AD. Recently, longer-lived 18F-radiolabeled Aβ-selective radiopharmaceuticals have been developed. It is likely that the full clinical impact of these imaging agents will be realized by identifying presymptomatic subjects who would benefit from early drug treatments with future disease-modifying AD therapeutics.
doi:10.1053/j.semnuclmed.2012.07.001
PMCID: PMC3520098  PMID: 23026364
25.  Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer's pathology 
NeuroImage : Clinical  2014;4:508-516.
The relationships between clinical phenotype, β-amyloid (Aβ) deposition and neurodegeneration in Alzheimer's disease (AD) are incompletely understood yet have important ramifications for future therapy. The goal of this study was to utilize multimodality positron emission tomography (PET) data from a clinically heterogeneous population of patients with probable AD in order to: (1) identify spatial patterns of Aβ deposition measured by (11C)-labeled Pittsburgh Compound B (PiB-PET) and glucose metabolism measured by FDG-PET that correlate with specific clinical presentation and (2) explore associations between spatial patterns of Aβ deposition and glucose metabolism across the AD population. We included all patients meeting the criteria for probable AD (NIA–AA) who had undergone MRI, PiB and FDG-PET at our center (N = 46, mean age 63.0 ± 7.7, Mini-Mental State Examination 22.0 ± 4.8). Patients were subclassified based on their cognitive profiles into an amnestic/dysexecutive group (AD-memory; n = 27), a language-predominant group (AD-language; n = 10) and a visuospatial-predominant group (AD-visuospatial; n = 9). All patients were required to have evidence of amyloid deposition on PiB-PET. To capture the spatial distribution of Aβ deposition and glucose metabolism, we employed parallel independent component analysis (pICA), a method that enables joint analyses of multimodal imaging data. The relationships between PET components and clinical group were examined using a Receiver Operator Characteristic approach, including age, gender, education and apolipoprotein E ε4 allele carrier status as covariates. Results of the first set of analyses independently examining the relationship between components from each modality and clinical group showed three significant components for FDG: a left inferior frontal and temporoparietal component associated with AD-language (area under the curve [AUC] 0.82, p = 0.011), and two components associated with AD-visuospatial (bilateral occipito-parieto-temporal [AUC 0.85, p = 0.009] and right posterior cingulate cortex [PCC]/precuneus and right lateral parietal [AUC 0.69, p = 0.045]). The AD-memory associated component included predominantly bilateral inferior frontal, cuneus and inferior temporal, and right inferior parietal hypometabolism but did not reach significance (AUC 0.65, p = 0.062). None of the PiB components correlated with clinical group. Joint analysis of PiB and FDG with pICA revealed a correlated component pair, in which increased frontal and decreased PCC/precuneus PiB correlated with decreased FDG in the frontal, occipital and temporal regions (partial r = 0.75, p < 0.0001). Using multivariate data analysis, this study reinforced the notion that clinical phenotype in AD is tightly linked to patterns of glucose hypometabolism but not amyloid deposition. These findings are strikingly similar to those of univariate paradigms and provide additional support in favor of specific involvement of the language network, higher-order visual network, and default mode network in clinical variants of AD. The inverse relationship between Aβ deposition and glucose metabolism in partially overlapping brain regions suggests that Aβ may exert both local and remote effects on brain metabolism. Applying multivariate approaches such as pICA to multimodal imaging data is a promising approach for unraveling the complex relationships between different elements of AD pathophysiology.
Highlights
•Multivariate approaches may be best suited to study links between biomarkers.•This is the first effort to apply pICA to FDG and PiB data in three groups with AD.•Hypometabolism was focal but amyloid binding was similar across conditions.•Results provide support for involvement of functional networks in variants of AD.•Aβ may exert both local and remote effects on brain metabolism.
doi:10.1016/j.nicl.2014.03.005
PMCID: PMC3984448  PMID: 24818077
Multivariate data analysis; Parallel ICA; Alzheimer's disease; Amyloid imaging; PiB-PET; FDG-PET; Functional connectivity; Networks; AD or AD-memory, Alzheimer's disease; AUC, area under the curve; AD-language or LPA, logopenic variant primary progressive aphasia; PCA or AD-visuospatial, posterior cortical atrophy; PCC, posterior cingulate cortex; PPC, posterior parietal cortex

Results 1-25 (1103748)