PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1772772)

Clipboard (0)
None

Related Articles

1.  Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes 
PLoS ONE  2011;6(5):e20237.
Background
The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis.
Methodology/Principal Findings
We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses.
Conclusions
These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.
doi:10.1371/journal.pone.0020237
PMCID: PMC3102087  PMID: 21633497
2.  Amino Acid Substitutions in Cold-Adapted Proteins from Halorubrum lacusprofundi, an Extremely Halophilic Microbe from Antarctica 
PLoS ONE  2013;8(3):e58587.
The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere.
doi:10.1371/journal.pone.0058587
PMCID: PMC3594186  PMID: 23536799
3.  Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response 
PLoS Genetics  2014;10(11):e1004784.
Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for metagenomics, improvements to automated gene annotation and investigations of evolutionary processes.
Author Summary
The ability to adjust to changing osmotic conditions (osmoadaptation) is crucial to the survival of organisms across the tree of life. However, significant gaps still exist in our understanding of this important phenomenon. To help fill some of these gaps, we have produced high-quality draft genomes for 59 osmoadaptation “experts” (extreme halophiles of the euryarchaeal family Halobacteriaceae). We describe the dispersal of osmoadaptive protein families across the haloarchaeal evolutionary tree. We use this data to suggest a generalized model for haloarchaeal ion transport in response to changing osmotic conditions, including proposed new mechanisms for magnesium and chloride accumulation. We describe the evolutionary expansion and differentiation of haloarchaeal general transcription factor families and discuss their potential for enabling rapid adaptation to environmental fluxes. Lastly, we challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. This result highlights the power of our dataset for making evolutionary inferences, a feature which will make it useful to the broader evolutionary community. We distribute our genomic dataset through a user-friendly graphical interface.
doi:10.1371/journal.pgen.1004784
PMCID: PMC4230888  PMID: 25393412
4.  Evolution of rhodopsin ion pumps in haloarchaea 
Background
The type 1 (microbial) rhodopsins are a diverse group of photochemically reactive proteins that display a broad yet patchy distribution among the three domains of life. Recent work indicates that this pattern is likely the result of lateral gene transfer (LGT) of rhodopsin genes between major lineages, and even across domain boundaries. Within the lineage in which the microbial rhodopsins were initially discovered, the haloarchaea, a similar patchy distribution is observed. In this initial study, we assess the roles of LGT and gene loss in the evolution of haloarchaeal rhodopsin ion pump genes, using phylogenetics and comparative genomics approaches.
Results
Mapping presence/absence of rhodopsins onto the phylogeny of the RNA polymerase B' subunit (RpoB') of the haloarchaea supports previous notions that rhodopsins are patchily distributed. The phylogeny for the bacteriorhodopsin (BR) protein revealed two discrepancies in comparison to the RpoB' marker, while the halorhodopsin (HR) tree showed incongruence to both markers. Comparative analyses of bacteriorhodopsin-linked regions of five haloarchaeal genomes supported relationships observed in the BR tree, and also identified two open reading frames (ORFs) that were more frequently linked to the bacteriorhodopsin gene than those genes previously shown to be important to the function and expression of BR.
Conclusion
The evidence presented here reveals a complex evolutionary history for the haloarchaeal rhodopsins, with both LGT and gene loss contributing to the patchy distribution of rhodopsins within this group. Similarities between the BR and RpoB' phylogenies provide supportive evidence for the presence of bacteriorhodopsin in the last common ancestor of haloarchaea. Furthermore, two loci that we have designated bacterio-opsin associated chaperone (bac) and bacterio-opsin associated protein (bap) are inferred to have important roles in BR biogenesis based on frequent linkage and co-transfer with bacteriorhodopsin genes.
doi:10.1186/1471-2148-7-79
PMCID: PMC1885257  PMID: 17511874
5.  Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales 
Background
Horizontal gene transfer (HGT) has greatly impacted the genealogical history of many lineages, particularly for prokaryotes, with genes frequently moving in and out of a line of descent. Many genes that were acquired by a lineage in the past likely originated from ancestral relatives that have since gone extinct. During the course of evolution, HGT has played an essential role in the origin and dissemination of genetic and metabolic novelty.
Results
Three divergent forms of leucyl-tRNA synthetase (LeuRS) exist in the archaeal order Halobacteriales, commonly known as haloarchaea. Few haloarchaeal genomes have the typical archaeal form of this enzyme and phylogenetic analysis indicates it clusters within the Euryarchaeota as expected. The majority of sequenced halobacterial genomes possess a bacterial form of LeuRS. Phylogenetic reconstruction puts this larger group of haloarchaea at the base of the bacterial domain. The most parsimonious explanation is that an ancient transfer of LeuRS took place from an organism related to the ancestor of the bacterial domain to the haloarchaea. The bacterial form of LeuRS further underwent gene duplications and/or gene transfers within the haloarchaea, with some genomes possessing two distinct types of bacterial LeuRS. The cognate tRNALeu also reveals two distinct clusters for the haloarchaea; however, these tRNALeu clusters do not coincide with the groupings found in the LeuRS tree, revealing that LeuRS evolved independently of its cognate tRNA.
Conclusions
The study of leucyl-tRNA synthetase in haloarchaea illustrates the importance of gene transfer originating in lineages that went extinct since the transfer occurred. The haloarchaeal LeuRS and tRNALeu did not co-evolve.
doi:10.1186/1471-2148-12-85
PMCID: PMC3436685  PMID: 22694720
6.  Experimental Characterization of Cis-Acting Elements Important for Translation and Transcription in Halophilic Archaea 
PLoS Genetics  2007;3(12):e229.
The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5′-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5′-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species might also be leaderless. The 5′-ends and 3′-ends of 40 transcripts of two haloarchaeal species, Halobacterium salinarum and Haloferax volcanii, have been determined. They were used to characterize the lengths of 5′-UTRs and 3′-UTRs and to deduce consensus sequence-elements for transcription and translation. The experimental approach was complemented with a bioinformatics analysis of the H. salinarum genome sequence. Furthermore, the influence of selected 5′-UTRs and 3′-UTRs on transcript stability and translational efficiency in vivo was characterized using a newly established reporter gene system, gene fusions, and real-time PCR. Consensus sequences for basal promoter elements could be refined and a novel element was discovered. A consensus motif probably important for transcriptional termination was established. All 40 haloarchaeal transcripts analyzed had a 3′-UTR (average size 57 nt), and their 3′-ends were not posttranscriptionally modified. Experimental data and genome analyses revealed that the majority of haloarchaeal transcripts are leaderless, indicating that this is the predominant mode for translation initiation in haloarchaea. Surprisingly, the 5′-UTRs of most leadered transcripts did not contain a Shine-Dalgarno (SD) sequence. A genome analysis indicated that less than 10% of all genes are preceded by a SD sequence and even most proximal genes in operons lack a SD sequence. Seven different leadered transcripts devoid of a SD sequence were efficiently translated in vivo, including artificial 5′-UTRs of random sequences. Thus, an interaction of the 5′-UTRs of these leadered transcripts with the 16S rRNA could be excluded. Taken together, either a scanning mechanism similar to the mechanism of translation initiation operating in eukaryotes or a novel mechanism must operate on most leadered haloarchaeal transcripts.
Author Summary
Expression of the information encoded in the genome of an organism into its phenotype involves transcription of the DNA into messenger RNAs and translation of mRNAs into proteins. The textbook view is that an mRNA consists of an untranslated region (5′-UTR), an open reading frame encoding the protein, and another untranslated region (3′-UTR). We have determined the 5′-ends and the 3′-ends of 40 mRNAs of two haloarchaeal species and used this dataset to gain information about nucleotide elements important for transcription and translation. Two thirds of the mRNAs were devoid of a 5′-UTR, and therefore the major pathway for translation initiation in haloarchaea involves so-called leaderless transcripts. Very unexpectedly, most leadered mRNAs were found to be devoid of a sequence motif believed to be essential for translation initiation in bacteria and archaea (Shine-Dalgarno sequence). A bioinformatic genome analysis revealed that less than 10% of the genes contain a Shine-Dalgarno sequence. mRNAs lacking this motif were efficiently translated in vivo, including mRNAs with artificial 5′-UTRs of total random sequence. Thus, translation initiation on these mRNAs either involves a scanning mechanism similar to the mechanism operating in eukaryotes or a totally novel mechanism operating at least in haloarchaea.
doi:10.1371/journal.pgen.0030229
PMCID: PMC2151090  PMID: 18159946
7.  HaloWeb: the haloarchaeal genomes database 
Saline Systems  2010;6:12.
Background
Complete genome sequencing together with post-genomic studies provide the opportunity for a comprehensive 'systems biology' understanding of model organisms. For maximum effectiveness, an integrated database containing genomic, transcriptomic, and proteomic data is necessary.
Description
To improve data access and facilitate functional genomic studies on haloarchaea in our laboratory, a dedicated database and website, named HaloWeb, was developed. It incorporates all finished and publicly released haloarchaeal genomes, including gene, protein and RNA sequences and annotation data, as well as other features such as insertion element sequences. The HaloWeb database was designed for easy data access and mining, and includes tools for tasks such as genome map generation, sequence extraction, and sequence editing. Popular resources at other sites, e.g., NCBI PubMed and BLAST, COG and KOG protein clusters, KEGG pathways, and GTOP structures were dynamically linked. The HaloWeb site is located at http://halo4.umbi.umd.edu, and at a mirror site, http://halo5.umbi.umd.edu, with all public genomic data and NCBI, KEGG, and GTOP links available for use by the academic community. The database is curated and updated on a regular basis.
Conclusions
The HaloWeb site includes all completely sequenced haloarchaeal genomes from public databases. It is currently being used as a tool for comparative genomics, including analysis of gene and genome structure, organization, and function. The database and website are up-to-date resources for researchers worldwide.
doi:10.1186/1746-1448-6-12
PMCID: PMC3023673  PMID: 21192823
8.  Sequencing of Seven Haloarchaeal Genomes Reveals Patterns of Genomic Flux 
PLoS ONE  2012;7(7):e41389.
We report the sequencing of seven genomes from two haloarchaeal genera, Haloferax and Haloarcula. Ease of cultivation and the existence of well-developed genetic and biochemical tools for several diverse haloarchaeal species make haloarchaea a model group for the study of archaeal biology. The unique physiological properties of these organisms also make them good candidates for novel enzyme discovery for biotechnological applications. Seven genomes were sequenced to ∼20×coverage and assembled to an average of 50 contigs (range 5 scaffolds - 168 contigs). Comparisons of protein-coding gene compliments revealed large-scale differences in COG functional group enrichment between these genera. Analysis of genes encoding machinery for DNA metabolism reveals genera-specific expansions of the general transcription factor TATA binding protein as well as a history of extensive duplication and horizontal transfer of the proliferating cell nuclear antigen. Insights gained from this study emphasize the importance of haloarchaea for investigation of archaeal biology.
doi:10.1371/journal.pone.0041389
PMCID: PMC3404096  PMID: 22848480
9.  Quantifying Homologous Replacement of Loci between Haloarchaeal Species 
Genome Biology and Evolution  2012;4(12):1223-1244.
In vitro studies of the haloarchaeal genus Haloferax have demonstrated their ability to frequently exchange DNA between species, whereas rates of homologous recombination estimated from natural populations in the genus Halorubrum are high enough to maintain random association of alleles between five loci. To quantify the effects of gene transfer and recombination of commonly held (relaxed core) genes during the evolution of the class Halobacteria (haloarchaea), we reconstructed the history of 21 genomes representing all major groups. Using a novel algorithm and a concatenated ribosomal protein phylogeny as a reference, we created a directed horizontal genetic transfer (HGT) network of contemporary and ancestral genomes. Gene order analysis revealed that 90% of testable HGTs were by direct homologous replacement, rather than nonhomologous integration followed by a loss. Network analysis revealed an inverse log-linear relationship between HGT frequency and ribosomal protein evolutionary distance that is maintained across the deepest divergences in Halobacteria. We use this mathematical relationship to estimate the total transfers and amino acid substitutions delivered by HGTs in each genome, providing a measure of chimerism. For the relaxed core genes of each genome, we conservatively estimate that 11–20% of their evolution occurred in other haloarchaea. Our findings are unexpected, because the transfer and homologous recombination of relaxed core genes between members of the class Halobacteria disrupts the coevolution of genes; however, the generation of new combinations of divergent but functionally related genes may lead to adaptive phenotypes not available through cumulative mutations and recombination within a single population.
doi:10.1093/gbe/evs098
PMCID: PMC3542582  PMID: 23160063
homologous recombination; horizontal gene transfer; lateral gene transfer; fitness landscape; populations; microbial evolution
10.  The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea 
F1000Research  2014;3:168.
The halophilic archaea (haloarchaea) live in saline environments, which are found across the globe.  In addition to salinity, these niches can be quite dynamic and experience extreme conditions such as low oxygen content, radiation (gamma and UV), pH and temperature.  However, of all the naturally occurring stresses faced by the haloarchaea, only one, pH, has not been previously investigated in regard to the changes induced in the transcriptome. Therefore, we endeavored to determine the responses in three haloarchaea: Halorubrum lacusprofundi (Hla), Haloferax volcanii (Hvo), and Halobacterium sp. NRC-1 (NRC-1) to growth under acidic and alkaline pH. Our observations showed that the transcriptomes of Hvo and NRC-1 regulated stress, motility, and ABC transporters in a similar manner, which is in line with previous reports from other prokaryotes when grown in an acidic environment.  However, the pattern for Hla was more species specific. For alkaline stress, all three haloarchaea responded in a manner similar to well-studied archaea and bacteria showing the haloarchaeal response was general to prokaryotes. Additionally, we performed an analysis on the changes in the transcriptomes of the three haloarchaea when shifting from one pH extreme to the other. The results showed that the transcriptomes of all three haloarchaea respond more similarly when moving from alkaline to acidic conditions compared to a shift in the opposite direction. Interestingly, our studies also showed that individual genes of multiple paralogous gene families ( tbp, tfb, orc/ cdc6, etc.) found in the haloarchaea were regulated under specific stresses thereby providing evidence that they modulate the response to various environmental stresses. The studies described here are the first to catalog the changes in the haloarchaeal transcriptomes under growth in extreme pH and help us understand how life is able to thrive under all conditions present on Earth and, if present, on extraterrestrial bodies as well.
doi:10.12688/f1000research.4789.2
PMCID: PMC4176423  PMID: 25285207
11.  An Archaeal Chromosomal Autonomously Replicating Sequence Element from an Extreme Halophile, Halobacterium sp. Strain NRC-1 
Journal of Bacteriology  2003;185(20):5959-5966.
We report on the identification and first cloning of an autonomously replicating sequence element from the chromosome of an archaeon, the extreme halophile Halobacterium strain NRC-1. The putative replication origin was identified by association with the orc7 gene and replication ability in the host strain, demonstrated by cloning into a nonreplicating plasmid. Deletion analysis showed that sequences located up to 750 bp upstream of the orc7 gene translational start, plus the orc7 gene and 50 bp downstream, are sufficient to endow the plasmid with replication ability, as judged by expression of a plasmid-encoded mevinolin resistance selectable marker and plasmid recovery after transformation. Sequences located proximal to the two other chromosomally carried haloarchaeal orc genes (orc6 and orc8) are not able to promote efficient autonomous replication. Located within the 750-bp region upstream of orc7 is a nearly perfect inverted repeat of 31 bp, which flanks an extremely AT-rich (44%) stretch of 189 bp. The replication ability of the plasmid was lost when one copy of the inverted repeat was deleted. Additionally, the inverted repeat structure near orc7 homologs in the genomic sequences of two other halophiles, Haloarcula marismortui and Haloferax volcanii, is highly conserved. Our results indicate that, in halophilic archaea, a chromosomal origin of replication is physically linked to orc7 homologs and that this element is sufficient to promote autonomous replication. We discuss the finding of a functional haloarchaeal origin in relation to the large number of orc1-cdc6 homologs identified in the genomes of all haloarchaea to date.
doi:10.1128/JB.185.20.5959-5966.2003
PMCID: PMC225043  PMID: 14526006
12.  Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1 
BMC Genetics  2007;8:31.
Background
Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential.
Results
Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence). The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene.
Conclusion
The results showed that ten out of nineteen eukaryotic-type DNA replication genes are essential for Halobacterium sp. NRC-1, consistent with their requirement for DNA replication. The essential genes code for two of ten Orc/Cdc6 proteins, two out of three DNA polymerases, the MCM helicase, two DNA primase subunits, the DNA polymerase sliding clamp, and the flap endonuclease.
doi:10.1186/1471-2156-8-31
PMCID: PMC1906834  PMID: 17559652
13.  Wide Distribution among Halophilic Archaea of a Novel Polyhydroxyalkanoate Synthase Subtype with Homology to Bacterial Type III Synthases▿ †  
Applied and Environmental Microbiology  2010;76(23):7811-7819.
Polyhydroxyalkanoates (PHAs) are accumulated as intracellular carbon and energy storage polymers by various bacteria and a few haloarchaea. In this study, 28 strains belonging to 15 genera in the family Halobacteriaceae were investigated with respect to their ability to synthesize PHAs and the types of their PHA synthases. Fermentation results showed that 18 strains from 12 genera could synthesize polyhydroxybutyrate (PHB) or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). For most of these haloarchaea, selected regions of the phaE and phaC genes encoding PHA synthases (type III) were cloned via PCR with consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) and were sequenced. The PHA synthases were also examined by Western blotting using haloarchaeal Haloarcula marismortui PhaC (PhaCHm) antisera. Phylogenetic analysis showed that the type III PHA synthases from species of the Halobacteriaceae and the Bacteria domain clustered separately. Comparison of their amino acid sequences revealed that haloarchaeal PHA synthases differed greatly in both molecular weight and certain conserved motifs. The longer C terminus of haloarchaeal PhaC was found to be indispensable for its enzymatic activity, and two additional amino acid residues (C143 and C190) of PhaCHm were proved to be important for its in vivo function. Thus, we conclude that a novel subtype (IIIA) of type III PHA synthase with unique features that distinguish it from the bacterial subtype (IIIB) is widely distributed in haloarchaea and appears to be involved in PHA biosynthesis.
doi:10.1128/AEM.01117-10
PMCID: PMC2988587  PMID: 20889776
14.  The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea 
F1000Research  2014;3:168.
The halophilic archaea (haloarchaea) live in saline environments which are found across the globe.  In addition to salinity, these niches can be quite dynamic and experience extreme conditions such as low oxygen content, radiation (gamma and UV), pH and temperature.  However, of all the naturally occurring stresses faced by the haloarchaea, only one, pH, has not been previously reported on. Therefore, we endeavored to determine the responses of the transcriptomes of three haloarchaea (Hla, Hvo, and NRC-1) to growth under acidic and alkaline pH. Our observations showed that the transcriptomes of Hvo and NRC-1 respond in a similar manner to each other as well as other prokaryotes when grown in an acidic environment, while the pattern for Hla was dissimilar. For alkaline stress, all three haloarchaea responded in a manner similar to well-studied archaea and bacteria and had four-times more significantly regulated transcripts in common, compared to acidic growth. Additionally, we performed an analysis on the changes in the transcriptomes of the three haloarchaea when shifting from one pH extreme to the other. The results showed that the transcriptomes of all three haloarchaea respond more similarly when moving from alkaline to acidic conditions compared to moving from an acidic to alkaline environment. Interestingly, our studies also showed that individual genes of multiple paralogous gene families ( tbp, tfb, orc/ cdc6, etc.) found in the haloarchaea were regulated under specific stresses thereby providing evidence that they modulate the response to various environmental stresses. The studies described here are the first to catalog the changes in the haloarchaeal transcriptomes under growth in extreme pH and help us understand how life is able to thrive under all conditions present on Earth and, if present, on extraterrestrial bodies as well.
doi:10.12688/f1000research.4789.1
PMCID: PMC4176423  PMID: 25285207
15.  Diversity and evolution of multiple orc/cdc6-adjacent replication origins in haloarchaea 
BMC Genomics  2012;13:478.
Background
While multiple replication origins have been observed in archaea, considerably less is known about their evolutionary processes. Here, we performed a comparative analysis of the predicted (proved in part) orc/cdc6-associated replication origins in 15 completely sequenced haloarchaeal genomes to investigate the diversity and evolution of replication origins in halophilic Archaea.
Results
Multiple orc/cdc6-associated replication origins were predicted in all of the analyzed haloarchaeal genomes following the identification of putative ORBs (origin recognition boxes) that are associated with orc/cdc6 genes. Five of these predicted replication origins in Haloarcula hispanica were experimentally confirmed via autonomous replication activities. Strikingly, several predicted replication origins in H. hispanica and Haloarcula marismortui are located in the distinct regions of their highly homologous chromosomes, suggesting that these replication origins might have been introduced as parts of new genomic content. A comparison of the origin-associated Orc/Cdc6 homologs and the corresponding predicted ORB elements revealed that the replication origins in a given haloarchaeon are quite diverse, while different haloarchaea can share a few conserved origins. Phylogenetic and genomic context analyses suggested that there is an original replication origin (oriC1) that was inherited from the ancestor of archaea, and several other origins were likely evolved and/or translocated within the haloarchaeal species.
Conclusion
This study provides detailed information about the diversity of multiple orc/cdc6-associated replication origins in haloarchaeal genomes, and provides novel insight into the evolution of multiple replication origins in Archaea.
doi:10.1186/1471-2164-13-478
PMCID: PMC3528665  PMID: 22978470
16.  Carotenoids from Haloarchaea and Their Potential in Biotechnology 
Marine Drugs  2015;13(9):5508-5532.
The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.
doi:10.3390/md13095508
PMCID: PMC4584337  PMID: 26308012
isoprenoid; carotenoids; bacterioruberin; haloarchaea; red and orange pigments
17.  Polyploidy in haloarchaea: advantages for growth and survival 
The investigated haloarchaeal species, Halobacterium salinarum, Haloferax mediterranei, and H. volcanii, have all been shown to be polyploid. They contain several replicons that have independent copy number regulation, and most have a higher copy number during exponential growth phase than in stationary phase. The possible evolutionary advantages of polyploidy for haloarchaea, most of which have experimental support for at least one species, are discussed. These advantages include a low mutation rate and high resistance toward X-ray irradiation and desiccation, which depend on homologous recombination. For H. volcanii, it has been shown that gene conversion operates in the absence of selection, which leads to the equalization of genome copies. On the other hand, selective forces might lead to heterozygous cells, which have been verified in the laboratory. Additional advantages of polyploidy are survival over geological times in halite deposits as well as at extreme conditions on earth and at simulated Mars conditions. Recently, it was found that H. volcanii uses genomic DNA as genetic material and as a storage polymer for phosphate. In the absence of phosphate, H. volcanii dramatically decreases its genome copy number, thereby enabling cell multiplication, but diminishing the genetic advantages of polyploidy. Stable storage of phosphate is proposed as an alternative driving force for the emergence of DNA in early evolution. Several additional potential advantages of polyploidy are discussed that have not been addressed experimentally for haloarchaea. An outlook summarizes selected current trends and possible future developments.
doi:10.3389/fmicb.2014.00274
PMCID: PMC4056108  PMID: 24982654
Haloferax volcanii; archaea; polyploidy; gene conversion; desiccation; survival
18.  Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times 
Life  2015;5(3):1487-1496.
Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival—halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages—remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival.
doi:10.3390/life5031487
PMCID: PMC4598649  PMID: 26226005
Halococcus species; Halococcus salifodinae; Haloarchaea; long-term survival; halomucin; polyploidy; ancient salt deposit; extraterrestrial halite
19.  Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China 
BMC Genomics  2007;8:410.
Background
We are profoundly ignorant about the diversity of viruses that infect the domain Archaea. Less than 100 have been identified and described and very few of these have had their genomic sequences determined. Here we report the genomic sequence of a previously undescribed archaeal virus.
Results
Haloarchaeal strains with 16S rRNA gene sequences 98% identical to Halorubrum saccharovorum were isolated from a hypersaline lake in Inner Mongolia. Two lytic viruses infecting these were isolated from the lake water. The BJ1 virus is described in this paper. It has an icosahedral head and tail morphology and most likely a linear double stranded DNA genome exhibiting terminal redundancy. Its genome sequence has 42,271 base pairs with a GC content of ~65 mol%. The genome of BJ1 is predicted to encode 70 ORFs, including one for a tRNA. Fifty of the seventy ORFs had no identity to data base entries; twenty showed sequence identity matches to archaeal viruses and to haloarchaea. ORFs possibly coding for an origin of replication complex, integrase, helicase and structural capsid proteins were identified. Evidence for viral integration was obtained.
Conclusion
The virus described here has a very low sequence identity to any previously described virus. Fifty of the seventy ORFs could not be annotated in any way based on amino acid identities with sequences already present in the databases. Determining functions for ORFs such as these is probably easier using a simple virus as a model system.
doi:10.1186/1471-2164-8-410
PMCID: PMC2194725  PMID: 17996081
20.  Anaerobic Growth of Haloarchaeon Haloferax volcanii by Denitrification Is Controlled by the Transcription Regulator NarO 
Journal of Bacteriology  2016;198(7):1077-1086.
ABSTRACT
The extremely halophilic archaeon Haloferax volcanii grows anaerobically by denitrification. A putative DNA-binding protein, NarO, is encoded upstream of the respiratory nitrate reductase gene of H. volcanii. Disruption of the narO gene resulted in a loss of denitrifying growth of H. volcanii, and the expression of the recombinant NarO recovered the denitrification capacity. A novel CXnCXCX7C motif showing no remarkable similarities with known sequences was conserved in the N terminus of the NarO homologous proteins found in the haloarchaea. Restoration of the denitrifying growth was not achieved by expression of any mutant NarO in which any one of the four conserved cysteines was individually replaced by serine. A promoter assay experiment indicated that the narO gene was usually transcribed, regardless of whether it was cultivated under aerobic or anaerobic conditions. Transcription of the genes encoding the denitrifying enzymes nitrate reductase and nitrite reductase was activated under anaerobic conditions. A putative cis element was identified in the promoter sequence of haloarchaeal denitrifying genes. These results demonstrated a significant effect of NarO, probably due to its oxygen-sensing function, on the transcriptional activation of haloarchaeal denitrifying genes.
IMPORTANCE H. volcanii is an extremely halophilic archaeon capable of anaerobic growth by denitrification. The regulatory mechanism of denitrification has been well understood in bacteria but remains unknown in archaea. In this work, we show that the helix-turn-helix (HTH)-type regulator NarO activates transcription of the denitrifying genes of H. volcanii under anaerobic conditions. A novel cysteine-rich motif, which is critical for transcriptional regulation, is present in NarO. A putative cis element was also identified in the promoter sequence of the haloarchaeal denitrifying genes.
doi:10.1128/JB.00833-15
PMCID: PMC4800875  PMID: 26787768
21.  The Complete Genome Sequence of Natrinema sp. J7-2, a Haloarchaeon Capable of Growth on Synthetic Media without Amino Acid Supplements 
PLoS ONE  2012;7(7):e41621.
Natrinema sp. J7-2 is an extreme haloarchaeon capable of growing on synthetic media without amino acid supplements. Here we report the complete genome sequence of Natrinema sp. J7-2 which is composed of a 3,697,626-bp chromosome and a 95,989-bp plasmid pJ7-I. This is the first complete genome sequence of a member of the genus Natrinema. We demonstrate that Natrinema sp. J7-2 can use gluconate, glycerol, or acetate as the sole carbon source and that its genome encodes complete metabolic pathways for assimilating these substrates. The biosynthetic pathways for all 20 amino acids have been reconstructed, and we discuss a possible evolutionary relationship between the haloarchaeal arginine synthetic pathway and the bacterial lysine synthetic pathway. The genome harbors the genes for assimilation of ammonium and nitrite, but not nitrate, and has a denitrification pathway to reduce nitrite to N2O. Comparative genomic analysis suggests that most sequenced haloarchaea employ the TrkAH system, rather than the Kdp system, to actively uptake potassium. The genomic analysis also reveals that one of the three CRISPR loci in the Natrinema sp. J7-2 chromosome is located in an integrative genetic element and is probably propagated via horizontal gene transfer (HGT). Finally, our phylogenetic analysis of haloarchaeal genomes provides clues about evolutionary relationships of haloarchaea.
doi:10.1371/journal.pone.0041621
PMCID: PMC3402447  PMID: 22911826
22.  2′-O-methylation of the wobble residue of elongator pre-tRNAMet in Haloferax volcanii is guided by a box C/D RNA containing unique features 
RNA Biology  2011;8(5):782-791.
The wobble residue C34 of Haloferax volcanii elongator tRNAMet is 2′-O-methylated. Neither a protein enzyme nor a guide RNA for this modification has been described. In this study, we show that this methylation is guided by a box C/D RNA targeting the intron-containing precursor of the tRNA. This guide RNA is starkly different from its homologs. This unique RNA of approximately 75 bases, named sR-tMet, is encoded in the genomes of H. volcanii and several other haloarchaea. A unique feature of sR-tMet is that the mature RNA in H. volcanii is substantially larger than its predicted size, whereas those in other haloarchaea are as predicted. While the 5′-ends of all tested haloarchaeal sR-tMets are equivalent, H. volcanii sR-tMet possesses an additional 51-base extension at its 3′ end. This extension is present in the precursor but not in the mature sR-tMet of Halobacterium sp, suggesting differential 3′-end processing of sR-tMet in these two closely related organisms. Archaeal box C/D RNAs mostly contain a K-loop at the C′/D′ motif. Another unique feature of sR-tMet is that its C′/D′ motif lacks either a conventional K-turn or a K-loop. Instead, it contains two tandem, sheared G•A base pairs and a pyrimidine-pyrimidine pair in the non-canonical stem; the latter may form an alternative K-turn. Gel shift assays indicate that the L7Ae protein can form a stable complex with this unusual C′/D′ motif, suggesting a novel RNA structure for L7Ae interaction.
doi:10.4161/rna.8.5.16015
PMCID: PMC3256356  PMID: 21654217
sRNA; snoRNA; Guide RNA; tRNA modification; RNA 2′-O-methylation; RNA-guided modification; Ribonucleoprotein; Box C/D RNA
23.  Antimicrobial Activity and Mechanism of Inhibition of Silver Nanoparticles against Extreme Halophilic Archaea 
Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300–400 μg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.
doi:10.3389/fmicb.2016.01424
PMCID: PMC5020055  PMID: 27679615
silver nanoparticles; Cinnamomum tamala; extreme haloarchaea; antibiotic resistant; Baranyi model; antimicrobial; membrane permeability; cytotoxicity
24.  Genetic and Biochemical Analysis of the Twin-Arginine Translocation Pathway in Halophilic Archaea 
Journal of Bacteriology  2005;187(23):8104-8113.
The twin-arginine translocation (Tat) pathway is present in a wide variety of prokaryotes and is capable of exporting partially or fully folded proteins from the cytoplasm. Although diverse classes of proteins are transported via the Tat pathway, in most organisms it facilitates the secretion of a relatively small number of substrates compared to the Sec pathway. However, computational evidence suggests that haloarchaea route nearly all secreted proteins to the Tat pathway. We have expanded previous computational analyses of the haloarchaeal Tat pathway and initiated in vivo characterization of the Tat machinery in a model haloarchaeon, Haloferax volcanii. Consistent with the predicted usage of the this pathway in the haloarchaea, we determined that three of the four identified tat genes in Haloferax volcanii are essential for viability when grown aerobically in complex medium. This represents the first report of an organism that requires the Tat pathway for viability when grown under such conditions. Deletion of the nonessential gene had no effect on the secretion of a verified substrate of the Tat pathway. The two TatA paralogs TatAo and TatAt were detected in both the membrane and cytoplasm and could be copurified from the latter fraction. Using size exclusion chromatography to further characterize cytoplasmic and membrane TatA proteins, we find these proteins present in high-molecular-weight complexes in both cellular fractions.
doi:10.1128/JB.187.23.8104-8113.2005
PMCID: PMC1291277  PMID: 16291683
25.  Haloarchaeal-Type β-Ketothiolases Involved in Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Synthesis in Haloferax mediterranei 
Applied and Environmental Microbiology  2013;79(17):5104-5111.
The key enzymes for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis in haloarchaea have been identified except the β-ketothiolase(s), which condense two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA, or one acetyl-CoA and one propionyl-CoA to 3-ketovaleryl-CoA. Whole-genome analysis has revealed eight potential β-ketothiolase genes in the haloarchaeon Haloferax mediterranei, among which the PHBV-specific BktB and PhaA were identified by gene knockout and complementation analysis. Unlike all known bacterial counterparts encoded by a single gene, the haloarchaeal PhaA that was involved in acetoacetyl-CoA generation, was composed of two different types of subunits (PhaAα and PhaAβ) and encoded by the cotranscribed HFX_1023 (phaAα) and HFX_1022 (phaAβ) genes. Similarly, the BktB that was involved in generation of acetoacetyl-CoA and 3-ketovaleryl-CoA, was also composed of two different types of subunits (BktBα and BktBβ) and encoded by cotranscribed HFX_6004 (bktBα) and HFX_6003 (bktBβ). BktBα and PhaAα were the catalytic subunits and determined substrate specificities of BktB and PhaA, respectively. Their catalytic triad “Ser-His-His” was distinct from the bacterial “Cys-His-Cys.” BktBβ and PhaAβ both contained an oligosaccharide-binding fold domain, which was essential for the β-ketothiolase activity. Interestingly, BktBβ and PhaAβ were functionally interchangeable, although PhaAβ preferred functioning with PhaAα. In addition, BktB showed biotechnological potential for the production of PHBV with the desired 3-hydroxyvalerate fraction in haloarchaea. This is the first report of the haloarchaeal type of PHBV-specific β-ketothiolases, which are distinct from their bacterial counterparts in both subunit composition and catalytic residues.
doi:10.1128/AEM.01370-13
PMCID: PMC3753943  PMID: 23793631

Results 1-25 (1772772)