PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1319140)

Clipboard (0)
None

Related Articles

1.  Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: http://www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis
Objective
The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa®) or erlotinib (Tarceva®) in patients with advanced non-small cell lung cancer (NSCLC).
Clinical Need: Target Population and Condition
With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer deaths in Ontario. Those with unresectable or advanced disease are commonly treated with concurrent chemoradiation or platinum-based combination chemotherapy. Although response rates to cytotoxic chemotherapy for advanced NSCLC are approximately 30 to 40%, all patients eventually develop resistance and have a median survival of only 8 to 10 months. Treatment for refractory or relapsed disease includes single-agent treatment with docetaxel, pemetrexed or EGFR-targeting TKIs (gefitinib, erlotinib). TKIs disrupt EGFR signaling by competing with adenosine triphosphate (ATP) for the binding sites at the tyrosine kinase (TK) domain, thus inhibiting the phosphorylation and activation of EGFRs and the downstream signaling network. Gefitinib and erlotinib have been shown to be either non-inferior or superior to chemotherapy in the first- or second-line setting (gefitinib), or superior to placebo in the second- or third-line setting (erlotinib).
Certain patient characteristics (adenocarcinoma, non-smoking history, Asian ethnicity, female gender) predict for better survival benefit and response to therapy with TKIs. In addition, the current body of evidence shows that somatic mutations in the EGFR gene are the most robust biomarkers for EGFR-targeting therapy selection. Drugs used in this therapy, however, can be costly, up to C$ 2000 to C$ 3000 per month, and they have only approximately a 10% chance of benefiting unselected patients. For these reasons, the predictive value of EGFR mutation testing for TKIs in patients with advanced NSCLC needs to be determined.
The Technology: EGFR mutation testing
The EGFR gene sequencing by polymerase chain reaction (PCR) assays is the most widely used method for EGFR mutation testing. PCR assays can be performed at pathology laboratories across Ontario. According to experts in the province, sequencing is not currently done in Ontario due to lack of adequate measurement sensitivity. A variety of new methods have been introduced to increase the measurement sensitivity of the mutation assay. Some technologies such as single-stranded conformational polymorphism, denaturing high-performance liquid chromatography, and high-resolution melting analysis have the advantage of facilitating rapid mutation screening of large numbers of samples with high measurement sensitivity but require direct sequencing to confirm the identity of the detected mutations. Other techniques have been developed for the simple, but highly sensitive detection of specific EGFR mutations, such as the amplification refractory mutations system (ARMS) and the peptide nucleic acid-locked PCR clamping. Others selectively digest wild-type DNA templates with restriction endonucleases to enrich mutant alleles by PCR. Experts in the province of Ontario have commented that currently PCR fragment analysis for deletion and point mutation conducts in Ontario, with measurement sensitivity of 1% to 5%.
Research Questions
In patients with locally-advanced or metastatic NSCLC, what is the clinical effectiveness of EGFR mutation testing for prediction of response to treatment with TKIs (gefitinib, erlotinib) in terms of progression-free survival (PFS), objective response rates (ORR), overall survival (OS), and quality of life (QoL)?
What is the impact of EGFR mutation testing on overall clinical decision-making for patients with advanced or metastatic NSCLC?
What is the cost-effectiveness of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the first-line setting?
What is the budget impact of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the second- or third-line setting?
Methods
A literature search was performed on March 9, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, Wiley Cochrane, CINAHL, Centre for Reviews and Dissemination/International Agency for Health Technology Assessment for studies published from January 1, 2004 until February 28, 2010 using the following terms:
Non-Small-Cell Lung Carcinoma
Epidermal Growth Factor Receptor
An automatic literature update program also extracted all papers published from February 2010 until August 2010. Abstracts were reviewed by a single reviewer and for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, and then a group of epidemiologists, until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
The inclusion criteria were as follows:
Population: patients with locally advanced or metastatic NSCLC (stage IIIB or IV)
Procedure: EGFR mutation testing before treatment with gefitinib or erlotinib
Language: publication in English
Published health technology assessments, guidelines, and peer-reviewed literature (abstracts, full text, conference abstract)
Outcomes: progression-free survival (PFS), Objective response rate (ORR), overall survival (OS), quality of life (QoL).
The exclusion criteria were as follows:
Studies lacking outcomes specific to those of interest
Studies focused on erlotinib maintenance therapy
Studies focused on gefitinib or erlotinib use in combination with cytotoxic agents or any other drug
Grey literature, where relevant, was also reviewed.
Outcomes of Interest
PFS
ORR determined by means of the Response Evaluation Criteria in Solid Tumours (RECIST)
OS
QoL
Quality of Evidence
The quality of the Phase II trials and observational studies was based on the method of subject recruitment and sampling, possibility of selection bias, and generalizability to the source population. The overall quality of evidence was assessed as high, moderate, low or very low according to the GRADE Working Group criteria.
Summary of Findings
Since the last published health technology assessment by Blue Cross Blue Shield Association in 2007 there have been a number of phase III trials which provide evidence of predictive value of EGFR mutation testing in patients who were treated with gefitinib compared to chemotherapy in the first- or second-line setting. The Iressa Pan Asian Study (IPASS) trial showed the superiority of gefitinib in terms of PFS in patients with EGFR mutations versus patients with wild-type EGFR (Hazard ratio [HR], 0.48, 95%CI; 0.36-0.64 versus HR, 2.85; 95%CI, 2.05-3.98). Moreover, there was a statistically significant increased ORR in patients who received gefitinib and had EGFR mutations compared to patients with wild-type EGFR (71% versus 1%). The First-SIGNAL trial in patients with similar clinical characteristics as IPASS as well as the NEJ002 and WJTOG3405 trials that included only patients with EGFR mutations, provide confirmation that gefitinib is superior to chemotherapy in terms of improved PFS or higher ORR in patients with EGFR mutations. The INTEREST trial further indicated that patients with EGFR mutations had prolonged PFS and higher ORR when treated with gefitinib compared with docetaxel.
In contrast, there is still a paucity of strong evidence regarding the predictive value of EGFR mutation testing for response to erlotinib in the second- or third-line setting. The BR.21 trial randomized 731 patients with NSCLC who were refractory or intolerant to prior first- or second-line chemotherapy to receive erlotinib or placebo. While the HR of 0.61 (95%CI, 0.51-0.74) favored erlotinib in the overall population, this was not a significant in the subsequent retrospective subgroup analysis. A retrospective evaluation of 116 of the BR.21 tumor samples demonstrated that patients with EGFR mutations had significantly higher ORRs when treated with erlotinib compared with placebo (27% versus 7%; P=0.03). However, erlotinib did not confer a significant survival benefit compared with placebo in patients with EGFR mutations (HR, 0.55; 95%CI, 0.25-1.19) versus wild-type (HR, 0.74; 95%CI, 0.52-1.05). The interaction between EGFR mutation status and erlotinib use was not significant (P=0.47). The lack of significance could be attributable to a type II error since there was a low sample size that was available for subgroup analysis.
A series of phase II studies have examined the clinical effectiveness of erlotinib in patients known to have EGFR mutations. Evidence from these studies has consistently shown that erlotinib yields a very high ORR (typically 70% vs. 4%) and a prolonged PFS (9 months vs. 2 months) in patients with EGFR mutations compared with patients with wild-type EGFR. Although having a prolonged PFS and higher respond in EGFR mutated patients might be due to a better prognostic profile regardless of the treatment received. In the absence of a comparative treatment or placebo control group, it is difficult to determine if the observed differences in survival benefit in patients with EGFR mutation is attributed to prognostic or predictive value of EGFR mutation status.
Conclusions
Based on moderate quality of evidence, patients with locally advanced or metastatic NSCLC with adenocarcinoma histology being treated with gefitinib in the first-line setting are highly likely to benefit from gefitinib if they have EGFR mutations compared to those with wild-type EGFR. This advantage is reflected in improved PFS, ORR and QoL in patients with EGFR mutation who are being treated with gefitinib relative to patients treated with chemotherapy.
Based on low quality of evidence, in patients with locally advanced or metastatic NSCLC who are being treated with erlotinib, the identification of EGFR mutation status selects those who are most likely to benefit from erlotinib relative to patients treated with placebo in the second or third-line setting.
PMCID: PMC3377519  PMID: 23074402
2.  BIM Mediates EGFR Tyrosine Kinase Inhibitor-Induced Apoptosis in Lung Cancers with Oncogenic EGFR Mutations  
PLoS Medicine  2007;4(10):e315.
Background
Epidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. However, the key proapoptotic proteins involved in TKI-induced cell death and other secondary mutations involved in resistance remain unclear. The objective of this study was to identify the mechanism of EGFR TKI-induced apoptosis and secondary resistant mutations that affect this process.
Methods and Findings
To study TKI-induced cell death and mechanisms of resistance, we used lung cancer cell lines (with or without EGFR mutations), Ba/F3 cells stably transfected with EGFR mutation constructs, and tumor samples from a gefitinib-resistant patient. Here we show that up-regulation of the BH3-only polypeptide BIM (also known as BCL2-like 11) correlated with gefitinib-induced apoptosis in gefitinib-sensitive EGFR-mutant lung cancer cells. The T790M mutation blocked gefitinib-induced up-regulation of BIM and apoptosis. This blockade was overcome by the irreversible TKI CL-387,785. Knockdown of BIM by small interfering RNA was able to attenuate apoptosis induced by EGFR TKIs. Furthermore, from a gefitinib-resistant patient carrying the activating L858R mutation, we identified a novel secondary resistant mutation, L747S in cis to the activating mutation, which attenuated the up-regulation of BIM and reduced apoptosis.
Conclusions
Our results provide evidence that BIM is involved in TKI-induced apoptosis in sensitive EGFR-mutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinib-induced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations. These findings also suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.
Susumu Kobayashi and colleagues provide evidence that the polypeptide BIM is involved in tyrosine kinase inhibitor (TKI)-induced apoptosis in sensitiveEGFR-mutant cells and suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.
Editors' Summary
Background.
Most cases of lung cancer—the leading cause of cancer deaths worldwide—are “non-small cell lung cancer” (NSCLC). Many patients with NSCLC die within a year of their diagnosis, but recently, “targeted” therapies have increased the life expectancy of some of them. Like all cancers, NSCLC occurs when cells begin to divide uncontrollably because of changes (mutations) in their genes. Targeted therapies specifically attack these changes and, unlike standard chemotherapy drugs, kill cancer cells without damaging normal cells. The targeted drugs used to treat NSCLC are gefitinib and erlotinib, two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). In normal cells, messenger proteins bind to EGFR and activate its tyrosine kinase, an enzyme that sticks phosphate groups on tyrosine (an amino acid) in other proteins. These “phosphorylated” proteins then tell the cell to divide. In some NSCLCs, EGFR drives uncontrolled cell division because its tyrosine kinase is mutated and the cancer becomes dependent on or “addicted” to EGFR signaling for its survival. TKI treatment can dramatically shrink this subset of NSCLCs, most of which lack a specific part of EGFR (the gene that encodes EGFR) or have the amino acid leucine instead of arginine at position 858 (an L858R mutation) of EGFR.
Why Was This Study Done?
TKI-sensitive NSCLCs eventually become resistant to TKIs because they acquire additional (secondary) mutations. In half of these TKI-resistant tumors, the additional mutation is replacement of threonine by methionine at position 790 (T790M) in EGFR. However, the mutations responsible for the remaining cases of TKI resistance are not known. In addition, little is known about how TKIs induce cell death other than that they induce a type of cell death called apoptosis. A better understanding of how TKIs kill tumor cells and how secondary mutations block their effects could reveal ways to enhance their action and improve the outcome for patients with NSCLC. In this study, the researchers have studied the mechanism of TKI-induced cell death and of resistance to TKIs.
What Did the Researchers Do and Find?
The researchers first measured the ability of gefitinib to cause apoptosis (genetically programmed cell death) in NSCLC cell lines (tumor cells adapted to grow indefinitely in dishes) that had the EGFR deletion, the L858R mutation, or normal EGFR. Gefitinib caused apoptosis only in cell lines with altered EGFR. Then they asked whether a proapoptotic protein called BIM (a member of the BCL2 family of pro- and antiapoptotic proteins) is involved in TKI-induced cell death—BIM is known to be involved in this process in leukemia (blood cancer) cells. Gefitinib treatment increased the expression of BIM in TKI-sensitive NSCLC cell lines and reduced the phosphorylation of BIM (which makes BIM more active). By contrast, blocking BIM expression using a technique called RNA interference reduced TKI-induced apoptosis in TKI-sensitive NSCLC cells. Furthermore, introduction of the T790M resistance mutation into these cells blocked gefitinib-induced up-regulation of BIM and apoptosis. Finally, the researchers identified a new TKI resistance mutation (L747S, substitution of serine for leucine at position 747) in a patient whose TKI-sensitive NSCLC had become resistant to gefitinib, and showed that this resistance mutation also reduced TKI-induced apoptosis in cells growing in dishes by interfering with BIM up-regulation.
What Do These Findings Mean?
These findings (and those reported by Gong et al. and Cragg et al.) show that BIM is required for TKI-induced apoptosis in EGFR mutant NSCLC cells. They also show that mutations that make TKI-sensitive cells resistant to these drugs reduce TKI-induced apoptosis by preventing the upregulation of BIM. These results were obtained by examining the behavior of established cell lines growing in dishes and need to be confirmed in cells freshly isolated from tumors and in tumors themselves. However, they suggest that the efficacy of TKIs could be increased by finding ways to increase BIM expression or to activate other proteins involved in apoptosis Such approaches might be particularly beneficial for patients with NSCLC whose initially TKI-sensitive tumors have acquired mutations that make them resistant to TKIs.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040315.
Ingo Mellinghoff discusses this paper and two related ones in a perspective article
US National Cancer Institute information for patients and professionals on lung cancer (in English and Spanish)
Information for patients from Cancer Research UK on lung cancer, including information on treatment with TKIs
CancerQuest information on all aspects of cancer from Emory University (in several languages)
Wikipedia pages on apoptosis, epidermal growth factor receptor, and BCL2 proteins (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Information for patients from Cancerbackup on erlotinib and gefitinib
doi:10.1371/journal.pmed.0040315
PMCID: PMC2043012  PMID: 17973572
3.  Polymorphisms, Mutations, and Amplification of the EGFR Gene in Non-Small Cell Lung Cancers 
PLoS Medicine  2007;4(4):e125.
Background
The epidermal growth factor receptor (EGFR) gene is the prototype member of the type I receptor tyrosine kinase (TK) family and plays a pivotal role in cell proliferation and differentiation. There are three well described polymorphisms that are associated with increased protein production in experimental systems: a polymorphic dinucleotide repeat (CA simple sequence repeat 1 [CA-SSR1]) in intron one (lower number of repeats) and two single nucleotide polymorphisms (SNPs) in the promoter region, −216 (G/T or T/T) and −191 (C/A or A/A). The objective of this study was to examine distributions of these three polymorphisms and their relationships to each other and to EGFR gene mutations and allelic imbalance (AI) in non-small cell lung cancers.
Methods and Findings
We examined the frequencies of the three polymorphisms of EGFR in 556 resected lung cancers and corresponding non-malignant lung tissues from 336 East Asians, 213 individuals of Northern European descent, and seven of other ethnicities. We also studied the EGFR gene in 93 corresponding non-malignant lung tissue samples from European-descent patients from Italy and in peripheral blood mononuclear cells from 250 normal healthy US individuals enrolled in epidemiological studies including individuals of European descent, African–Americans, and Mexican–Americans. We sequenced the four exons (18–21) of the TK domain known to harbor activating mutations in tumors and examined the status of the CA-SSR1 alleles (presence of heterozygosity, repeat number of the alleles, and relative amplification of one allele) and allele-specific amplification of mutant tumors as determined by a standardized semiautomated method of microsatellite analysis. Variant forms of SNP −216 (G/T or T/T) and SNP −191 (C/A or A/A) (associated with higher protein production in experimental systems) were less frequent in East Asians than in individuals of other ethnicities (p < 0.001). Both alleles of CA-SSR1 were significantly longer in East Asians than in individuals of other ethnicities (p < 0.001). Expression studies using bronchial epithelial cultures demonstrated a trend towards increased mRNA expression in cultures having the variant SNP −216 G/T or T/T genotypes. Monoallelic amplification of the CA-SSR1 locus was present in 30.6% of the informative cases and occurred more often in individuals of East Asian ethnicity. AI was present in 44.4% (95% confidence interval: 34.1%–54.7%) of mutant tumors compared with 25.9% (20.6%–31.2%) of wild-type tumors (p = 0.002). The shorter allele in tumors with AI in East Asian individuals was selectively amplified (shorter allele dominant) more often in mutant tumors (75.0%, 61.6%–88.4%) than in wild-type tumors (43.5%, 31.8%–55.2%, p = 0.003). In addition, there was a strong positive association between AI ratios of CA-SSR1 alleles and AI of mutant alleles.
Conclusions
The three polymorphisms associated with increased EGFR protein production (shorter CA-SSR1 length and variant forms of SNPs −216 and −191) were found to be rare in East Asians as compared to other ethnicities, suggesting that the cells of East Asians may make relatively less intrinsic EGFR protein. Interestingly, especially in tumors from patients of East Asian ethnicity, EGFR mutations were found to favor the shorter allele of CA-SSR1, and selective amplification of the shorter allele of CA-SSR1 occurred frequently in tumors harboring a mutation. These distinct molecular events targeting the same allele would both be predicted to result in greater EGFR protein production and/or activity. Our findings may help explain to some of the ethnic differences observed in mutational frequencies and responses to TK inhibitors.
Masaharu Nomura and colleagues examine the distribution ofEGFR polymorphisms in different populations and find differences that might explain different responses to tyrosine kinase inhibitors in lung cancer patients.
Editors' Summary
Background.
Most cases of lung cancer—the leading cause of cancer deaths worldwide—are “non-small cell lung cancer” (NSCLC), which has a very low cure rate. Recently, however, “targeted” therapies have brought new hope to patients with NSCLC. Like all cancers, NSCLC occurs when cells begin to divide uncontrollably because of changes (mutations) in their genetic material. Chemotherapy drugs treat cancer by killing these rapidly dividing cells, but, because some normal tissues are sensitive to these agents, it is hard to kill the cancer completely without causing serious side effects. Targeted therapies specifically attack the changes in cancer cells that allow them to divide uncontrollably, so it might be possible to kill the cancer cells selectively without damaging normal tissues. Epidermal growth factor receptor (EGRF) was one of the first molecules for which a targeted therapy was developed. In normal cells, messenger proteins bind to EGFR and activate its “tyrosine kinase,” an enzyme that sticks phosphate groups on tyrosine (an amino acid) in other proteins. These proteins then tell the cell to divide. Alterations to this signaling system drive the uncontrolled growth of some cancers, including NSCLC.
Why Was This Study Done?
Molecules that inhibit the tyrosine kinase activity of EGFR (for example, gefitinib) dramatically shrink some NSCLCs, particularly those in East Asian patients. Tumors shrunk by tyrosine kinase inhibitors (TKIs) often (but not always) have mutations in EGFR's tyrosine kinase. However, not all tumors with these mutations respond to TKIs, and other genetic changes—for example, amplification (multiple copies) of the EGFR gene—also affect tumor responses to TKIs. It would be useful to know which genetic changes predict these responses when planning treatments for NSCLC and to understand why the frequency of these changes varies between ethnic groups. In this study, the researchers have examined three polymorphisms—differences in DNA sequences that occur between individuals—in the EGFR gene in people with and without NSCLC. In addition, they have looked for associations between these polymorphisms, which are present in every cell of the body, and the EGFR gene mutations and allelic imbalances (genes occur in pairs but amplification or loss of one copy, or allele, often causes allelic imbalance in tumors) that occur in NSCLCs.
What Did the Researchers Do and Find?
The researchers measured how often three EGFR polymorphisms (the length of a repeat sequence called CA-SSR1, and two single nucleotide variations [SNPs])—all of which probably affect how much protein is made from the EGFR gene—occurred in normal tissue and NSCLC tissue from East Asians and individuals of European descent. They also looked for mutations in the EGFR tyrosine kinase and allelic imbalance in the tumors, and then determined which genetic variations and alterations tended to occur together in people with the same ethnicity. Among many associations, the researchers found that shorter alleles of CA-SSR1 and the minor forms of the two SNPs occurred less often in East Asians than in individuals of European descent. They also confirmed that EGFR kinase mutations were more common in NSCLCs in East Asians than in European-descent individuals. Furthermore, mutations occurred more often in tumors with allelic imbalance, and in tumors where there was allelic imbalance and an EGFR mutation, the mutant allele was amplified more often than the wild-type allele.
What Do These Findings Mean?
The researchers use these associations between gene variants and tumor-associated alterations to propose a model to explain the ethnic differences in mutational frequencies and responses to TKIs seen in NSCLC. They suggest that because of the polymorphisms in the EGFR gene commonly seen in East Asians, people from this ethnic group make less EGFR protein than people from other ethnic groups. This would explain why, if a threshold level of EGFR is needed to drive cells towards malignancy, East Asians have a high frequency of amplified EGFR tyrosine kinase mutations in their tumors—mutation followed by amplification would be needed to activate EGFR signaling. This model, though speculative, helps to explain some clinical findings, such as the frequency of EGFR mutations and of TKI sensitivity in NSCLCs in East Asians. Further studies of this type in different ethnic groups and in different tumors, as well as with other genes for which targeted therapies are available, should help oncologists provide personalized cancer therapies for their patients.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040125.
US National Cancer Institute information on lung cancer and on cancer treatment for patients and professionals
MedlinePlus encyclopedia entries on NSCLC
Cancer Research UK information for patients about all aspects of lung cancer, including treatment with TKIs
Wikipedia pages on lung cancer, EGFR, and gefitinib (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040125
PMCID: PMC1876407  PMID: 17455987
4.  Can EGFR-TKIs be used in first line treatment for advanced non-small cell lung cancer based on selection according to clinical factors ? -- A literature-based meta-analysis 
Background
In the first line treatment of non-small cell lung cancer (NSCLC), several clinical trials have shown that not all NSCLC patients can benefit from treatment with tyrosine kinase inhibitors (TKIs) than receiving chemotherapy. Some trials treated patients with TKI according to their clinical characteristics. A few studies only chose patients with an epidermal grouth factor receptor (EGFR) mutation for TKI therapy. We aimed to determine whether patients could be treated with TKIs based on clinical factors in the first-line setting.
Methods
We performed a meta-analysis of randomized trials involving patients with advanced NSCLC treated with chemotherapy or TKIs by different selections. Efficacy outcomes of interest were the objective response rate (ORR), progression-free survival (PFS) and the overall survival (OS) of each treatment arm.
Results
Four trials enrolled unselected patients, and two trials selected East Asian patients using the clinical factors of gender and smoking history. Five trials chose patients with an EGFR mutation who were randomized for treatment with TKI or chemotherapy. For unselected patients, the risk ratio (RR) of the ORR was 3.52, the hazard ratio (HR) of the PFS was 1.29 and the HR of the OS was 1.35. For the clinically selected patients, the RR of the ORR was 0.64. The HRs of the PFS and OS were 0.83 and 0.92, respectively. The ORR and PFS were better for TKIs than for chemotherapy in patients with an EGFR mutation. The ORR was 0.47, and the HRs of the PFS and OS were 0.36 and 1.00, respectively.
Conclusions
Advanced NSCLC patients with an EGFR mutation benefit most from TKIs. EGFR-TKI treatment is justified for patients with unknown EGFR status,and those who cannot tolerate chemotherapy owing to age, poor performance status (PS) or other medical conditions, when selected according to clinical factors in the first-line setting.
doi:10.1186/1756-8722-5-62
PMCID: PMC3507915  PMID: 23050865
Non-small cell lung cancer; Target therapy; Chemotherapy; Meta-analysis
5.  Peripheral Blood for Epidermal Growth Factor Receptor Mutation Detection in Non-Small Cell Lung Cancer Patients 
Translational Oncology  2014;7(3):341-348.
OBJECTIVE: It is important to analyze and track Epidermal Growth Factor Receptor (EGFR) mutation status for predicting efficacy and monitoring resistance throughout EGFR-tyrosine kinase inhibitors (TKIs) treatment in non-small cell lung cancer (NSCLC) patients. The objective of this study was to determine the feasibility and predictive utility of EGFR mutation detection in peripheral blood. METHODS: Plasma, serum and tumor tissue samples from 164 NSCLC patients were assessed for EGFR mutations using Amplification Refractory Mutation System (ARMS). RESULTS: Compared with matched tumor tissue, the concordance rate of EGFR mutation status in plasma and serum was 73.6% and 66.3%, respectively. ARMS for EGFR mutation detection in blood showed low sensitivity (plasma, 48.2%; serum, 39.6%) but high specificity (plasma, 95.4%; serum, 95.5%). Treated with EGFR-TKIs, patients with EGFR mutations in blood had significantly higher objective response rate (ORR) and insignificantly longer progression-free survival (PFS) than those without mutations (ORR: plasma, 68.4% versus 38.9%, P = 0.037; serum, 75.0% versus 39.5%, P = 0.017; PFS: plasma, 7.9 months versus 6.1 months, P = 0.953; serum, 7.9 months versus 5.7 months, P = 0.889). In patients with mutant tumors, those without EGFR mutations in blood tended to have prolonged PFS than patients with mutations (19.7 months versus 11.0 months, P = 0.102). CONCLUSIONS: EGFR mutations detected in blood may be highly predictive of identical mutations in corresponding tumor, as well as showing correlations with tumor response and survival benefit from EGFR-TKIs. Therefore, blood for EGFR mutation detection may allow NSCLC patients with unavailable or insufficient tumor tissue the opportunity to benefit from personalized treatment. However, due to the high false negative rate in blood samples, analysis for EGFR mutations in tumor tissue remains the gold standard.
doi:10.1016/j.tranon.2014.04.006
PMCID: PMC4145390  PMID: 25180058
6.  Assessment of Epidermal Growth Factor Receptor and K-Ras Mutation Status in Cytological Stained Smears of Non-Small Cell Lung Cancer Patients: Correlation with Clinical Outcomes 
The Oncologist  2011;16(6):877-885.
EGFR and K-ras mutation status was determined from tumor DNA extracted from cytological samples from non-small cell lung cancer patients, with results comparable with those from biopsy samples. Clinical outcomes of patients harboring mutations and their response to tyrosine kinase inhibitor therapy are also discussed.
Objective.
Epidermal growth factor receptor (EGFR) and K-ras mutations guide treatment selection in non-small cell lung cancer (NSCLC) patients. Although mutation status is routinely assessed in biopsies, cytological specimens are frequently the only samples available. We determined EGFR and K-ras mutations in cytological samples.
Methods.
DNA was extracted from 150 consecutive samples, including 120 Papanicolau smears (80%), 10 cell blocks (7%), nine fresh samples (6%), six ThinPrep® tests (4%), and five body cavity fluids (3.3%). Papanicolau smears were analyzed when they had >50% malignant cells. Polymerase chain reaction and direct sequencing of exons 18–21 of EGFR and exon 2 of K-ras were performed. EGFR mutations were simultaneously determined in biopsies and cytological samples from 20 patients. Activity of EGFR tyrosine kinase inhibitors (TKIs) was assessed.
Results.
The cytological diagnosis was adenocarcinoma in 110 samples (73%) and nonadenocarcinoma in 40 (27%) samples. EGFR mutations were identified in 26 samples (17%) and K-ras mutations were identified in 18 (12%) samples. EGFR and K-ras mutations were mutually exclusive. In EGFR-mutated cases, DNA was obtained from stained smears in 24 cases (92%), pleural fluid in one case (4%), and cell block in one case (4%). The response rate to EGFR TKIs in patients harboring mutations was 75%. The mutation status was identical in patients who had both biopsies and cytological samples analyzed.
Conclusion.
Assessment of EGFR and K-ras mutations in cytological samples is feasible and comparable with biopsy results, making individualized treatment selection possible for NSCLC patients from whom tumor biopsies are not available.
doi:10.1634/theoncologist.2010-0155
PMCID: PMC3228207  PMID: 21572125
Carcinoma; Non-small cell lung; Cytology; Papanicolau stained smears; Mutations; Epidermal growth factor receptor–neu receptor; Genes; Ras; Erlotinib; Gefitinib
7.  Induction of BIM Is Essential for Apoptosis Triggered by EGFR Kinase Inhibitors in Mutant EGFR-Dependent Lung Adenocarcinomas 
PLoS Medicine  2007;4(10):e294.
Background
Mutations in the epidermal growth factor receptor (EGFR) gene are associated with increased sensitivity of lung cancers to kinase inhibitors like erlotinib. Mechanisms of cell death that occur after kinase inhibition in these oncogene-dependent tumors have not been well delineated. We sought to improve understanding of this process in order to provide insight into mechanisms of sensitivity and/or resistance to tyrosine kinase inhibitors and to uncover new targets for therapy.
Methods and Findings
Using a panel of human lung cancer cell lines that harbor EGFR mutations and a variety of biochemical, molecular, and cellular techniques, we show that EGFR kinase inhibition in drug-sensitive cells provokes apoptosis via the intrinsic pathway of caspase activation. The process requires induction of the proapoptotic BH3-only BCL2 family member BIM (i.e., BCL2-like 11, or BCL2L11); erlotinib dramatically induces BIM levels in sensitive but not in resistant cell lines, and knockdown of BIM expression by RNA interference virtually eliminates drug-induced cell killing in vitro. BIM status is regulated at both transcriptional and posttranscriptional levels and is influenced by the extracellular signal-regulated kinase (ERK) signaling cascade downstream of EGFR. Consistent with these findings, lung tumors and xenografts from mice bearing mutant EGFR-dependent lung adenocarcinomas display increased concentrations of Bim after erlotinib treatment. Moreover, an inhibitor of antiapoptotic proteins, ABT-737, enhances erlotinib-induced cell death in vitro.
Conclusions
In drug-sensitive EGFR mutant lung cancer cells, induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors. This finding implies that the intrinsic pathway of caspase activation may influence sensitivity and/or resistance of EGFR mutant lung tumor cells to EGFR kinase inhibition. Manipulation of the intrinsic pathway could be a therapeutic strategy to enhance further the clinical outcomes of patients with EGFR mutant lung tumors.
Using a panel of human drug-sensitive EGFR mutant lung cancer cells, William Pao and colleagues show that induction of BIM, a member of the BCL2 family, is essential for apoptosis triggered by EGFR kinase inhibitors.
Editors' Summary
Background.
Lung cancer, a common type of cancer, has a very low cure rate. Like all cancers, it occurs when cells begin to divide uncontrollably because of changes (mutations) in their genes. Chemotherapy drugs kill these rapidly dividing cells but, because some normal tissues are sensitive to these agents, it is hard to destroy the cancer without causing serious side effects. Recently, “targeted” therapies have brought new hope to some patients with cancer. These therapies attack the changes in cancer cells that allow them to divide uncontrollably but leave normal cells unscathed. One of the first molecules for which a targeted therapy was developed was the epidermal growth factor receptor (EGFR). In normal cells, messenger proteins bind to EGFR and activate its “tyrosine kinase,” an enzyme that sticks phosphate groups on tyrosine (an amino acid) in other proteins. These proteins then tell the cell to divide. Alterations to this signaling system drive uncontrolled cell division in some cancers so blocking the EGFR signaling pathway should stop these cancers growing. Indeed, some lung cancers with mutations in the tyrosine kinase of EGFR shrink dramatically when treated with gefitinib or erlotinib, two tyrosine kinase inhibitors (TKIs).
Why Was This Study Done?
TKI-sensitive lung cancers shrink when treated with TKIs because of drug-induced cell death, but what are the molecular mechanisms underlying this death? A better understanding of how TKIs kill cancer cells might provide new insights into why not all cancer cells with mutations in EGFR (the gene from which EGFR is made) are sensitive to TKIs. It might also uncover new targets for therapy. TKIs do not completely kill lung cancers, but if the mechanism of TKI-induced cell death were understood, it might be possible to enhance their effects. In this study, the researchers have investigated how cell death occurs after kinase inhibition in a panel of human lung cancer cell lines (cells isolated from human tumors that grow indefinitely in dishes) that carry EGFR mutations.
What Did the Researchers Do and Find?
The researchers show, first, that erlotinib induces a type of cell death called apoptosis in erlotinib-sensitive cell lines but not in resistant cell lines. Apoptosis can be activated by two major pathways. In this instance, the researchers report, the so-called “intrinsic” pathway activates apoptosis. This pathway is stimulated by proapoptotic members of the BCL2 family of proteins and is blocked by antiapoptotic members, so the researchers examined the effect of erlotinib treatment on the expression of BCL2 family members in the EGFR mutant cell lines. Erlotinib treatment increased the expression of the proapoptotic protein BIM in sensitive but not in resistant cell lines. It also removed phosphate groups from BIM—dephosphorylated BIM is a more potent proapoptotic protein. Conversely, blocking BIM expression using a technique called RNA interference virtually eliminated the ability of erlotinib to kill EGFR mutant cell lines. The researchers also report that erlotinib treatment increased BIM expression in erlotinib-sensitive lung tumors growing in mice and that an inhibitor of the anti-apoptotic protein BCL2 enhanced erlotinib-induced death in drug-sensitive cells growing in dishes.
What Do These Findings Mean?
These findings indicate that BIM activity is essential for the apoptosis triggered by TKIs in drug-sensitive lung cancer cells that carry EGFR mutations, and that treatment of these cells with TKIs induces both the expression and dephosphorylation of BIM. The finding that the intrinsic pathway of apoptosis activation is involved in TKI-induced cell death suggests that changes in this pathway (possibly mutations in some of its components) might influence the sensitivity of EGFR mutant lung cancers to TKIs. Finally, these findings suggest that giving drugs that affect the intrinsic pathway of apoptosis activation at the same time as TKIs might further improve the clinical outcome for patients with EGFR mutant tumors. Such combinations will have to be tested in clinical trials before being used routinely.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040294.
US National Cancer Institute information for patients and professionals on lung cancer (in English and Spanish)
Information for patients from Cancer Research UK on lung cancer including information on treatment with TKIs
Wikipedia pages on apoptosis, epidermal growth factor receptor, and BCL-2 proteins (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Information for patients from Cancerbackup on erlotinib and gefitinib
doi:10.1371/journal.pmed.0040294
PMCID: PMC2001209  PMID: 17927446
8.  Quantification and Dynamic Monitoring of EGFR T790M in Plasma Cell-Free DNA by Digital PCR for Prognosis of EGFR-TKI Treatment in Advanced NSCLC 
PLoS ONE  2014;9(11):e110780.
Background
Among advanced non-small cell lung cancer (NSCLC) patients with an acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI), about 50% carry the T790M mutation, but this frequency in EGFR-TKI-naïve patients and dynamic change during therapy remains unclear. This study investigated the quantification and dynamic change of T790M mutation in plasma cell-free DNA (cf-DNA) of advanced NSCLC patients to assess the clinical outcomes of EGFR-TKI therapy.
Materials and Methods
We retrospectively investigated 135 patients with advanced NSCLC who obtained progression-free survival (PFS) after EGFR-TKI for >6 months for their EGFR sensitive mutations and T790M mutation in matched pre- and post-TKI plasma samples, using denaturing high-performance liquid chromatography (DHPLC), amplification refractory mutation system (ARMS), and digital-PCR (D-PCR). Real-time PCR was performed to measure c-MET amplification.
Results
Detection limit of D-PCR in assessing the T790M mutation was approximately 0.03%. D-PCR identified higher frequency of T790M than ARMS in pre-TKI (31.3% vs. 5.5%) and post-TKI (43.0% vs. 25.2%) plasma samples. Patients with pre-TKI T790M showed inferior PFS (8.9 vs. 12.1 months, p = 0.007) and overall survival (OS, 19.3 vs. 31.9 months, p = 0.001) compared with those without T790M. In patients harboring EGFR sensitive mutation, high quantities of pre-TKI T790M predicted poorer PFS (p = 0.001) on EGFR-TKI than low ones. Moreover, patients who experienced increased quantity of T790M during EGFR-TKI treatment showed superior PFS and OS compared with those with decreased changes (p = 0.044 and p = 0.015, respectively).
Conclusion
Qualitative and quantitative T790M in plasma cf-DNA by D-PCR provided a non-invasive and sensitive assay to predict EGFR-TKI prognosis.
doi:10.1371/journal.pone.0110780
PMCID: PMC4236040  PMID: 25405807
9.  Meta-Analysis of EGFR Tyrosine Kinase Inhibitors Compared with Chemotherapy as Second-Line Treatment in Pretreated Advanced Non-Small Cell Lung Cancer 
PLoS ONE  2014;9(7):e102777.
Background
Since efficacy and safety of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) versus chemotherapy in the treatment of patients with pretreated advanced non-small cell lung cancer (NSCLC) remain controversial, we performed a meta-analysis to compare them.
Methods
An internet search of several databases was performed, including PubMed, Embase, and the Cochrane database. Randomized trials that compared an EGFR-TKI with chemotherapy in the second-line setting were included. The outcomes were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and grade 3–4 toxicities. The PFS, OS for the EGFR mutation-positive (EGFR M+) and EGFR mutation-negative (EGFR M−) subgroups were pooled. The pooled hazard ratios (HRs) and odds ratios (ORs) with their corresponding confidence intervals (CIs) were calculated on the STATA software.
Results
Our meta-analysis combined 3,825 patients from 10 randomized trials. Overall, EGFR-TKIs and second-line chemotherapy have equivalent efficacy in terms of PFS (HR, 1.03; 95%CI, 0.87–1.21; P = 0.73; I2 = 78.7%, Pheterogeneity<0.001), OS (HR, 1.00; 95%CI, 0.92–1.08; P = 0.90; I2 = 0.0%, Pheterogeneity = 0.88), and ORR (OR, 1.34; 95%CI, 0.86–2.08; P = 0.20; I2 = 73.1%, Pheterogeneity<0.001). However, subgroup analysis based on EGFR mutation status showed that second-line chemotherapy significantly improved PFS (HR, 1.35; 95%CI, 1.09–1.66; P = 0.01; I2 = 55.7%, Pheterogeneity = 0.046) for EGFR M− patients, whereas OS was equal (HR, 0.96; 95%CI, 0.77–1.19; P = 0.69; I2 = 0.0%, Pheterogeneity = 0.43); EGFR-TKIs significantly improved PFS (HR, 0.28; 95%CI, 0.15–0.53; P<0.001; I2 = 4.1%, Pheterogeneity = 0.35) for EGFR M+ patients, whereas OS was equal (HR, 0.86; 95%CI, 0.44–1.68; P = 0.65; I2 = 0.0%, Pheterogeneity = 0.77). Compared with chemotherapy, EGFR-TKIs led to more grade 3–4 rash, but less fatigue/asthenia disorder, leukopenia and thrombocytopenia.
Conclusions
Our analysis suggests that chemotherapy in the second-line setting can prolong PFS in EGFR M− patients, whereas it has no impact on OS. EGFR-TKIs seem superior over chemotherapy as second-line therapy for EGFR M+ patients. Our findings support obtaining information on EGFR mutational status before initiation of second-line treatment.
doi:10.1371/journal.pone.0102777
PMCID: PMC4100920  PMID: 25029199
10.  Clinical investigation of EGFR mutation detection by pyrosequencing in lung cancer patients 
Oncology Letters  2012;5(1):271-276.
Direct sequencing is the standard method for the detection of epidermal growth factor receptor (EGFR) mutations in lung cancer, however, its relatively low sensitivity limits its clinical use. Pyrosequencing is a bioluminometric, real-time non-electrophoretic DNA sequencing technique with a number of advantages compared with direct sequencing, including higher sensitivity, speed, automation and cost-effectiveness. Clinical specimens from 202 lung cancer patients were analyzed for EGFR mutations in exons 18, 19, 20 and 21 using the pyrosequencing method following genomic DNA extraction from paraffin-embedded tissue specimens. All clinical data and tumor specimens were obtained from the Konkuk University Hospital (Korea) between July 2006 and December 2008. The results and clinical responses to EGFR-tyrosine kinase inhibitors (TKIs) were compared. Overall, EGFR mutation-positive rate was 26.7% (54/202). Activating EGFR mutations were observed more frequently in female (52.1 vs. 13.0%), non-smoking (47.8 vs. 15.8%) and adenocarcinoma (35.2 vs. 5.2%) patients. However, significant numbers of EGFR mutation-positive patients were identified as male, former or current smokers and non-adenocarcinoma patients. The combinations of favorable clinicopathological factors, including female, non-smoking and adenocarcinoma, were not identified to significantly increase the positive EGFR mutation rate (female, 52.1%; female and non-smoker, 52.6%; female, non-smoker and adenocarcinoma, 51.9%). The present findings indicate that EGFR mutation analysis is a highly useful method for the prediction of response to EGFR-TKI and the use of favorable clinicopathological factors to perform this analysis is not suitable. Exon 19 deletion was the most common mutation (63.6%) and exon 21 L858R substitution was measured at 32.7%. The exon 20 T790M mutation was identified in 1 patient prior to EGFR-TKI treatment. EGFR mutation status is associated with response to EGFR-TKI and the overall response rate in patients who have the activating EGFR mutation was 82.4 vs. 5.9% in patients with a wild-type EGFR. The present study demonstrates that EGFR mutations analyzed by the pyrosequencing method are well correlated with clinicopathological parameters and that this method may be useful in the clinical practice.
doi:10.3892/ol.2012.950
PMCID: PMC3525462  PMID: 23255934
EGFR mutation; pyrosequencing; lung cancer
11.  Comparison of different methods for detecting epidermal growth factor receptor mutations in peripheral blood and tumor tissue of non-small cell lung cancer as a predictor of response to gefitinib 
OncoTargets and therapy  2012;5:439-447.
Background
Previous studies have reported that epidermal growth factor receptor (EGFR) mutation in tumor tissue and peripheral blood can predict the response to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC). However, the heterogeneity of the sample sources makes it difficult to evaluate the detecting methodologies. The goal of this study is to compare different methods for analyzing EGFR mutation in blood and tumor tissue.
Materials and methods
Fifty-one advanced NSCLC patients treated with gefitinib were included in the study. The EGFR mutation status of each patients’ blood was analyzed by denaturing high-performance liquid chromatography (DHPLC), mutant-enriched liquidchip (ME-Liquidchip), and Scorpion Amplification Refractory Mutation System (Scorpion-ARMS) kits. EGFR mutation information in paired tumor samples detected by Scorpion-ARMS served as a reference. Comparative analyses were performed on mutation status results obtained from different methods and on the association between the clinical outcome of TKI treatment and EGFR mutation status.
Results
The response rate (RR) in the whole group was 33.3%. EGFR mutation rates were identified as 15.7%, 27.5%, and 29.4% by DHPLC, ME-Liquidchip, and Scorpion-ARMS in blood, respectively. In 34 cases that had paired tumor samples, the mutation rate in tissue was 41.2%. The RRs of patients with mutation detected by different methods were 71.4% (tumor), 62.5% (blood, DHPLC), 50.0% (blood, ME-Liquidchip), and 66.7% (blood, Scorpion-ARMS). EGFR mutation detected by Scorpion-ARMS in blood and tumor tissues had better prediction of RR to EGFR-TKI (P = 0.002 and P = 0.001) than mutation detected with DHPLC and ME-Liquidchip.
Conclusion
Tumor tissue sample is the best source for EGFR mutation analysis in NSCLC patients. Peripheral blood samples may be used as an alternative source only in special conditions. Scorpion-ARMS, DHPLC, or ME-Liquidchip methods are all optional for detecting tumor EGFR mutation from blood.
doi:10.2147/OTT.S37289
PMCID: PMC3525047  PMID: 23251095
non-small cell lung cancer; EGFR mutation; mutation detection methods; gefitinib
12.  Novel EGFR mutation specific antibodies for NSCLC: Immunohistochemistry as a possible screening method for EGFR mutations 
Background
Epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) predict better outcome to EGFR tyrosine kinase inhibitors (TKIs). The most common mutations are exon 19 deletions (most frequently E746-A750) and L858R point mutation in exon 21. Here, we evaluated the accuracy of novel EGFR mutation specific antibodies in a Japanese cohort with NSCLC and compared to direct DNA sequencing and clinical outcome.
Materials and methods
Immunohistochemistry (IHC) using antibodies specific for the E746-A750 and L858R mutations in EGFR was performed on tissue microarrays of tumors from 70 gefitinib treated NSCLC patients. Extracted DNA was sequenced for mutational analysis of EGFR exons 18 to 21.
Results
DNA sequencing showed EGFR mutations in 41 patients (58.6%), and exon 19 deletions in 18 patients (25.7%), 61% (11/18) had a deletion in the range of E746-A750) and 12 (17.1%) had exon 21 mutations (L858R). IHC showed, for the E746-A750 and L858R mutations, sensitivity (81.8% and 75%), specificity (100%, 96.6%), PPV (100%, 81.8%) and NPV (96.7%, 94.9%). Analysis for objective response rates (ORR) and survival were not correlated to IHC staining, although the combined staining showed non-significant trends towards better overall survival for patients with EGFR mutations.
Conclusions
The mutation specific IHC antibodies have high sensitivity and specificity for pre-defined EFGR mutations and may be suitable for screening for these pre-defined mutations. However, negative IHC results require further mutation analyses prior to excluding EGFR-targeted therapy.
doi:10.1097/JTO.0b013e3181e9da60
PMCID: PMC2946481  PMID: 20697298
EGFR; Biomarkers; Lung Cancer; NSCLC; Mutation
13.  BRIEF REPORT: Compound EGFR mutations and response to EGFR tyrosine kinase inhibitors 
INTRODUCTION
Non-small-cell lung cancers (NSCLCs) containing epidermal growth factor receptor (EGFR) mutations are exquisitely sensitive to EGFR tyrosine kinase inhibitors (TKIs). This is the case of the most common EGFR mutations affecting exon 18 (G719X), 19 (inframe deletions) and 21 (L858R and L861Q). However, the frequency of compound (i.e., double or complex) EGFR mutations - where an EGFR TKI sensitizing or other mutation is identified together with a mutation of unknown clinical significance – and their pattern of response/resistance to EGFR TKIs are less well described.
METHODS
We analyzed the EGFR mutation pattern of 79 cases of NSCLC harboring EGFR mutations, and compiled the genotype-response data for patients with NSCLCs with compound EGFR mutations treated with EGFR TKIs.
RESULTS
Out of the 79 EGFR mutated tumors identified, 11 (14%) had compound mutations. Most involved the EGFR TKI-sensitizing G719X (n=3, plus S768I or E709A), L858R (n=4, plus L747V, R776H, T790M or A871G), L861Q (n=1, plus E709V) and delL747_T751 (n=1, plus R776H). 8 patients received an EGFR TKI: 3 cases with G719X plus another mutation had partial responses (PR) to erlotinib; out of 3 cases with L858R plus another mutation, 2 displayed PRs and 1 (with EGFR-L858R+A871G) progressive disease to erlotinib; 1 NSCLC with EGFR-L861Q+E709A and 1 with delL747_T51+R776S had PRs to EGFR TKIs.
CONCLUSIONS
Compound EGFR mutations comprised 14% of all mutations identified during routine sequencing of exons 18–21 of EGFR in our cohort. Most patients with an EGFR TKI sensitizing mutation (G719X, exon 19 deletion, L858R and L861Q) in addition to an atypical mutation responded to EGFR TKIs. Reporting of the genotype-response pattern of NSCLCs with EGFR compound and other rare mutations, and the addition of this information to searchable databases will be helpful to select the appropriate therapy for EGFR mutated NSCLC.
doi:10.1097/JTO.0b013e3182781e35
PMCID: PMC3531043  PMID: 23242437
lung cancer; non-small-cell lung cancer; EGFR; EGFR mutation; erlotinib; gefitinib; tyrosine kinase inhibitor; L858R; L861Q; G719X; exon 19 deletion: compound; double; complex
14.  Including Total EGFR Staining in Scoring Improves EGFR Mutations Detection by Mutation-Specific Antibodies and EGFR TKIs Response Prediction 
PLoS ONE  2011;6(8):e23303.
Epidermal growth factor receptor (EGFR) is a novel target for therapy in subsets of non-small cell lung cancer, especially adenocarcinoma. Tumors with EGFR mutations showed good response to EGFR tyrosine kinase inhibitors (TKIs). We aimed to identify the discriminating capacity of immunohistochemical (IHC) scoring to detect L858R and E746-A750 deletion mutation in lung adenocarcinoma patients and predict EGFR TKIs response. Patients with surgically resected lung adenocarcinoma were enrolled. EGFR mutation status was genotyped by PCR and direct sequencing. Mutation-specific antibodies for L858R and E746-A750 deletion were used for IHC staining. Receiver operating characteristic (ROC) curves were used to determine the capacity of IHC, including intensity and/or quickscore (Q score), in differentiating L858R and E746-A750 deletion. We enrolled 143 patients during September 2000 to May 2009. Logistic-regression-model-based scoring containing both L858R Q score and total EGFR expression Q score was able to obtain a maximal area under the curve (AUC: 0.891) to differentiate the patients with L858R. Predictive model based on IHC Q score of E746-A750 deletion and IHC intensity of total EGFR expression reached an AUC of 0.969. The predictive model of L858R had a significantly higher AUC than L858R intensity only (p = 0.036). Of the six patients harboring complex EGFR mutations with classical mutation patterns, five had positive IHC staining. For EGFR TKI treated cancer recurrence patients, those with positive mutation-specific antibody IHC staining had better EGFR TKI response (p = 0.008) and longer progression-free survival (p = 0.012) than those without. In conclusion, total EGFR expression should be included in the IHC interpretation of L858R. After adjusting for total EGFR expression, the scoring method decreased the false positive rate and increased diagnostic power. According to the scoring method, the IHC method is useful to predict the clinical outcome and refine personalized therapy.
doi:10.1371/journal.pone.0023303
PMCID: PMC3153495  PMID: 21858063
15.  Alterations in EGFR and Related Genes following Neo-Adjuvant Chemotherapy in Chinese Patients with Non-Small Cell Lung Cancer 
PLoS ONE  2013;8(3):e51021.
Introduction
Genetic aberrancies within epidermal growth factor receptor (EGFR) pathway are associated with therapeutic outcomes of EGFR-tyrosine kinase inhibitors (TKIs) in advanced non-small cell lung cancer (NSCLC). However, the impact of chemotherapy on EGFR-related genes alterations has not been defined in NSCLC. Our study aims to investigate the impact of neoadjuvant chemotherapy (Neoadj-Chemo) on EGFR activating mutations and associated EGFR-TKIs resistance-related genes.
Patients and Methods
Matched tumor samples were obtained retrospectively from 66 NSCLC patients (stages IIb–IIIb) corresponding to pre- and post- Neoadj-Chemo. EGFR mutations were detected by denaturing high performance liquid chromatography (DHPLC) and confirmed by Amplification Refractory Mutation System technology (ARMS), KRAS mutations, T790M mutation and c-MET amplification were identified using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP), ARMS, and real-time PCR, respectively.
Results
Before Neoadj-Chemo, EGFR mutations were identified in 33.3% (22/66) of NSCLC patients. Only 18.2% (12/66) of patients carried EGFR mutations after Neoadj-Chemo (p = 0.013). The median peak value of EGFR 19 exon mutations decreased non-significantly after Neoadj-Chemo. KRAS mutation rate decreased from 4.6% (3/66) to 3.0% (2/66) with Neoadj-Chemo. Although the overall percentage of patients exhibiting c-MET amplifications (6.1% [4/66]) did not change with Neoadj-Chemo, two patients transitioned from negative to positive c-MET amplification, and two patients reversed these changes post-Neoadj-Chemo. T790M mutations were absent from all samples.
Conclusion
Neoadjuvant chemotherapy tends to decrease the mutation frequency of EGFR mutation and downstream genes, which suggests that real-time samples analysis for genetic aberrancies within EGFR pathways have important value to delineate specific patient populations and facilitate individualized treatment.
doi:10.1371/journal.pone.0051021
PMCID: PMC3592850  PMID: 23520442
16.  Gefitinib-Induced Killing of NSCLC Cell Lines Expressing Mutant EGFR Requires BIM and Can Be Enhanced by BH3 Mimetics 
PLoS Medicine  2007;4(10):e316.
Background
The epidermal growth factor receptor (EGFR) plays a critical role in the control of cellular proliferation, differentiation, and survival. Abnormalities in EGF-EGFR signaling, such as mutations that render the EGFR hyperactive or cause overexpression of the wild-type receptor, have been found in a broad range of cancers, including carcinomas of the lung, breast, and colon. EGFR inhibitors such as gefitinib have proven successful in the treatment of certain cancers, particularly non-small cell lung cancers (NSCLCs) harboring activating mutations within the EGFR gene, but the molecular mechanisms leading to tumor regression remain unknown. Therefore, we wished to delineate these mechanisms.
Methods and Findings
We performed biochemical and genetic studies to investigate the mechanisms by which inhibitors of EGFR tyrosine kinase activity, such as gefitinib, inhibit the growth of human NSCLCs. We found that gefitinib triggered intrinsic (also called “mitochondrial”) apoptosis signaling, involving the activation of BAX and mitochondrial release of cytochrome c, ultimately unleashing the caspase cascade. Gefitinib caused a rapid increase in the level of the proapoptotic BH3-only protein BIM (also called BCL2-like 11) through both transcriptional and post-translational mechanisms. Experiments with pharmacological inhibitors indicated that blockade of MEK–ERK1/2 (mitogen-activated protein kinase kinase–extracellular signal-regulated protein kinase 1/2) signaling, but not blockade of PI3K (phosphatidylinositol 3-kinase), JNK (c-Jun N-terminal kinase or mitogen-activated protein kinase 8), or AKT (protein kinase B), was critical for BIM activation. Using RNA interference, we demonstrated that BIM is essential for gefitinib-induced killing of NSCLC cells. Moreover, we found that gefitinib-induced apoptosis is enhanced by addition of the BH3 mimetic ABT-737.
Conclusions
Inhibitors of the EGFR tyrosine kinase have proven useful in the therapy of certain cancers, in particular NSCLCs possessing activating mutations in the EGFR kinase domain, but the mechanisms of tumor cell killing are still unclear. In this paper, we demonstrate that activation of the proapoptotic BH3-only protein BIM is essential for tumor cell killing and that shutdown of the EGFR–MEK–ERK signaling cascade is critical for BIM activation. Moreover, we demonstrate that addition of a BH3 mimetic significantly enhances killing of NSCLC cells by the EGFR tyrosine kinase inhibitor gefitinib. It appears likely that this approach represents a paradigm shared by many, and perhaps all, oncogenic tyrosine kinases and suggests a powerful new strategy for cancer therapy.
Andreas Strasser and colleagues demonstrate that activation of the proapoptotic BH3-only protein BIM is essential for tumor cell killing and that shutdown of the EGFR−MEK−ERK signaling cascade is critical for BIM activation.
Editors' Summary
Background.
Normally, cell division (which produces new cells) and cell death are finely balanced to keep the human body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—life-threatening, disorganized masses of cells. One protein with a critical role in cell division that is often mutated in tumors is the epidermal growth factor receptor (EGFR). In normal cells, protein messengers bind to EGFR and activate its tyrosine kinase. This enzyme then adds phosphate groups to tyrosine (an amino acid) in proteins that form part of signaling cascades (for example, the MEK–ERK signaling cascade) that tell the cell to divide. In cancers that have mutations in EGFR, signaling is overactive so the cancer cells divide much more than they should. Some non-small cell lung cancers (NSCLC, the commonest type of lung cancer), for example, have activating mutations within the EGFR tyrosine kinase. Treatment with EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib induces the cells in these tumors to stop growing and die. This cell death causes tumor shrinkage (regression) and increases the life expectancy of patients with this type of NSCLC.
Why Was This Study Done?
Unfortunately, treatment with TKIs rarely cures NSCLC, so it would be useful to find a way to augment the effect that TKIs have on cancer cells. To do this, the molecular mechanisms that cause cancer-cell death and tumor regression in response to these drugs need to be fully understood. In this study, the researchers have used a combination of biochemical and genetic approaches to investigate how gefitinib kills NSCLC cells with mutated EGFR.
What Did the Researchers Do and Find?
The researchers first measured the sensitivity of NSCLC cell lines (tumor cells that grow indefinitely in dishes) to gefitinib-induced apoptosis. Gefitinib caused extensive apoptosis in two cell lines expressing mutant EGFR but not in one expressing normal EGFR. Next, they investigated the mechanism of gefitinib-induced apoptosis in the most sensitive cell line (H3255). Apoptosis is activated via two major pathways. Hallmarks of the “intrinsic” pathway include activation of a protein called BAX and cytochrome c release from subcellular compartments known as mitochondria. Gefitinib treatment induced both these events in H3255 cells. BAX (a proapoptotic member of the BCL-2 family of proteins) is activated when proapoptotic BH3-only BCL-2 proteins (for example, BIM; “BH3-only” describes the structure of these proteins) bind to antiapoptotic BCL2 proteins. Gefitinib treatment rapidly increased BIM activity in H3255 and HCC827 cells (but not in gefitinib-resistant cells) by increasing the production of BIM protein and the removal of phosphate groups from it, which increases BIM activity. Pharmacological blockade of the MEK–ERK signaling cascade, but not of other EGFR signaling cascades, also caused the accumulation of BIM. By contrast, blocking BIM expression using a technique called RNA interference reduced gefitinib-induced apoptosis. Finally, a combination of gefitinib and a BH3-mimicking compound called ABT-737 (which, like BIM, binds to antiapoptotic BCL-2 proteins) caused more apoptosis than gefitinib alone.
What Do These Findings Mean?
These findings (and those reported by Gong et al. and Costa et al.) indicate that activation of the proapoptotic BH3-only protein BIM is essential for gefitinib-induced killing of NSCLC cells that carry EGFR tyrosine kinase mutations. They also show that inhibition of the EGFR–MEK–ERK signaling cascade by gefitinib is essential for BIM activation. Because these findings come from studies on NSCLC cell lines, they need confirming in freshly isolated tumor cells and in tumors growing in people. However, the demonstration that a compound that mimics BH3 action enhances gefitinib-induced killing of NSCLC cells suggests that combinations of TKIs and drugs that affect the intrinsic pathway of apoptosis activation might provide a powerful strategy for treating cancers in which tyrosine kinase mutations drive tumor growth.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040316.
A perspective by Ingo Mellinghoff discusses this article and two related research articles
Wikipedia pages on epidermal growth factor receptor, apoptosis, and BCL2 proteins (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
CancerQuest provides information on all aspects of cancer from Emory University (in several languages)
US National Cancer Institute information for patients and professionals on lung cancer (in English and Spanish)
Information for patients from Cancer Research UK on lung cancer including information on treatment with TKIs
Information for patients from Cancerbackup on erlotinib and gefitinib
doi:10.1371/journal.pmed.0040316
PMCID: PMC2043013  PMID: 17973573
17.  Carcinoembryonic antigen-related cell adhesion molecules as surrogate markers for EGFR inhibitor sensitivity in human lung adenocarcinoma 
British Journal of Cancer  2012;107(10):1745-1753.
Background:
Lung adenocarcinoma (LADCA) patients with epidermal growth factor receptor (EGFR) mutations are in general associated with relatively high clinical response rate to EGFR-tyrosine kinase inhibitors (TKIs) but not all responded to TKI. It has therefore become important to identify the additional surrogate markers regarding EGFR-TKI sensitivity.
Methods:
We first examined the effects of EGFR-TKIs, gefitinib and erlotinib, upon cell proliferation of lung adenocarcinoma cell lines. We then evaluated the gene profiles related to EGFR-TKI sensitivity using a microarray analysis. Results of microarray analysis led us to focus on carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, CEACAM 3, 5, 6, 7, and 19, as potential further surrogate markers of EGFR-TKI sensitivity. We then examined the correlation between the status of CEACAM 3, 5, 6, 7, and 19 immunoreactivity in LADCA and clinicopathological parameters of individual cases.
Results:
In the cases with EGFR mutations, the status of all CEACAMs examined was significantly higher than that in EGFR wild-type patients, but there were no significant differences in the status of CEACAMs between TKI responder and nonresponder among 22 patients who received gefitinib therapy. However, among 115 EGFR mutation-negative LADCA patients, both CEACAM6 and CEACAM3 were significantly associated with adverse clinical outcome (CEACAM6) and better clinical outcome (CEACAM3).
Conclusion:
CEACAMs examined in this study could be related to the presence of EGFR mutation in adenocarcinoma cells but not represent the effective surrogate marker of EGFR-TKI in LADCA patients. However, immunohistochemical evaluation of CEACAM3/6 in LADCA patients could provide important information on their clinical outcome.
doi:10.1038/bjc.2012.422
PMCID: PMC3493859  PMID: 23099808
carcinoembryonic antigen-related cell adhesion molecule; lung adenocarcinoma; epidermal growth factor receptor (EGFR); EGFR inhibitor; immunohistochemistry
18.  Prior EGFR tyrosine-kinase inhibitor therapy did not influence the efficacy of subsequent pemetrexed plus platinum in advanced chemonaïve patients with EGFR-mutant lung adenocarcinoma 
OncoTargets and therapy  2014;7:799-805.
Background
Tumor cells before and after epidermal growth-factor receptor (EGFR) tyrosine-kinase inhibitor (TKI) therapy might display different characteristics. The aim of this study was to evaluate the influence of prior EGFR TKI therapy on the efficacy of subsequent pemetrexed plus platinum (PP) in advanced chemonaïve patients with EGFR-mutant lung adenocarcinoma.
Materials and methods
Advanced chemonaïve patients with EGFR-mutant lung adenocarcinoma receiving PP as first-line chemotherapy were enrolled retrospectively in two medical centers of Taiwan. The objective of this study was to compare objective response rate (ORR), disease-control rates (DCR), progression-free survival (PFS), and overall survival (OS) of PP in patients with and without prior EGFR TKI therapy.
Results
In total, 105 patients were analyzed. Sixty-one patients (58.1%) had prior EGFR TKI therapy and used PP as second-line treatment. The other 44 patients (41.9%) received PP as first-line therapy. ORRs of PP in patients with and without prior EGFR TKI therapy were 24.6% and 38.6%, respectively (P=0.138). DCRs of the two groups were 62.3% and 65.9%, respectively (P=0.837). The median PFS (6.1 versus 6.1 months, P=0.639) and OS (34.4 versus 32.3 months, P=0.394) were comparable between the groups with and without prior EGFR TKI therapy. In a subgroup analysis of patients with prior EGFR TKI therapy, there was no significant association between the efficacy of first-line EGFR TKI and the outcome of subsequent PP therapy.
Conclusion
Our results suggested that prior EGFR TKI therapy would not influence the efficacy of subsequent PP therapy in advanced chemonaïve patients with EGFR-mutant lung adenocarcinoma.
doi:10.2147/OTT.S62639
PMCID: PMC4043805  PMID: 24920920
non-small-cell lung cancer; epidermal growth-factor receptor mutation; epidermal growth-factor receptor tyrosine-kinase inhibitor; pemetrexed
19.  Network Meta-Analysis of Erlotinib, Gefitinib, Afatinib and Icotinib in Patients with Advanced Non-Small-Cell Lung Cancer Harboring EGFR Mutations 
PLoS ONE  2014;9(2):e85245.
Background
Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons.
Methods
We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments.
Results
Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001) through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib.
Conclusions
The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed potentially better efficacy but significant higher toxicities compared with gefitinib and icotinib.
doi:10.1371/journal.pone.0085245
PMCID: PMC3922700  PMID: 24533047
20.  Impact of EGFR mutation status on tumor response and progression free survival after first-line chemotherapy in patients with advanced non-small-cell lung cancer: a meta-analysis 
Journal of Thoracic Disease  2014;6(9):1239-1250.
Objectives
Non-small-cell lung cancer (NSCLC) patients harboring sensitive epidermal growth factor receptor (EGFR) mutations derive greater benefits from EGFR-tyrosine kinase inhibitors (EGFR-TKIs) than those with wild type tumors. However, whether EGFR mutation status is associated with the efficacy of cytotoxic chemotherapy or prognosis in advanced NSCLC patients remained controversial. Thus, we sought to conduct a meta-analysis to answer this question.
Methods
Electronic databases were searched for eligible literatures. The primary outcomes were objective response rate (ORR) and 6-month progression-free survival (PFS) rate. The pooled odds ratio (OR) was calculated using random-effects model. Subgroup analyses stratified by study types, EGFR mutation detection methods, chemotherapy regimens, and patient origins were proposed.
Results
A total of 14 studies involving 1,772 advanced NSCLC patients with known EGFR mutation status who had received first-line chemotherapy were included. Patients with positive EGFR mutation had numerically higher ORR than wild type patients (36.2% vs. 30.1%) without significant differences (OR 1.24, 95% CI, 0.90 to 1.70; P=0.19). However, patients with EGFR mutants had significantly superior 6-month PFS rate than wild-type patients (58.6% vs. 47.2%; OR 1.88, 95% CI, 1.33 to 2.65; P=0.0003). Results of the subgroup analyses were concordant with the overall ones.
Conclusions
This comprehensive analysis revealed that advanced NSCLC patients with sensitivity EGFR mutation had higher 6-month PFS rate and potentially greater ORR compared with wild-type patients after first-line chemotherapy. It suggested that EGFR mutation status should be considered a significant factor for patient stratification in evaluating the efficacy of antitumor agents in addition to EGFR-TKIs.
doi:10.3978/j.issn.2072-1439.2014.07.33
PMCID: PMC4178107  PMID: 25276366
Non-small-cell lung cancer (NSCLC); epidermal growth factor receptor (EGFR) mutation; first-line chemotherapy; meta-analysis
21.  Plasma RANTES, IL-10, and IL-8 levels in non–small-cell lung cancer patients treated with EGFR-TKIs 
BMC Research Notes  2013;6:139.
Background
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), routinely used to treat advanced non-small-cell lung cancer (NSCLC) patients with activated EGFR mutations, are associated with excellent response and improved performance status. Recently, pro-inflammatory cytokines, such as regulated upon activation normal T cell expressed and secreted (RANTES), interleukin (IL)-10 and IL-8 have been proposed as mediators of cancer development. EGFR-TKIs have been found to affect this network of pro-inflammatory cytokines.
Methods
EGFR-TKIs (erlotinib, 150 mg/day; and gefitinib, 250 mg/day) were administered once per day. Treatment was continued until disease progressed or the patient developed intolerable symptoms of toxicity, or withdrew his/her consent for study participation. The treatment was a part of standard care. We investigated the correlation between plasma pro-inflammatory cytokines (including plasma RANTES, IL-10, and IL-8) levels and clinical outcomes following EGFR-TKI treatment in lung cancer patients. Pro-inflammatory cytokine levels were evaluated at diagnosis and on treatment day 30 after the first administration of EGFR-TKIs.
Results
Overall, 33 patients were enrolled. Plasma pro-inflammatory cytokine levels were determined for all patients at diagnosis. Plasma samples from 26 patients were obtained on treatment day 30. High level of RANTES at diagnosis was associated with severe general fatigue (P = .026). Low level of RANTES at diagnosis was significantly associated with long-term survival (P = .0032). Percent decrease change of IL-10 was associated with severity of rash (P = .037). The plasma IL-8 level on treatment day 30 (median, 5.48 pg/mL; range, 0.49–26.13 pg/mL) was significantly lower than the level at diagnosis (median 10.45 pg/mL; 3.04–54.86 pg/mL; P = .021).
Conclusions
These results suggest that EGFR-TKIs may suppress systemic inflammation and promote tumor shrinkage. The network of pro-inflammatory cytokines was affected by EGFR-TKI treatment for NSCLC. In addition, the clinical outcomes of EGFR-TKI treatment were influenced by the status of the plasma pro-inflammatory cytokines at diagnosis.
doi:10.1186/1756-0500-6-139
PMCID: PMC3637543  PMID: 23566546
NSCLC; EGFR-TKIs; RANTES; IL-8; IL-10
22.  Molecular predictors of response to tyrosine kinase inhibitors in patients with Non-Small-Cell Lung Cancer 
Introduction
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have become a treatment option in non-small-cell lung cancer (NSCLC) patients. However, despite their use in this disease, a significant number of patients will eventually develop resistance and relapse. In this study, we aimed to characterize several molecular events involved in potential resistance mechanisms to anti-EGFR treatment and correlate our findings with clinical outcome.
Material and methods
The medical records of patients with NSCLC who received anti-EGFR TKIs in any line within the participating centers were reviewed and available paraffin embedded tissue was retrieved. Mutational analysis for EGFR, KRAS, BRAF and intron-exon 14 deletions of MET; FISH analysis for chromosomal gain or amplification for EGFR, MET and the deletion marker D7S486 were performed. Furthermore, the expression of EGFR and MET were analysed by immunohistochemistry. All results were correlated with treatment outcomes.
Results
Between 10/2001 and 12/2009 from an initial cohort of 72 treated patients, 59 cases (28 gefitinib/ 31 erlotinib) were included in the analysis. The majority had adenocarcinoma histology (68%), and received treatment in the second line setting (56%). Disease control rate (DCR) was 25.4% for all patients. EGFR and RAS mutational rates were 33% and 10% respectively, no other mutations were identified. High EGFR expressing tumors were found in 7 of 45 cases and pEGFR positivity (IHC) was found in 56% of the cases; MET expression was found in 48% of tumors. EGFR gene amplification was found in 4 cases, two cases showed high polysomy; overall, 13% cases were FISH positive for EGFR. High polysomy of MET gene was detected in 1/43 cases tested. D7S486 locus deletion was detected in 15/37 (40%) of cases. EGFR mutational status and gene gain were both associated with more favorable DCR. No other associations between examined biomarkers and DCR or survival were noted.
Conclusions
EGFR mutational status is a predictor for disease control in patients with NSCLC treated with anti-EGFR TKIs. The predictive role of several other molecules involved in potential resistance to anti-EGFR TKIs is worthy of additional investigation.
doi:10.1186/1756-9966-31-77
PMCID: PMC3533816  PMID: 22992338
Predictive; Somatic mutation; EGFR; Gefitinib; Erlotinib; Response
23.  Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naïve patient: A report of three cases 
Oncology Letters  2013;7(2):357-360.
The purpose of the present study was to report cases of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-naïve patients carrying a mutation associated with acquired resistance to the drug. Gene alterations in 77 lung carcinoma patients were analyzed by collecting and studying curette lavage fluid at the time of diagnosis. PCRs were performed to amplify mutation hotspot regions in EGFR genes. The PCR products were direct-sequenced and the mutations confirmed by resequencing using different primers. Case 1 was a 78-year-old Japanese male diagnosed with stage IB lung adenocarcinoma who was found to have two EGFR mutations, G719S and L747S. Case 2 was a 73-year-old Japanese male diagnosed with stage IV squamous cell lung carcinoma and bone metastasis who had the EGFR mutation, L747S. Case 3 was an 82-year-old Japanese male diagnosed with hyponatremia due to inappropriate secretion of antidiuretic hormone and stage IIIB small cell lung carcinoma (SCLC) who had the EGFR mutation, L747S. Thus, the EGFR mutation L747S associated with acquired EGFR-TKI resistance was detected in two non-small cell lung carcinoma (NSCLC) patients and one SCLC patient, none of whom had ever received EGFR-TKI. The patients were current smokers with stages at diagnosis ranging from IB to IV, and their initial tumors contained resistant clones carrying L747S. L747S may be associated with primary resistance. To the best of our knowledge, this study is the first report of an EGFR mutation associated with resistance to EGFR-TKI in SCLC patients. The early detection of EGFR-TKI resistance mutations may be beneficial in making treatment decisions for lung carcinoma patients, including those with SCLC.
doi:10.3892/ol.2013.1705
PMCID: PMC3881940  PMID: 24396447
L747S; epidermal growth factor receptor-tyrosine kinase inhibitor resistance mutation; small cell lung carcinoma
24.  The relationship between tyrosine kinase inhibitor therapy and overall survival in patients with non-small cell lung cancer carrying EGFR mutations 
Chinese Journal of Cancer  2013;32(3):136-140.
For patients with epidermal growth factor receptor (EGFR) mutation-positive lung cancer, the relationship between the dose or duration of treatment with tyrosine kinase inhibitor (TKI) and overall survival remains unclear. Here, we analyzed clinical data of 39 patients who were diagnosed with EGFR mutation-positive non-small cell lung cancer and treated with TKI, but subsequently died. Several parameters were measured in this study: overall survival; first, second, and overall TKI therapy durations; first TKI intensity (actual dose/normal dose); and TKI rate (overall TKI therapy duration/overall survival). The response rate to TKI therapy was 50%, and the median survival was 553 days. After TKI therapy failed, 38.5% patients were re-challenged with TKI. We observed a moderate relationship [r = 0.534, 95% confidential interval (CI) = 0.263 to 0.727, P < 0.001] between overall TKI therapy duration and overall survival. However, we found no relationship between overall survival and first TKI intensity (r = 0.073, 95% CI = -0.380 to 0.247, P = 0.657) or TKI rate (r = 0.0345, 95% CI = -0.284 to 0.346, P = 0.835). Non-small cell lung cancer patients with mutation-positive tumors remained on TKI therapy for, on average, 33% of the overall survival time. These findings suggest that patients with EGFR mutation-positive tumors should not stick to using TKIs.
doi:10.5732/cjc.012.10160
PMCID: PMC3845597  PMID: 23237215
Tyrosine kinase inhibitor; gefitinib; erlotinib; non-small cell lung cancer; epidermal growth factor receptor mutation
25.  EGFR-TKI therapy for patients with brain metastases from non-small-cell lung cancer: a pooled analysis of published data 
OncoTargets and therapy  2014;7:2075-2084.
Introduction
Brain metastases are one of the leading causes of death from non-small-cell lung cancer (NSCLC). The use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) to treat brain metastases remains controversial. Thus, we performed a pooled analysis of published data to evaluate the efficacy of EGFR-TKIs in NSCLC patients with brain metastases, particularly for tumors with activating EGFR mutations.
Methods
Several data sources were searched, including PubMed, Web of Science, and ASCO Annual Meetings databases. The end points were intracranial overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and adverse events. The pooled ORR, DCR, PFS, and OS with 95% confidence intervals (CIs) were calculated employing fixed- or random-effect models, depending on the heterogeneity of the included studies.
Results
Sixteen published studies were included in this analysis, with a total of 464 enrolled patients. The EGFR mutational status was unknown for 362 (unselected group), and 102 had activating EGFR mutations. The pooled intracranial ORR and DCR were 51.8% (95% CI: 45.8%–57.8%) and 75.7% (95% CI: 70.3%–80.5%), respectively. A higher ORR was observed in the EGFR mutation group than in the unselected group (85.0% vs 45.1%); a similar trend was observed for the DCR (94.6% vs 71.3%). The pooled median PFS and OS were 7.4 months (95% CI, 4.9–9.9) and 11.9 months (95% CI, 7.7–16.2), respectively, with longer PFS (12.3 months vs 5.9 months) and OS (16.2 months vs 10.3 months) in the EGFR mutation group than in the unselected group.
Conclusion
This pooled analysis strongly suggests that EGFR-TKIs are an effective treatment for NSCLC patients with brain metastases, particularly in those patients harboring EGFR mutations. Larger prospective randomized clinical trials are warranted to confirm our conclusion and identify the most appropriate treatment model.
doi:10.2147/OTT.S67586
PMCID: PMC4234163  PMID: 25419145
NSCLC; brain metastases; epidermal growth factor receptor; tyrosine kinase inhibitors

Results 1-25 (1319140)