PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (614433)

Clipboard (0)
None

Related Articles

1.  A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem 
Biological Cybernetics  2011;104(3):209-223.
Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for intensity coding, nucleus angularis, and measured the time course of the recovery of excitatory postsynaptic currents following short-term synaptic depression. These synaptic responses showed a very rapid recovery, following a bi-exponential time course with a fast time constant of ~40 ms and a dependence on the presynaptic activity levels, resulting in a crossing over of the recovery trajectories following high-rate versus low-rate stimulation trains. We also show that the recorded recovery in the intensity pathway differs from similar recordings in the timing pathway, specifically the cochlear nucleus magnocellularis, in two ways: (1) a fast recovery that was not due to recovery from postsynaptic receptor desensitization and (2) a recovery trajectory that was characterized by a non-monotonic bump that may be due in part to facilitation mechanisms more prevalent in the intensity pathway. We tested whether a previously proposed model of synaptic transmission based on vesicle depletion and sequential steps of vesicle replenishment could account for the recovery responses, and found it was insufficient, suggesting an activity-dependent feedback mechanism is present. We propose that the rapid recovery following depression allows improved coding of natural auditory signals that often consist of sound bursts separated by short gaps.
doi:10.1007/s00422-011-0428-8
PMCID: PMC3257163  PMID: 21409439
Auditory nerve; Cochlear nucleus; Angularis; Magnocellularis; Short-term depression; Short-term facilitation; Vesicle cycling
2.  Connections of the Auditory Brainstem in a Songbird, Taeniopygia guttata. I. Projections of Nucleus Angularis and Nucleus Laminaris to the Auditory Torus 
The Journal of comparative neurology  2010;518(11):10.1002/cne.22334.
Auditory information is important for social and reproductive behaviors in birds generally, but is crucial for oscine species (songbirds), in particular because in these species auditory feedback ensures the learning and accurate maintenance of song. While there is considerable information on the auditory projections through the forebrain of songbirds, there is no information available for projections through the brainstem. At the latter levels the prevalent model of auditory processing in birds derives from an auditory specialist, the barn owl, which uses time and intensity parameters to compute the location of sounds in space, but whether the auditory brainstem of songbirds is similarly functionally organized is unknown. To examine the songbird auditory brainstem we charted the projections of the cochlear nuclei angularis (NA) and magnocellularis (NM) and the third-order nucleus laminaris (NL) in zebra finches using standard tract-tracing techniques. As in other avian species, the projections of NM were found to be confined to NL, and NL and NA provided the ascending projections. Here we report on differential projections of NA and NL to the torus semicircularis, known in birds as nucleus mesencephalicus lateralis, pars dorsalis (MLd), and in mammals as the central nucleus of the inferior colliculus (ICc). Unlike the case in nonsongbirds, the projections of NA and NL to MLd in the zebra finch showed substantial overlap, in agreement with the projections of the cochlear nuclei to the ICc in mammals. This organization could suggest that the “what” of auditory stimuli is as important as “where.”
doi:10.1002/cne.22334
PMCID: PMC3862038  PMID: 20394061
cochlear nuclei; central nucleus of inferior colliculus; MLd; zebra finch; avian
3.  Difference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls 
The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magnocellularis (NM). NA and NM receive input from bifurcating auditory nerve fibers and initiate processing pathways specialized in encoding interaural time (ITD) and level (ILD) differences, respectively. We found that NA neurons, though unable to accurately encode stimulus phase, lock more strongly to the stimulus envelope than NM units. The spectrotemporal receptive fields (STRFs) of NA neurons exhibit a pre-excitatory suppressive field. Using multilinear regression analysis and computational modeling, we show that this feature of STRFs can account for enhanced across-trial response reliability, by locking spikes to the stimulus envelope. Our findings indicate a dichotomy in envelope coding between the time and intensity processing pathways as early as at the level of the cochlear nuclei. This allows the ILD processing pathway to encode envelope information with greater fidelity than the ITD processing pathway. Furthermore, we demonstrate that the properties of the neurons’ STRFs can be quantitatively related to spike timing reliability.
doi:10.1523/JNEUROSCI.5422-10.2011
PMCID: PMC3059808  PMID: 21368035
Nucleus angularis; STRF; spectrotemporal tuning; cochlear nuclei; barn owl; response reliability
4.  Heterogeneous Calretinin Expression in the Avian Cochlear Nucleus Angularis 
Multiple calcium-binding proteins (CaBPs) are expressed at high levels and in complementary patterns in the auditory pathways of birds, mammals, and other vertebrates, but whether specific members of the CaBP family can be used to identify neuronal subpopulations is unclear. We used double immunofluorescence labeling of calretinin (CR) in combination with neuronal markers to investigate the distribution of CR-expressing neurons in brainstem sections of the cochlear nucleus in the chicken (Gallus gallus domesticus). While CR was homogeneously expressed in cochlear nucleus magnocellularis, CR expression was highly heterogeneous in cochlear nucleus angularis (NA), a nucleus with diverse cell types analogous in function to neurons in the mammalian ventral cochlear nucleus. To quantify the distribution of CR in the total NA cell population, we used antibodies against neuronal nuclear protein (NeuN), a postmitotic neuron-specific nuclear marker. In NA neurons, NeuN label was variably localized to the cell nucleus and the cytoplasm, and the intensity of NeuN immunoreactivity was inversely correlated with the intensity of CR immunoreactivity. The percentage of CR + neurons in NA increased from 31 % in embryonic (E)17/18 chicks, to 44 % around hatching (E21), to 51 % in postnatal day (P) 8 chicks. By P8, the distribution of CR + neurons was uniform, both rostrocaudal and in the tonotopic (dorsoventral) axis. Immunoreactivity for the voltage-gated potassium ion channel Kv1.1, used as a marker for physiological type, showed broad and heterogeneous postsynaptic expression in NA, but did not correlate with CR expression. These results suggest that CR may define a subpopulation of neurons within nucleus angularis.
Electronic supplementary material
The online version of this article (doi:10.1007/s10162-014-0453-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s10162-014-0453-0
PMCID: PMC4141438  PMID: 24752525
calretinin; NeuN; cochlear nucleus; avian; calcium binding protein; Kv1.1; potassium channel
5.  Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem 
Identification of shared features between avian and mammalian auditory brainstem circuits has provided much insight into the mechanisms underlying early auditory processing. However, previous studies have highlighted an apparent difference in inhibitory systems; synaptic inhibition is thought to be slow and GABAergic in birds, but to have fast kinetics and be predominantly glycinergic in mammals. Using patch-clamp recordings in chick brainstem slices, we found this distinction is not exclusively true. Consistent with previous work, inhibitory postsynaptic currents (IPSCs) in nucleus magnocellularis (NM) were slow and mediated by GABAA receptors. However, IPSCs in nucleus laminaris (NL) and a subset of neurons in nucleus angularis (NA) had rapid time courses two to three-fold faster than those in NM. Further, we found IPSCs in NA were mediated by both glycine and GABAA receptors, demonstrating for the first time a role for fast glycinergic transmission in the avian auditory brainstem. Although NM, NL and NA have unique roles in auditory processing, the majority of inhibitory input to each nucleus arises from the same source, ipsilateral superior olivary nucleus (SON). Our results demonstrate remarkable diversity of inhibitory transmission among the avian brainstem nuclei and suggest differential glycine and GABAA receptor activity tailors inhibition to the specific functional roles of NM, NL, and NA despite common SON input. We additionally observed that glycinergic/GABAergic activity in NA was usually depolarizing and could elicit spiking activity in NA neurons. Because NA projects to SON, these excitatory effects may influence the recruitment of inhibitory activity in the brainstem nuclei.
doi:10.1523/JNEUROSCI.0103-09.2009
PMCID: PMC2894706  PMID: 19641125
Auditory; GABA; Glycine; Patch Clamp; Inhibition; Synapse
6.  A Role for Short-Term Synaptic Facilitation and Depression in the Processing of Intensity Information in the Auditory Brain Stem 
Journal of Neurophysiology  2007;97(4):2863-2874.
The nature of the synaptic connection from the auditory nerve onto the cochlear nucleus neurons has a profound impact on how sound information is transmitted. Short-term synaptic plasticity, by dynamically modulating synaptic strength, filters information contained in the firing patterns. In the sound-localization circuits of the brain stem, the synapses of the timing pathway are characterized by strong short-term depression. We investigated the short-term synaptic plasticity of the inputs to the bird’s cochlear nucleus angularis (NA), which encodes intensity information, by using chick embryonic brain slices and trains of electrical stimulation. These excitatory inputs expressed a mixture of short-term facilitation and depression, unlike those in the timing nuclei that only depressed. Facilitation and depression at NA synapses were balanced such that postsynaptic response amplitude was often maintained throughout the train at high firing rates (>100 Hz). The steady-state input rate relationship of the balanced synapses linearly conveyed rate information and therefore transmits intensity information encoded as a rate code in the nerve. A quantitative model of synaptic transmission could account for the plasticity by including facilitation of release (with a time constant of ~40 ms), and a two-step recovery from depression (with one slow time constant of ~8 s, and one fast time constant of ~20 ms). A simulation using the model fit to NA synapses and auditory nerve spike trains from recordings in vivo confirmed that these synapses can convey intensity information contained in natural train inputs.
doi:10.1152/jn.01030.2006
PMCID: PMC3268177  PMID: 17251365
7.  Computational Diversity in the Cochlear Nucleus Angularis of the Barn Owl 
Journal of Neurophysiology  2002;89(4):2313-2329.
The cochlear nucleus angularis (NA) is widely assumed to form the starting point of a brain stem pathway for processing sound intensity in birds. Details of its function are unclear, however, and its evolutionary origin and relationship to the mammalian cochlear-nucleus complex are obscure. We have carried out extracellular single-unit recordings in the NA of ketamine-anesthetized barn owls. The aim was to re-evaluate the extent of heterogeneity in NA physiology because recent studies of cellular morphology had established several distinct types. Extensive characterization, using tuning curves, phase locking, peristimulus time histograms and rate-level functions for pure tones and noise, revealed five major response types. The most common one was a primary-like pattern that was distinguished from auditory-nerve fibers by showing lower vector strengths of phase locking and/or lower spontaneous rates. Two types of chopper responses were found (chopper-transient and a rare chopper-sustained), as well as onset units. Finally, we routinely encountered a complex response type with a pronounced inhibitory component, similar to the mammalian typeIV. Evidence is presented that this range of response types is representative for birds and that earlier conflicting reports may be due to methodological differences. All five response types defined were similar to well-known types in the mammalian cochlear nucleus. This suggests convergent evolution of neurons specialized for encoding different behaviorally relevant features of the auditory stimulus. It remains to be investigated whether the different response types correlate with morphological types and whether they establish different processing streams in the auditory brain stem of birds.
doi:10.1152/jn.00635.2002
PMCID: PMC3259745  PMID: 12612008
8.  GABAergic inhibition sharpens the frequency tuning and enhances phase locking in chicken nucleus magnocellularis neurons 
The Journal of Neuroscience  2010;30(36):12075-12083.
GABAergic modulation of activity in avian cochlear nucleus neurons has been studied extensively in vitro. However, how this modulation actually influences processing in vivo is not known. We investigated responses of chicken nucleus magnocellularis (NM) neurons to sound while pharmacologically manipulating the inhibitory input from the superior olivary nucleus (SON). SON receives excitatory inputs from nucleus angularis (NA) and nucleus laminaris (NL), and provides GABAergic inputs to NM, NA, NL, and putatively to the contralateral SON. Results from single unit extracellular recordings from 2–4 wks posthatch chickens show that firing rates of auditory nerve fibers (ANFs) increased monotonically with sound intensity, while that of NM neurons saturated or even decreased at moderate or loud sound levels. Blocking GABAergic input with local application of TTX into the SON induced an increase in firing rate of ipsilateral NM while that of the contralateral NM decreased at high sound levels. Moreover, local application of bicuculline to NM also increased the firing rate of NM neurons at high sound levels, reduced phase-locking, and broadened the frequency tuning properties of NM neurons. Following application of DNQX, clear evidence of inhibition was observed. Furthermore, the inhibition was tuned to a broader frequency range than the excitatory response areas. We conclude that GABAergic inhibition from SON has at least three physiological influences on the activity of NM neurons: it regulates the firing activity of NM units in a sound-level dependent manner; it improves phase selectivity; and it sharpens frequency tuning of NM neuronal responses.
doi:10.1523/JNEUROSCI.1484-10.2010
PMCID: PMC3376706  PMID: 20826670
Superior olivary nucleus; Cochlear nucleus; Bicuculline; GABA; Auditory; In vivo
9.  Three subdivisions of the auditory midbrain in chicks (Gallus gallus) identified by their afferent and commissural projections 
The Journal of comparative neurology  2010;518(8):1199-1219.
The auditory midbrain is a site of convergence of multiple auditory channels from the brainstem. In birds, two separate ascending channels have been identified, through which time and intensity information is sent to nucleus mesencephalicus lateralis, pars dorsalis (MLd), the homologue of the central nucleus of mammalian inferior colliculus. Using in vivo anterograde and retrograde tracing techniques, the current study provides two lines of anatomical evidence supporting the presence of a third ascending channel to the chick MLd. First, three non-overlapping zones of MLd receive inputs from three distinct cell groups in the caudodorsal brainstem. The projections from nucleus angularis (NA) and nucleus laminaris (NL) are predominately contralateral and may correspond to the time and intensity channels. A rostromedial portion of MLd receives bilateral projections mainly from the Regio Intermedius, an interposed region of cells lying at a caudal level between NL and NA, as well as scattered neurons embedded in 8th nerve tract, and probably a very ventral region of NA. Second, the bilateral zones of MLd on two sides of the brain are reciprocally connected and do not interact with other zones of MLd via commissural connections. In contrast, the NL-recipient zone projects contralaterally upon the NA-recipient zone. The structural separation of the third pathway from the NA and NL projections suggests a third information-processing channel, in parallel with the time and intensity channels. Neurons in the third channel appear to process very low frequency information including infrasound, probably utilizing different mechanisms than that underlying higher frequency processing.
doi:10.1002/cne.22269
PMCID: PMC2878180  PMID: 20148439
cochlear nuclei; MLd; inferior colliculus; parallel organization; infrasound
10.  Neuronal specializations for the processing of interaural difference cues in the chick 
Sound information is encoded as a series of spikes of the auditory nerve fibers (ANFs), and then transmitted to the brainstem auditory nuclei. Features such as timing and level are extracted from ANFs activity and further processed as the interaural time difference (ITD) and the interaural level difference (ILD), respectively. These two interaural difference cues are used for sound source localization by behaving animals. Both cues depend on the head size of animals and are extremely small, requiring specialized neural properties in order to process these cues with precision. Moreover, the sound level and timing cues are not processed independently from one another. Neurons in the nucleus angularis (NA) are specialized for coding sound level information in birds and the ILD is processed in the posterior part of the dorsal lateral lemniscus nucleus (LLDp). Processing of ILD is affected by the phase difference of binaural sound. Temporal features of sound are encoded in the pathway starting in nucleus magnocellularis (NM), and ITD is processed in the nucleus laminaris (NL). In this pathway a variety of specializations are found in synapse morphology, neuronal excitability, distribution of ion channels and receptors along the tonotopic axis, which reduces spike timing fluctuation in the ANFs-NM synapse, and imparts precise and stable ITD processing to the NL. Moreover, the contrast of ITD processing in NL is enhanced over a wide range of sound level through the activity of GABAergic inhibitory systems from both the superior olivary nucleus (SON) and local inhibitory neurons that follow monosynaptic to NM activity.
doi:10.3389/fncir.2014.00047
PMCID: PMC4023016  PMID: 24847212
brainstem auditory nucleus; interaural difference cues; SON; tonic inhibition; phasic inhibition
11.  Subdivisions of the Auditory Midbrain (N. Mesencephalicus Lateralis, pars dorsalis) in Zebra Finches Using Calcium-Binding Protein Immunocytochemistry 
PLoS ONE  2011;6(6):e20686.
The midbrain nucleus mesencephalicus lateralis pars dorsalis (MLd) is thought to be the avian homologue of the central nucleus of the mammalian inferior colliculus. As such, it is a major relay in the ascending auditory pathway of all birds and in songbirds mediates the auditory feedback necessary for the learning and maintenance of song. To clarify the organization of MLd, we applied three calcium binding protein antibodies to tissue sections from the brains of adult male and female zebra finches. The staining patterns resulting from the application of parvalbumin, calbindin and calretinin antibodies differed from each other and in different parts of the nucleus. Parvalbumin-like immunoreactivity was distributed throughout the whole nucleus, as defined by the totality of the terminations of brainstem auditory afferents; in other words parvalbumin-like immunoreactivity defines the boundaries of MLd. Staining patterns of parvalbumin, calbindin and calretinin defined two regions of MLd: inner (MLd.I) and outer (MLd.O). MLd.O largely surrounds MLd.I and is distinct from the surrounding intercollicular nucleus. Unlike the case in some non-songbirds, however, the two MLd regions do not correspond to the terminal zones of the projections of the brainstem auditory nuclei angularis and laminaris, which have been found to overlap substantially throughout the nucleus in zebra finches.
doi:10.1371/journal.pone.0020686
PMCID: PMC3119058  PMID: 21701681
12.  Alteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg 
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) radiation. The interplay among auditory processing, excitation and inhibitory molecule interactions plays a major role in auditory function. In particular, inhibitory molecules, such a glycine, are predominantly localized in the auditory brainstem. However, the effects of exposure to RF radiation on auditory function have not been reported to date. Thus, the aim of the present study was to investigate the effects of exposure to RF radiation on glycine receptor (GlyR) immunoreactivity (IR) in the auditory brainstem region at 835 MHz with a specific absorption rate of 4.0 W/kg for three months using free-floating immunohistochemistry. Compared with the sham control (SC) group, a significant loss of staining intensity of neuropils and cells in the different subdivisions of the auditory brainstem regions was observed in the mice exposed to RF radiation (E4 group). A decrease in the number of GlyR immunoreactive cells was also noted in the cochlear nuclear complex [anteroventral cochlear nucleus (AVCN), 31.09%; dorsal cochlear nucleus (DCN), 14.08%; posteroventral cochlear nucleus (PVCN), 32.79%] and the superior olivary complex (SOC) [lateral superior olivary nucleus (LSO), 36.85%; superior paraolivary nucleus (SPN), 24.33%, medial superior olivary nucleus (MSO), 23.23%; medial nucleus of the trapezoid body (MNTB), 10.15%] of the mice in the E4 group. Auditory brainstem response (ABR) analysis also revealed a significant threshold elevation of in the exposed (E4) group, which may be associated with auditory dysfunction. The present study suggests that the auditory brainstem region is susceptible to chronic exposure to RF radiation, which may affect the function of the central auditory system.
doi:10.3892/ijmm.2014.1784
PMCID: PMC4094587  PMID: 24866721
radiofrequency; glycine receptor; superior olivary complex; cochlear nuclear complex; nucleus of lateral lemniscus; inferior colliculus
13.  Resolution of interaural time differences in the avian sound localization circuit—a modeling study 
Interaural time differences (ITDs) are a main cue for sound localization and sound segregation. A dominant model to study ITD detection is the sound localization circuitry in the avian auditory brainstem. Neurons in nucleus laminaris (NL) receive auditory information from both ears via the avian cochlear nucleus magnocellularis (NM) and compare the relative timing of these inputs. Timing of these inputs is crucial, as ITDs in the microsecond range must be discriminated and encoded. We modeled ITD sensitivity of single NL neurons based on previously published data and determined the minimum resolvable ITD for neurons in NL. The minimum resolvable ITD is too large to allow for discrimination by single NL neurons of naturally occurring ITDs for very low frequencies. For high frequency NL neurons (>1 kHz) our calculated ITD resolutions fall well within the natural range of ITDs and approach values of below 10 μs. We show that different parts of the ITD tuning function offer different resolution in ITD coding, suggesting that information derived from both parts may be used for downstream processing. A place code may be used for sound location at frequencies above 500 Hz, but our data suggest the slope of the ITD tuning curve ought to be used for ITD discrimination by single NL neurons at the lowest frequencies. Our results provide an important measure of the necessary temporal window of binaural inputs for future studies on the mechanisms and development of neuronal computation of temporally precise information in this important system. In particular, our data establish the temporal precision needed for conduction time regulation along NM axons.
doi:10.3389/fncom.2014.00099
PMCID: PMC4143899  PMID: 25206329
sound localization; interaural time differences; avian brainstem; nucleus laminaris; ITD resolution
14.  Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber) 
PLoS ONE  2016;11(1):e0146428.
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
doi:10.1371/journal.pone.0146428
PMCID: PMC4711988  PMID: 26760498
15.  Mutation of Npr2 Leads to Blurred Tonotopic Organization of Central Auditory Circuits in Mice 
PLoS Genetics  2014;10(12):e1004823.
Tonotopy is a fundamental organizational feature of the auditory system. Sounds are encoded by the spatial and temporal patterns of electrical activity in spiral ganglion neurons (SGNs) and are transmitted via tonotopically ordered processes from the cochlea through the eighth nerve to the cochlear nuclei. Upon reaching the brainstem, SGN axons bifurcate in a stereotyped pattern, innervating target neurons in the anteroventral cochlear nucleus (aVCN) with one branch and in the posteroventral and dorsal cochlear nuclei (pVCN and DCN) with the other. Each branch is tonotopically organized, thereby distributing acoustic information systematically along multiple parallel pathways for processing in the brainstem. In mice with a mutation in the receptor guanylyl cyclase Npr2, this spatial organization is disrupted. Peripheral SGN processes appear normal, but central SGN processes fail to bifurcate and are disorganized as they exit the auditory nerve. Within the cochlear nuclei, the tonotopic organization of the SGN terminal arbors is blurred and the aVCN is underinnervated with a reduced convergence of SGN inputs onto target neurons. The tonotopy of circuitry within the cochlear nuclei is also degraded, as revealed by changes in the topographic mapping of tuberculoventral cell projections from DCN to VCN. Nonetheless, Npr2 mutant SGN axons are able to transmit acoustic information with normal sensitivity and timing, as revealed by auditory brainstem responses and electrophysiological recordings from VCN neurons. Although most features of signal transmission are normal, intermittent failures were observed in responses to trains of shocks, likely due to a failure in action potential conduction at branch points in Npr2 mutant afferent fibers. Our results show that Npr2 is necessary for the precise spatial organization typical of central auditory circuits, but that signals are still transmitted with normal timing, and that mutant mice can hear even with these deficits.
Author Summary
Millions of people suffer from debilitating hearing defects, ranging from a complete inability to detect sound to more subtle changes in how sounds are encoded by the nervous system. Many forms of deafness are due to mutations in genes that impair the development or function of hair cells, which are responsible for changing sound into electrical signals that can be processed by the brain. Both mice and humans carrying these mutations fail standard hearing tests. In contrast, very little is known about the genetic basis of central auditory processing disorders, which are poorly defined and difficult to diagnose, since these patients can still detect sounds. By finding genes that are required for the normal wiring of central auditory circuits in mice, we can investigate how changes at the circuit level affect circuit function and therefore improve our understanding of central auditory processing disorders. Here, we show that the natriuretic peptide receptor Npr2 is required to establish frequency maps in the mouse central auditory system. Surprisingly, despite a dramatic change in circuit organization, Npr2 mutant mice are still able to respond to sounds with normal sensitivity and timing, underscoring the need for better hearing diagnostic methods in mice as in humans.
doi:10.1371/journal.pgen.1004823
PMCID: PMC4256264  PMID: 25473838
16.  Connections of the Auditory Brainstem in a Songbird, Taeniopygia guttata. II. Projections of Nucleus Angularis and Nucleus Laminaris to the Superior Olive and Lateral Lemniscal Nuclei 
The Journal of comparative neurology  2010;518(11):10.1002/cne.22324.
Three nuclei of the lateral lemniscus are present in the zebra finch, ventral (LLV), intermediate (LLI), and dorsal (LLD). LLV is separate from the superior olive (OS): it lies closer to the spinal lemniscus and extends much further rostrally around the pontine periphery. LLI extends from a caudal position ventrolateral to the principal sensory trigeminal nucleus (LLIc) to a rostral position medial to the ventrolateral parabrachial nucleus (LLIr). LLD consists of posterior (LLDp) and anterior (LLDa) parts, which are largely coextensive rostrocaudally, although LLDa lies medial to LLDp. All nuclei are identifiable on the basis of cytochrome oxidase activity. The cochlear nucleus angularis (NA) and the third-order nucleus laminaris (NL) project on OS predominantly ipsilaterally, on LLV and LLI predominantly contralaterally, and on LLD contralaterally only. The NA projections are heavier than those of NL and differ from them primarily in their terminations within LLD: NA projects to LLDp, whereas NL projects to LLDa. In this the projections are similar to those in the barn owl (Takahashi and Konishi [1988] J Comp Neurol 274:212–238), in which time and intensity pathways remain separate as far as the central nucleus of the inferior colliculus (MLd). In contrast, in the zebra finch, although NA and NL projections remain separate within LLD, the projections of LLDa and LLDp become intermixed within MLd (Wild et al., J Comp Neurol, this issue), consistent with the intermixing of the direct NA and NL projections to MLd (Krützfeldt et al., J Comp Neurol, this issue). J. Comp. Neurol. 518:2135–2148, 2010.
doi:10.1002/cne.22324
PMCID: PMC3862037  PMID: 20394062
cochlear nuclei; dorsal; ventral, and intermediate nuclei of the lateral lemniscus; zebra finch; avian
17.  Assembly of the Auditory Circuitry by a Hox Genetic Network in the Mouse Brainstem 
PLoS Genetics  2013;9(2):e1003249.
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.
Author Summary
Sound perception and sound localization are controlled by two distinct circuits in the central nervous system. However, the cellular and molecular determinants underlying their development are poorly understood. Here, we show that a spatially restricted region of the brainstem, the rhombomere 4, and two members of the Hox gene family, Hoxb1 and Hoxb2, are directly implicated in the development of the circuit leading to sound perception and sound amplification. In the absence of Hoxb1 and Hoxb2 function, we found severe morphological defects in the hair cell population implicated in transducing the acoustic signal, leading ultimately to severe hearing impairments in adult mutant mice. In contrast, the expression in the cochlear nucleus of another Hox member, Hoxa2, regulates the guidance receptor Rig1 and contralateral connectivity in the sound localization circuit. Some of the auditory dysfunctions described in our mouse models resemble pathological hearing conditions in humans, in which patients have an elevated hearing threshold sensitivity, as recorded in audiograms. Thus, this study provides mechanistic insight into the genetic and functional regulation of Hox genes during development and assembly of the auditory system.
doi:10.1371/journal.pgen.1003249
PMCID: PMC3567144  PMID: 23408898
18.  Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse 
PLoS ONE  2014;9(7):e101630.
Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.
doi:10.1371/journal.pone.0101630
PMCID: PMC4081580  PMID: 24992362
19.  Connections of the Auditory Brainstem in a Songbird, Taeniopygia guttata. III. Projections of the Superior Olive and Lateral Lemniscal Nuclei 
The Journal of comparative neurology  2010;518(11):10.1002/cne.22325.
Sequential to companion articles that report the projections of the cochlear nucleus angularis (NA) and the third-order nucleus laminaris (NL) to the central nucleus of the inferior colliculus (MLd) and to the superior olive (OS) and lateral lemniscal nuclei (LLV, LLI, and LLD) (Krützfeldt et al., J Comp Neurol, this issue), we here describe the projections of the latter group of nuclei using standard tract-tracing methods. OS projects on LLV and both have further ascending projections on LLI, LLD, and MLd. LLV also provides auditory input to the song system, via nucleus uvaeformis, and to the thalamo-telencephalic auditory system, via nucleus ovoidalis (Ov), thus bypassing MLd. The two divisions of LLD (LLDa and LLDp) project across the midline via the commissure of Probst each to innervate the homologous contralateral nucleus and MLd. Both, particularly LLDp, also project on Ov. Injections in LLD and LLV resulted in anterograde labeling of caudal nucleus basorostralis (Bas) in the frontal telencephalon, but retrograde tracing so far suggests that only LLI is a real source of this projection (Wild and Farabaugh [1996] J Comp Neurol 365:306–328). OS and LLV also have descending projections on the ipsilateral NA, NM, and NL, and LLV also projects on OS. The ascending inputs to MLd and more rostral nuclei may contribute importantly to mechanisms of auditory pattern (song) recognition. Consistent with previous studies, some of the descending projections may be inhibitory.
doi:10.1002/cne.22325
PMCID: PMC3865895  PMID: 20394063
dorsal; ventral, and intermediate nuclei of the lateral lemniscus; zebra finch; avian
20.  Organization of the Auditory Brainstem in a Lizard, Gekko gecko. I. Auditory Nerve, Cochlear Nuclei, and Superior Olivary Nuclei 
The Journal of comparative neurology  2012;520(8):1784-1799.
We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low to middle best-frequency fibers that bifurcate to project to both the NA and the nucleus magnocellularis (NM). The projection to NM formed large somatic terminals and bouton terminals. NM projected bilaterally to the second-order nucleus laminaris (NL), such that the ipsilateral projection innervated the dorsal NL neuropil, whereas the contralateral projection crossed the midline and innervated the ventral dendrites of NL neurons. Neurons in NL were generally bitufted, with dorsoventrally oriented dendrites. NL projected to the contralateral torus semicircularis and to the contralateral ventral superior olive (SOv). NA projected to ipsilateral dorsal superior olive (SOd), sent a major projection to the contralateral SOv, and projected to torus semicircularis. The SOd projected to the contralateral SOv, which projected back to the ipsilateral NM, NL, and NA. These results suggest homologous patterns of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem.
doi:10.1002/cne.23013
PMCID: PMC4300985  PMID: 22120438
auditory nerve; ITD; cochlear nuclei; superior olive; reptile; lizard; tract tracing; Tokay gecko
21.  Auditory cortical responses in patients with cochlear implants 
Summary
Currently, the most commonly used electrophysiological tests for cochlear implant evaluation are Averaged Electrical Voltages (AEV), Electrical Advisory Brainstem Responses (EABR) and Neural Response Telemetry (NRT). The present paper focuses on the study of acoustic auditory cortical responses, or slow vertex responses, which are not widely used due to the difficulty in recording, especially in young children. Aims of this study were validation of slow vertex responses and their possible applications in monitoring postimplant results, particularly restoration of hearing and auditory maturation. In practice, the use of tone-bursts, also through hearing aids or cochlear implants, as in slow vertex responses, allows many more frequencies to be investigated and louder intensities to be reached than with other tests based on a click as stimulus. Study design focused on latencies of N1 and P2 slow vertex response peaks in cochlear implants. The study population comprised 45 implant recipients (aged 2 to 70 years), divided into 5 different homogeneous groups according to chronological age, age at onset of deafness, and age at implantation. For each subject, slow vertex responses and free-field auditory responses (PTAS) were recorded for tone-bursts at 500 and 2000 Hz before cochlear implant surgery (using hearing aid amplification) and during scheduled sessions at 3rd and 12th month after implant activation. Results showed that N1 and P2 latencies decreased in all groups starting from 3rd through 12th month after activation. Subjects implanted before school age or at least before age 8 yrs showed the widest latency changes. All subjects showed a reduction in the gap between subjective thresholds (obtained with free field auditory responses) and objective thresholds (obtained with slow vertex responses), obtained in presurgery stage and after cochlear implant. In conclusion, a natural evolution of neurophysiological cortical activities of the auditory pathway, over time, was found especially in young children with prelingual deafness and implanted in preschool age. Cochlear implantation appears to provide hearing restoration, demonstrated by the sharp reduction of the gap between subjective free field auditory responses and slow vertex responses threshold obtained with hearing aids vs. cochlear implant.
PMCID: PMC2639983  PMID: 16886849
Cochlear implant; Auditory cortical responses; Maturation
22.  Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy 
The Journal of Neuroscience  2016;36(13):3755-3764.
Evidence from animal and human studies suggests that moderate acoustic exposure, causing only transient threshold elevation, can nonetheless cause “hidden hearing loss” that interferes with coding of suprathreshold sound. Such noise exposure destroys synaptic connections between cochlear hair cells and auditory nerve fibers; however, there is no clinical test of this synaptopathy in humans. In animals, synaptopathy reduces the amplitude of auditory brainstem response (ABR) wave-I. Unfortunately, ABR wave-I is difficult to measure in humans, limiting its clinical use. Here, using analogous measurements in humans and mice, we show that the effect of masking noise on the latency of the more robust ABR wave-V mirrors changes in ABR wave-I amplitude. Furthermore, in our human cohort, the effect of noise on wave-V latency predicts perceptual temporal sensitivity. Our results suggest that measures of the effects of noise on ABR wave-V latency can be used to diagnose cochlear synaptopathy in humans.
SIGNIFICANCE STATEMENT Although there are suspicions that cochlear synaptopathy affects humans with normal hearing thresholds, no one has yet reported a clinical measure that is a reliable marker of such loss. By combining human and animal data, we demonstrate that the latency of auditory brainstem response wave-V in noise reflects auditory nerve loss. This is the first study of human listeners with normal hearing thresholds that links individual differences observed in behavior and auditory brainstem response timing to cochlear synaptopathy. These results can guide development of a clinical test to reveal this previously unknown form of noise-induced hearing loss in humans.
doi:10.1523/JNEUROSCI.4460-15.2016
PMCID: PMC4812134  PMID: 27030760
auditory brainstem response; auditory nerve loss; cochlear synaptopathy; hidden hearing loss; temporal coding
23.  A Non-canonical Pathway from Cochlea to Brain Signals Tissue-damaging Noise 
Current biology : CB  2015;25(5):606-612.
Summary
Intense noise damages the cochlear organ of Corti, particularly the outer hair cells (OHCs)[1], however this epithelium is not innervated by nociceptors of somatosensory ganglia, which detect damage elsewhere in the body. The only sensory neurons innervating the organ of Corti originate from the spiral ganglion, roughly 95% of which innervate exclusively inner hair cells (IHCs)[2-4]. Upon sound stimulation, IHCs release glutamate to activate AMPA-type receptors on these myelinated type-I neurons, which carry the neuronal signals to the cochlear nucleus. The remaining spiral ganglion cells (type-IIs) are unmyelinated and contact OHCs[2-4]. Their function is unknown. Using immunoreactivity to cFos, we documented neuronal activation in the brainstem of Vglut3−/− mice, in which the canonical auditory pathway (activation of type-I afferents by glutamate released from inner hair cells) is silenced[5, 6]. In these deaf mice, we found responses to noxious noise, that damages hair cells, but not to innocuous noise, in neurons of the cochlear nucleus, but not in the vestibular or trigeminal nuclei. This response originates in the cochlea and not in other areas also stimulated by intense noise (middle ear and vestibule) as it was absent in CD1 mice with selective cochlear degeneration but normal vestibular and somatosensory function. These data imply the existence of an alternative neuronal pathway from cochlea to brainstem that is activated by tissue-damaging noise and does not require glutamate release from IHCs. This detection of noise-induced tissue damage, possibly by type-II cochlear afferents, represents a novel form of sensation we term auditory nociception.
doi:10.1016/j.cub.2015.01.009
PMCID: PMC4348215  PMID: 25639244
24.  EphB signaling regulates target innervation in the developing and deafferented auditory brainstem 
Developmental neurobiology  2012;72(9):1243-1255.
Precision in auditory brainstem connectivity underlies sound localization. Cochlear activity is transmitted to the ventral cochlear nucleus (VCN) in the mammalian brainstem via the auditory nerve. VCN globular bushy cells project to the contralateral medial nucleus of the trapezoid body (MNTB), where specialized axons terminals, the calyces of Held, encapsulate MNTB principal neurons. The VCN-MNTB pathway is an essential component of the circuitry used to compute interaural intensity differences that are used for localizing sounds. When input from one ear is removed during early postnatal development, auditory brainstem circuitry displays robust anatomical plasticity. The molecular mechanisms that control the development of auditory brainstem circuitry and the developmental plasticity of these pathways are poorly understood. In this study we examined the role of EphB signaling in the development of the VCN-MNTB projection and in the reorganization of this pathway after unilateral deafferentation. We found that EphB2 and EphB3 reverse signaling are critical for the normal development of the projection from VCN to MNTB, but that successful circuit assembly most likely relies upon the coordinated function of many EphB proteins. We have also found that ephrin-B reverse signaling repels induced projections to the ipsilateral MNTB after unilateral deafferentation, suggesting that similar mechanisms regulate these two processes.
doi:10.1002/dneu.20990
PMCID: PMC3418463  PMID: 22021100
EphB; ephrin-B; VCN; MNTB; deafferentation
25.  Loss of Auditory Activity Modifies the Location of Potassium Channel KCNQ5 in Auditory Brainstem Neurons 
Journal of Neuroscience Research  2014;93(4):604-614.
KCNQ5/Kv7.5, a low-threshold noninactivating voltage-gated potassium channel, is preferentially targeted to excitatory endings of auditory neurons in the adult rat brainstem. Endbulds of Held from auditory nerve axons on the bushy cells of the ventral cochlear nucleus (VCN) and calyces of Held around the principal neurons in the medial nucleus of the trapezoid body (MNTB) are rich in KCNQ5 immunoreactivity. We have previously shown that this synaptic distribution occurs at about the time of hearing onset. The current study tests whether this localization in excitatory endings depends on the peripheral activity carried by the auditory nerve. Auditory nerve activity was abolished by cochlear removal or intracochlear injection of tetrodotoxin (TTX). Presence of KCNQ5 was analyzed by immunocytochemistry, Western blotting, and quantitative reverse transcription polymerase chain reaction. After cochlear removal, KCNQ5 immunoreactivity was virtually undetectable at its usual location in endbulbs and calyces of Held in the anteroventral CN and in the MNTB, respectively, although it was found in cell bodies in the VCN. The results were comparable after intracochlear TTX injection, which drastically reduced KCNQ5 immunostaining in MNTB calyces and increased immunolabeling in VCN cell bodies. Endbulbs of Held in the VCN also showed diminished KCNQ5 labeling after intracochlear TTX injection. These results show that peripheral activity from auditory nerve afferents is necessary to maintain the subcellular distribution of KCNQ5 in synaptic endings of the auditory brainstem. This may contribute to adaptations in the excitability and neurotransmitter release properties of these presynaptic endings under altered input conditions. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
doi:10.1002/jnr.23516
PMCID: PMC4359677  PMID: 25421809
auditory system; cochlear ablation; Kv7.5; rat; TTX

Results 1-25 (614433)