Search tips
Search criteria

Results 1-25 (672965)

Clipboard (0)

Related Articles

1.  Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities 
PLoS ONE  2011;6(12):e29293.
Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that belowground-aboveground linkages involving earthworms and AMF are important mediators of the diversity, structure and functioning of plant communities.
PMCID: PMC3247237  PMID: 22216236
2.  Isolate Identity Determines Plant Tolerance to Pathogen Attack in Assembled Mycorrhizal Communities 
PLoS ONE  2013;8(4):e61329.
Arbuscular mycorrhizal fungi (AMF) are widespread soil microorganisms that associate mutualistically with plant hosts. AMF receive photosynthates from the host in return for various benefits. One of such benefits is in the form of enhanced pathogen tolerance. However, this aspect of the symbiosis has been understudied compared to effects on plant growth and its ability to acquire nutrients. While it is known that increased AMF species richness positively correlates with plant productivity, the relationship between AMF diversity and host responses to pathogen attack remains obscure. The objective of this study was to test whether AMF isolates can differentially attenuate the deleterious effects of a root pathogen on plant growth, whether the richest assemblage of AMF isolates provides the most tolerance against the pathogen, and whether AMF-induced changes to root architecture serve as a mechanism for improved plant disease tolerance. In a growth chamber study, we exposed the plant oxeye daisy (Leucanthemum vulgare) to all combinations of three AMF isolates and to the plant root pathogen Rhizoctonia solani. We found that the pathogen caused an 81% reduction in shoot and a 70% reduction in root biomass. AMF significantly reduced the highly deleterious effect of the pathogen. Mycorrhizal plants infected with the pathogen produced 91% more dry shoot biomass and 72% more dry root biomass relative to plants solely infected with R. solani. AMF isolate identity was a better predictor of AMF-mediated host tolerance to the pathogen than AMF richness. However, the enhanced tolerance response did not result from AMF-mediated changes to root architecture. Our data indicate that AMF communities can play a major role in alleviating host pathogen attack but this depends primarily on the capacity of individual AMF isolates to provide this benefit.
PMCID: PMC3631226  PMID: 23620744
3.  Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species 
Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)—which all produce toxic cardenolides—with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.
PMCID: PMC3776932  PMID: 24065971
plant–herbivore interactions; mycorrhizal fungi; plant defense; above-below-ground interactions; growth-defense tradeoff; root defense; phylogenetic signal
4.  The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato 
Mycorrhiza  2013;23(7):543-550.
Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective effects of AMF resulting in the decrease on F. oxysporum f. sp. lycopersici disease severity and/or compensation of plant biomass does not depend on the degree of AM colonisation but more on the intercropping partner.
PMCID: PMC3778835  PMID: 23549903
AM fungi; Fusarium oxysporum f. sp. lycopersici; Intercropping; Solanum lycopersicum; Biological control
5.  Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi 
Mycorrhiza  2011;22(2):149-156.
Hypericum perforatum L. (St. John’s-wort, Hypericaceae) is a valuable medicinal plant species cultivated for pharmaceutical purposes. Although the chemical composition and pharmacological activities of H. perforatum have been well studied, no data are available concerning the influence of arbuscular mycorrhizal fungi (AMF) on this important herb. A laboratory experiment was therefore conducted in order to test three AMF inocula on H. perforatum with a view to show whether AMF could influence plant vitality (biomass and photosynthetic activity) and the production of the most valuable secondary metabolites, namely anthraquinone derivatives (hypericin and pseudohypericin) as well as the prenylated phloroglucinol—hyperforin. The following treatments were prepared: (1) control—sterile soil without AMF inoculation, (2) Rhizophagus intraradices (syn. Glomus intraradices), (3) Funneliformis mosseae (syn. Glomus mosseae), and (4) an AMF Mix which contained: Funneliformis constrictum (syn. Glomus constrictum), Funneliformis geosporum (syn. Glomus geosporum), F. mosseae, and R. intraradices. The application of R. intraradices inoculum resulted in the highest mycorrhizal colonization, whereas the lowest values of mycorrhizal parameters were detected in the AMF Mix. There were no statistically significant differences in H. perforatum shoot mass in any of the treatments. However, we found AMF species specificity in the stimulation of H. perforatum photosynthetic activity and the production of secondary metabolites. Inoculation with the AMF Mix resulted in higher photosynthetic performance index (PItotal) values in comparison to all the other treatments. The plants inoculated with R. intraradices and the AMF Mix were characterized by a higher concentration of hypericin and pseudohypericin in the shoots. However, no differences in the content of these metabolites were detected after the application of F. mosseae. In the case of hyperforin, no significant differences were found between the control plants and those inoculated with any of the AMF applied. The enhanced content of anthraquinone derivatives and, at the same time, better plant vitality suggest that the improved production of these metabolites was a result of the positive effect of the applied AMF strains on H. perforatum. This could be due to improved mineral nutrition or to AMF-induced changes in the phytohormonal balance. Our results are promising from the biotechnological point of view, i.e. the future inoculation of H. perforatum with AMF in order to improve the quality of medicinal plant raw material obtained from cultivation.
PMCID: PMC3261393  PMID: 21626142
AMF species specificity; Anthraquinone derivatives; Arbuscular mycorrhiza; Hyperforin; Photosynthetic performance index; St. John’s-wort
6.  Effect of Arbuscular Mycorrhizal Fungi on Plant Biomass and the Rhizosphere Microbial Community Structure of Mesquite Grown in Acidic Lead/Zinc Mine Tailings 
The Science of the total environment  2011;409(6):1009-1016.
Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p < 0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by AMF, or a combination of both mechanisms.
PMCID: PMC3030643  PMID: 21211826
Prosopis juliflora; phytostabilization; DGGE; mycorrhizal fungi; mine tailing
7.  Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis 
PLoS ONE  2012;7(3):e33977.
Soybean red crown rot is a major soil-borne disease all over the world, which severely affects soybean production. Efficient and sustainable methods are strongly desired to control the soil-borne diseases.
Principal Findings
We firstly investigated the disease incidence and index of soybean red crown rot under different phosphorus (P) additions in field and found that the natural inoculation of rhizobia and arbuscular mycorrhizal fungi (AMF) could affect soybean red crown rot, particularly without P addition. Further studies in sand culture experiments showed that inoculation with rhizobia or AMF significantly decreased severity and incidence of soybean red crown rot, especially for co-inoculation with rhizobia and AMF at low P. The root colony forming unit (CFU) decreased over 50% when inoculated by rhizobia and/or AMF at low P. However, P addition only enhanced CFU when inoculated with AMF. Furthermore, root exudates of soybean inoculated with rhizobia and/or AMF significantly inhibited pathogen growth and reproduction. Quantitative RT-PCR results indicated that the transcripts of the most tested pathogen defense-related (PR) genes in roots were significantly increased by rhizobium and/or AMF inoculation. Among them, PR2, PR3, PR4 and PR10 reached the highest level with co-inoculation of rhizobium and AMF.
Our results indicated that inoculation with rhizobia and AMF could directly inhibit pathogen growth and reproduction, and activate the plant overall defense system through increasing PR gene expressions. Combined with optimal P fertilization, inoculation with rhizobia and AMF could be considered as an efficient method to control soybean red crown rot in acid soils.
PMCID: PMC3307780  PMID: 22442737
8.  Grassland invaders and their mycorrhizal symbionts: a study across climate and invasion gradients 
Ecology and Evolution  2014;4(6):794-805.
Controlled experiments show that arbuscular mycorrhizal fungi (AMF) can increase competitiveness of exotic plants, potentially increasing invasion success. We surveyed AMF abundance and community composition in Centaurea stoebe and Potentilla recta invasions in the western USA to assess whether patterns were consistent with mycorrhizal-mediated invasions. We asked whether (1) AMF abundance and community composition differ between native and exotic forbs, (2) associations between native plants and AMF shift with invading exotic plants, and (3) AMF abundance and/or community composition differ in areas where exotic plants are highly invasive and in areas where they are not. We collected soil and roots from invaded and native forb communities along invasion gradients and in regions with different invasion densities. We used AMF root colonization as a measure of AMF abundance and characterized AMF communities in roots using 454-sequencing of the LSU-rDNA region. All plants were highly colonized (>60%), but exotic forbs tended to be more colonized than natives (P < 0.001). We identified 30 AMF operational taxonomic units (OTUs) across sites, and community composition was best predicted by abiotic factors (soil texture, pH). Two OTUs in the genera Glomus and Rhizophagus dominated in most communities, and their dominance increased with invasion density (r = 0.57, P = 0.010), while overall OTU richness decreased with invasion density (r = −0.61, P = 0.006). Samples along P. recta invasion gradients revealed small and reciprocal shifts in AMF communities with >45% fungal OTUs shared between neighboring native and P. recta plants. Overall, we observed significant, but modest, differences in AMF colonization and communities between co-occurring exotic and native forbs and among exotic forbs across regions that differ in invasion pressure. While experimental manipulations are required to assess functional consequences, the observed patterns are not consistent with those expected from strong mycorrhizal-mediated invasions.
PMCID: PMC3967904  PMID: 24683461
454-sequencing; arbuscular mycorrhizal fungi; Centaurea stoebe; community structure; plant invasion; plant–soil interactions; Potentilla recta
9.  Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence 
The ISME Journal  2013;7(11):2137-2146.
Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, and more specifically their relatedness, influences plant growth and AMF coexistence. Relatedness is expected to influence coexistence between individuals, and it has been suggested that decreasing ability of symbionts to coexist can have negative effects on the growth of the host. We tested the effect of a gradient of AMF genetic relatedness on the growth of two plant species. Increasing relatedness between AMFs lead to markedly greater plant growth (27% biomass increase with closely related compared to distantly related AMF). In one plant species, closely related AMF coexisted in fairly equal proportions but decreasing relatedness lead to a very strong disequilibrium between AMF in roots, indicating much stronger competition. Given the strength of the effects with such a shallow relatedness gradient and the fact that in the field plants are exposed to a steeper gradient, we consider that AMF relatedness can have a strong role in plant growth and the ability of AMF to coexist. We conclude that AMF relatedness is a driver of plant growth and that relatedness is also a strong driver of intraspecific coexistence of these ecologically important symbionts.
PMCID: PMC3806264  PMID: 23823490
Rhizophagus irregularis; intraspecific competition; coexistence; symbiosis; mycorrhiza
10.  The Influence of Rhizobium and Arbuscular Mycorrhizal Fungi on Nitrogen and Phosphorus Accumulation by Vicia faba 
Annals of Botany  2004;94(2):251-258.
• Background and Aims The aim of this study was to investigate the effects of the interactions between the microbial symbionts, Rhizobium and arbuscular mycorrhizal fungi (AMF) on N and P accumulation by broad bean (Vicia faba) and how increased N and P content influence biomass production, leaf area and net photosynthetic rate.
• Methods A multi-factorial experiment consisting of four different legume–microbial symbiotic associations and two nitrogen treatments was used to investigate the influence of the different microbial symbiotic associations on P accumulation, total N accumulation, biomass, leaf area and net photosynthesis in broad bean grown under low P conditions.
• Key Results AMF promoted biomass production and photosynthetic rates by increasing the ratio of P to N accumulation. An increase in P was consistently associated with an increase in N accumulation and N productivity, expressed in terms of biomass and leaf area. Photosynthetic N use efficiency, irrespective of the inorganic source of N (e.g. NO3− or N2), was enhanced by increased P supply due to AMF. The presence of Rhizobium resulted in a significant decline in AMF colonization levels irrespective of N supply. Without Rhizobium, AMF colonization levels were higher in low N treatments. Presence or absence of AMF did not have a significant effect on nodule mass but high N with or without AMF led to a significant decline in nodule biomass. Plants with the Rhizobium and AMF symbiotic associations had higher photosynthetic rates per unit leaf area.
• Conclusions The results indicated that the synergistic or additive interactions among the components of the tripartite symbiotic association (Rhizobium–AMF–broad bean) increased plant productivity.
PMCID: PMC4242160  PMID: 15205177
Arbuscular mycorrhizal fungi (AMF); nitrogen; phosphorus; Rhizobium; Vicia faba
11.  Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure 
Microbes and Environments  2013;28(3):316-324.
Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots.
PMCID: PMC4070969  PMID: 23719585
arbuscular mycorrhizal fungi; compost application; cultivation systems; Oryza sativa; terminal restriction fragment length polymorphism (T-RFLP)
12.  Arbuscular mycorrhizal fungi reduce effects of physiological integration in Trifolium repens 
Annals of Botany  2009;104(2):335-344.
Background and Aims
One of the special properties of clonal plants is the capacity for physiological integration, which can increase plant performance through mechanisms such as resource sharing and co-ordinated phenotypic plasticity when plants grow in microsites with contrasting resource availabilities. However, many clonal plants are colonized by arbuscular mycorrhizal fungi (AMF). Since AMF are likely to reduce contrasts in effective resource levels, they could also reduce these effects of clonal integration on plasticity and performance in heterogeneous environments.
To test this hypothesis, pairs of connected and disconnected ramets of the stoloniferous herb Trifolium repens were grown. One ramet in a pair was given high light and low nutrients while the other ramet was given high nutrients and low light. The pairs were inoculated with zero, one or five species of AMF.
Key Results
Pairs of ramets grown without AMF developed division of labour and benefited from resource sharing, as indicated by effects of connection on allocation to roots, accumulation of mass, and ramet production. Inoculation with five species of AMF significantly reduced these effects of connection, both by inhibiting them in ramets given high nutrients and inducing them in ramets given high light. Inoculation with one species of AMF also reduced some effects of connection, but generally to a lesser degree.
The results show that AMF can significantly modify the effects of clonal integration on the plasticity and performance of clonal plants in heterogeneous environments. In particular, AMF may partly replace the effects and benefits of clonal integration in low-nutrient habitats, possibly more so where species richness of AMF is high. This provides the first test of interaction between colonization by AMF and physiological integration in a clonal plant, and a new example of how biotic and abiotic factors could interact to determine the ecological importance of clonal growth.
PMCID: PMC2710896  PMID: 19493856
Arbuscular mycorrhizal fungi; biomass allocation; clonal plant; division of labour; environmental heterogeneity; light availability; nutrients; white clover
13.  Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils 
Arbuscular mycorrhizal fungi (AMF) form a mutually beneficial symbiosis with plant roots providing predominantly phosphorus in the form of orthophosphate (Pi) in exchange for plant carbohydrates on low P soils. The goal of this work was to generate molecular-genetic evidence in support of a major impact of the mycorrhizal Pi uptake (MPU) pathway on the productivity of the major crop plant maize under field and controlled conditions. Here we show, that a loss-of-function mutation in the mycorrhiza-specific Pi transporter gene Pht1;6 correlates with a dramatic reduction of above-ground biomass and cob production in agro-ecosystems with low P soils. In parallel mutant pht1;6 plants exhibited an altered fingerprint of chemical elements in shoots dependent on soil P availability. In controlled environments mycorrhiza development was impaired in mutant plants when grown alone. The presence of neighboring mycorrhizal nurse plants enhanced the reduced mycorrhiza formation in pht1;6 roots. Uptake of 33P-labeled orthophosphate via the MPU pathway was strongly impaired in colonized mutant plants. Moreover, repression of the MPU pathway resulted in a redirection of Pi to neighboring plants. In line with previous results, our data highlight the relevance of the MPU pathway in Pi allocation within plant communities and in particular the role of Pht1;6 for the establishment of symbiotic Pi uptake and for maize productivity and nutritional value in low-input agricultural systems. In a first attempt to identify cellular pathways which are affected by Pht1;6 activity, gene expression profiling via RNA-Seq was performed and revealed a set of maize genes involved in cellular signaling which exhibited differential regulation in mycorrhizal pht1;6 and control plants. The RNA data provided support for the hypothesis that fungal supply of Pi and/or Pi transport across Pht1;6 affects cell wall biosynthesis and hormone metabolism in colonized root cells.
PMCID: PMC3872827  PMID: 24409191
Zea mays; phosphate transporter; phosphorus nutrition; arbuscular mycorrhiza; plant biomass
14.  Short-term temporal variation in sporulation dynamics of arbuscular mycorrhizal (AM) fungi and physico-chemical edaphic properties of wheat rhizosphere 
In this study, we investigated the pattern of short-term temporal variation in the arbuscular mycorrhizal (AM) fungi and physico-chemical edaphic properties of some wheat growing areas of the Bundelkhand region, Central India. Rhizospheric soil samples were collected every month from December 2007 to May 2008 from four wheat growing sites around Jhansi (Bundelkhand region). AM fungal root colonization, sporulation and physico-chemical edaphic properties during this period were determined and compared to evaluate the dynamics of response of wheat towards the AMF along crop maturation. Maximum AMF root colonization recorded was 54.3% indicating that AMF, particularly in low phosphorus (P) soils, can be important even in case of less responsive crop like wheat. In the two out of four sites studied, the AMF spore density increased with the increase in soil temperature. Absence of this type of pattern in remaining two sites indicated that site-specific environmental and agricultural conditions may affect the degree of wheat response to AMF. It also suggested that AMF communities inhabiting agroecosystems may exhibit considerable temporal sporulation patterns. The maximum AMF colonization was observed during February–March 2008, whereas maximum AMF sporulation was noticed during March–April 2008. Statistically significant negative correlation of AMF spore density with pH, organic carbon (OC) and available P was observed in the one of the sites studied. Overall assessment of the data indicated that season and location significantly affected the interaction of AM fungi with winter wheat necessitating the further need to understand the ecology of AMF populations with reference to specific host species under different micro-climatic conditions of Bundelkhand region.
PMCID: PMC3730808  PMID: 23961131
Arbuscular mycorrhizal fungi; Sporulation dynamics; Edaphic properties; Temporal variation; Wheat; Rhizosphere
15.  Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem 
Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF) are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant–AMF interactions should include these indirect effects. To determine how AMF affect plant–insect interactions, we grew Cucumis sativus (Cucurbitaceae) under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context-dependency of plant–AMF interactions.
PMCID: PMC3763484  PMID: 24046771
aboveground–belowground; arbuscular mycorrhizal fungi; Cucumis sativus; herbivore; indirect interaction; pollinator
16.  Diversity of Arbuscular Mycorrhizal Fungi and Their Roles in Ecosystems 
Mycobiology  2013;41(3):121-125.
Arbuscular mycorrhizal fungi (AMF) have mutualistic relationships with more than 80% of terrestrial plant species. This symbiotic relationship is ancient and would have had important roles in establishment of plants on land. Despite their abundance and wide range of relationship with plant species, AMF have shown low species diversity. However, molecular studies have suggested that diversity of these fungi may be much higher, and genetic variation of AMF is very high within a species and even within a single spore. Despite low diversity and lack of host specificity, various functions have been associated with plant growth responses to arbuscular mycorrhizal fungal colonization. In addition, different community composition of AMF affects plants differently, and plays a potential role in ecosystem variability and productivity. AMF have high functional diversity because different combinations of host plants and AMF have different effects on the various aspects of symbiosis. Consequently, recent studies have focused on the different functions of AMF according to their genetic resource and their roles in ecosystem functioning. This review summarizes taxonomic, genetic, and functional diversities of AMF and their roles in natural ecosystems.
PMCID: PMC3817225  PMID: 24198665
Arbuscular mycorrhizas; Ecosystem; Functional diversity; Genetic diversity; Taxonomic diversity
17.  Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi 
The response of Alliumcepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R′) and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R′ was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars.
Electronic supplementary material
The online version of this article (doi:10.1007/s00122-010-1501-8) contains supplementary material, which is available to authorized users.
PMCID: PMC3043257  PMID: 21222096
18.  Communities of Arbuscular Mycorrhizal Fungi in Pyrus pyrifolia var. culta (Japanese pear) and an Understory Herbaceous Plant Plantago asiatica 
Microbes and Environments  2013;28(2):204-210.
We investigated communities of arbuscular mycorrhizal fungi (AMF) in the fine roots of Pyrus pyrifolia var. culta, and Plantago asiatica to consider the relationship between orchard trees and herbaceous plants in AMF symbioses. The AMF communities were analyzed on the basis of the partial fungal DNA sequences of the nuclear small subunit ribosomal RNA gene (SSU rDNA), which were amplified using the AMF-specific primers AML1 and AML2. Phylogenetic analysis showed that the obtained AMF sequences were divided into 23 phylotypes. Among them, 12 phylotypes included AMF from both host plants, and most of the obtained sequences (689/811) were affiliated to them. Canonical correspondence analysis showed that the host plant species did not have a significant effect on the distribution of AMF phylotypes, whereas the effects of sampling site, soil total C, soil total N and soil-available P were significant. It was also found that the mean observed overlaps of AMF phylotypes between the paired host plants in the same soil cores (27.1% of phylotypes shared) were significantly higher than the mean 1,000 simulated overlaps (14.2%). Furthermore, the same AMF sequences (100% sequence identity) were detected from both host plants in 8/12 soil cores having both roots. Accordingly, we concluded that Py. pyrifolia and Pl. asiatica examined shared some AMF communities, which suggested that understory herbaceous plants may function as AMF inoculum sources for orchard trees.
PMCID: PMC4070674  PMID: 23614902
AML1-AML2; canonical correspondence analysis (CCA); correspondence analysis (CA); Orchard; SSU rDNA
19.  Inoculation of tomato seedlings with Trichoderma Harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings 
Brazilian Journal of Microbiology  2011;42(2):508-513.
A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P≥ 0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.
PMCID: PMC3769820  PMID: 24031662
Arbuscular mycorrhizal Fungi (AMF); Trichoderma harzianum (P52); Disease severity
20.  Plant mortality varies with arbuscular mycorrhizal fungal species identities in a self-thinning population 
Biology Letters  2010;7(3):472-474.
Because arbuscular mycorrhizal fungal (AMF) species differ in stimulating the growth of particular host plant species, AMF species may vary in their effects on plant intra-specific competition and the self-thinning process. We tested this hypothesis using a microcosm experiment with Medicago sativa L. as a model plant population and four AMF species. Our results showed that the AMF species Glomus diaphanum stimulated host plant growth more than the other three AMF species did when the plants were grown individually. Glomus diaphanum also induced the highest rate of mortality in the self-thinning plant populations. We also found a positive correlation between mortality and growth response to colonization. Our results demonstrate that AMF species can affect plant mortality and the self-thinning process by affecting plant growth differently.
PMCID: PMC3097865  PMID: 21147829
arbuscular mycorrhizal fungi; Medicago sativa L.; plant mortality; plant self-thinning
21.  Diversity of Arbuscular Mycorrhizal Fungus Populations in Heavy-Metal-Contaminated Soils 
High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. We conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils.
PMCID: PMC91085  PMID: 9925606
22.  Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds? 
PLoS ONE  2011;6(12):e27825.
Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions.
Methodology/Principal Findings
First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between −22 and −35%). In a subsequent experiment, we selected three of the negatively responding weed species – Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli.
Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions.
PMCID: PMC3229497  PMID: 22164216
23.  Effects of Inoculum Additions in the Presence of a Preestablished Arbuscular Mycorrhizal Fungal Community 
Applied and Environmental Microbiology  2013;79(20):6507-6515.
Communities of arbuscular mycorrhizal fungi (AMF) are crucial for promoting plant productivity in most terrestrial systems, including anthropogenically managed ecosystems. Application of AMF inocula has therefore become a widespread practice. It is, however, pertinent to understand the mechanisms that govern AMF community composition and their performance in order to design successful manipulations. Here we assess whether the composition and plant growth-promotional effects of a synthetic AMF community can be altered by inoculum additions of the isolates forming the community. This was determined by following the effects of three AMF isolates, each inoculated in two propagule densities into a preestablished AMF community. Fungal abundance in roots and plant growth were evaluated in three sequential harvests. We found a transient positive response in AMF abundance to the intraspecific inoculation only in the competitively weakest isolate. The other two isolates responded negatively to intra- and interspecific inoculations, and in some cases plant growth was also reduced. Our results suggest that increasing the AMF density may lead to increased competition among fungi and a trade-off with their ability to promote plant productivity. This is a key ecological aspect to consider when introducing AMF into soils.
PMCID: PMC3811198  PMID: 23956395
24.  Screening of efficient arbuscular mycorrhizal fungi for Azadirachta indica under nursery condition: A step towards afforestation of semi-arid region of western India 
Brazilian Journal of Microbiology  2013;44(2):587-593.
To optimize nursery practices for efficient plant production procedures and to keep up to the ever growing demand of seedlings, identification of the most suitable species of arbuscular mycorrhizal fungi (AMF), specific for a given tree species, is clearly a necessary task. Sixty days old seedlings of Neem (Azadirachta indica A. Juss) raised in root trainers were inoculated with six species of AMF and a mixed inoculum (consortia) and kept in green house. Performances of the treatments on this tree species were evaluated in terms of growth parameters like plant height shoot collar diameter, biomass and phosphorous uptake capabilities. Significant and varied increase in the growth parameters and phosphorous uptake was observed for most of the AMF species against control. Consortia culture was found to be the best suited AMF treatment for A. indica, while Glomus intraradices and Glomus mosseae were the best performing single species cultures. It is the first time in the state of Gujarat that a wide variety of AMF species, isolated from the typical semi-arid region of western India, were tested for the best growth performance with one of the most important tree species for the concerned region.
PMCID: PMC3833164  PMID: 24294258
arbuscular mycorrhizal fungi; Neem; Glomus mosseae; Glomus intraradices
25.  Meta-Analysis of Interactions between Arbuscular Mycorrhizal Fungi and Biotic Stressors of Plants 
The Scientific World Journal  2014;2014:746506.
Naturally, simultaneous interactions occurred among plants, herbivores, and soil biota, that is, arbuscular mycorrhizal fungi (AMF), nematodes, and fungal pathogens. These multiple interactions play fundamental roles in driving process, structure, and functioning of ecosystems. In this study, we conducted a meta-analysis with 144 papers to investigate the interactions between AMF and plant biotic stressors and their effects on plant growth performance. We found that AMF enhanced plant tolerance to herbivores, nematodes, and fungal pathogens. We also found reciprocal inhibition between AMF and nematodes as well as fungal pathogens, but unidirectional inhibition for AMF on herbivores. Negative effects of AMF on biotic stressors of plants depended on herbivore feeding sites and actioning modes of fungal pathogens. More performance was reduced in root-feeding than in shoot-feeding herbivores and in rotting- than in wilt-fungal pathogens. However, no difference was found for AMF negative effects between migratory and sedentary nematodes. In return, nematodes and fungal pathogens generated more reduction of root colonization in Non-Glomeraceae than in Glomeraceae. Our results suggested that AMF positive effects on plants might be indirectly mediated by competitive inhibition with biotic stressors of plants. These positive and negative interactions make potential contributions to maintaining ecosystem stability and functioning.
PMCID: PMC3914602  PMID: 24558327

Results 1-25 (672965)