PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (651249)

Clipboard (0)
None

Related Articles

1.  Have giant lobelias evolved several times independently? Life form shifts and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae) 
BMC Biology  2009;7:82.
Background
The tendency of animals and plants to independently develop similar features under similar evolutionary pressures - convergence - is a widespread phenomenon in nature. In plants, convergence has been suggested to explain the striking similarity in life form between the giant lobelioids (Campanulaceae, the bellflower family) of Africa and the Hawaiian Islands. Under this assumption these plants would have developed the giant habit from herbaceous ancestors independently, in much the same way as has been suggested for the giant senecios of Africa and the silversword alliance of Hawaii.
Results
Phylogenetic analyses based on plastid (rbcL, trnL-F) and nuclear (internal transcribed spacer [ITS]) DNA sequences for 101 species in subfamily Lobelioideae demonstrate that the large lobelioids from eastern Africa the Hawaiian Islands, and also South America, French Polynesia and southeast Asia, form a strongly supported monophyletic group. Ancestral state reconstructions of life form and distribution, taking into account phylogenetic uncertainty, indicate their descent from a woody ancestor that was probably confined to Africa. Molecular dating analyses using Penalized Likelihood and Bayesian relaxed clock approaches, and combining multiple calibration points, estimate their first diversification at ~25-33 million years ago (Ma), shortly followed by several long-distance dispersal events that resulted in the current pantropical distribution.
Conclusion
These results confidently show that lobelioid species, commonly called 'giant', are very closely related and have not developed their giant form from herbaceous ancestors independently. This study, which includes the hitherto largest taxon sampling for subfamily Lobelioideae, highlights the need for a broad phylogenetic framework for testing assumptions about morphological development in general, and convergent evolution in particular.
doi:10.1186/1741-7007-7-82
PMCID: PMC2789055  PMID: 19941635
2.  Hawaiian angiosperm radiations of North American origin 
Annals of Botany  2010;105(6):849-879.
Background
Putative phytogeographical links between America (especially North America) and the Hawaiian Islands have figured prominently in disagreement and debate about the origin of Pacific floras and the efficacy of long-distance (oversea) plant dispersal, given the obstacles to explaining such major disjunctions by vicariance.
Scope
Review of past efforts, and of progress over the last 20 years, toward understanding relationships of Hawaiian angiosperms allows for a historically informed re-evaluation of the American (New World) contribution to Hawaiian diversity and evolutionary activity of American lineages in an insular setting.
Conclusions
Temperate and boreal North America is a much more important source of Hawaiian flora than suggested by most 20th century authorities on Pacific plant life, such as Fosberg and Skottsberg. Early views of evolution as too slow to account for divergence of highly distinctive endemics within the Hawaiian geological time frame evidently impeded biogeographical understanding, as did lack of appreciation for the importance of rare, often biotically mediated dispersal events and ecological opportunity in island ecosystems. Molecular phylogenetic evidence for North American ancestry of Hawaiian plant radiations, such as the silversword alliance, mints, sanicles, violets, schiedeas and spurges, underlines the potential of long-distance dispersal to shape floras, in accordance with hypotheses championed by Carlquist. Characteristics important to colonization of the islands, such as dispersibility by birds and ancestral hybridization or polyploidy, and ecological opportunities associated with ‘sky islands’ of temperate or boreal climate in the tropical Hawaiian archipelago may have been key to extensive diversification of endemic lineages of North American origin that are among the most species-rich clades of Hawaiian plants. Evident youth of flowering-plant lineages from North America is highly consistent with recent geological evidence for lack of high-elevation settings in the Hawaiian chain immediately prior to formation of the oldest, modern high-elevation island, Kaua‘i.
doi:10.1093/aob/mcq052
PMCID: PMC2876002  PMID: 20382966
Angiosperms; adaptive radiation; disjunctions; flora; island biogeography; long-distance dispersal; ecological opportunity; Hawaiian Islands; North America; Pacific; phytogeography; sky islands
3.  Genetic Structure of the Polymorphic Metrosideros (Myrtaceae) Complex in the Hawaiian Islands Using Nuclear Microsatellite Data 
PLoS ONE  2009;4(3):e4698.
Background
Five species of Metrosideros (Myrtaceae) are recognized in the Hawaiian Islands, including the widespread M. polymorpha, and are characterized by a multitude of distinctive, yet overlapping, habit, ecological, and morphological forms. It remains unclear, despite several previous studies, whether the morphological variation within Hawaiian Metrosideros is due to hybridization, genetic polymorphism, phenotypic plasticity, or some combination of these processes. The Hawaiian Metrosideros complex has become a model system to study ecology and evolution; however this is the first study to use microsatellite data for addressing inter-island patterns of variation from across the Hawaiian Islands.
Methodology/Principal Findings
Ten nuclear microsatellite loci were genotyped from 143 individuals of Metrosideros. We took advantage of the bi-parental inheritance and rapid mutation rate of these data to examine the validity of the current taxonomy and to investigate whether Metrosideros plants from the same island are more genetically similar than plants that are morphologically similar. The Bayesian algorithm of the program structure was used to define genetic groups within Hawaiian Metrosideros and the closely related taxon M. collina from the Marquesas and Austral Islands. Several standard and nested AMOVAs were conducted to test whether the genetic diversity is structured geographically or taxonomically.
Conclusions/Significance
The results suggest that Hawaiian Metrosideros have dynamic gene flow, with genetic and morphological diversity structured not simply by geography or taxonomy, but as a result of parallel evolution on islands following rampant island-island dispersal, in addition to ancient chloroplast capture. Results also suggest that the current taxonomy requires major revisions in order to reflect the genetic structure revealed in the microsatellite data.
doi:10.1371/journal.pone.0004698
PMCID: PMC2649539  PMID: 19259272
4.  A Complex Evolutionary History in a Remote Archipelago: Phylogeography and Morphometrics of the Hawaiian Endemic Ligia Isopods 
PLoS ONE  2013;8(12):e85199.
Compared to the striking diversification and levels of endemism observed in many terrestrial groups within the Hawaiian Archipelago, marine invertebrates exhibit remarkably lower rates of endemism and diversification. Supralittoral invertebrates restricted to specific coastal patchy habitats, however, have the potential for high levels of allopatric diversification. This is the case of Ligia isopods endemic to the Hawaiian Archipelago, which most likely arose from a rocky supralittoral ancestor that colonized the archipelago via rafting, and diversified into rocky supralittoral and inland lineages. A previous study on populations of this isopod from Oʻahu and Kauaʻi revealed high levels of allopatric differentiation, and suggested inter-island historical dispersal events have been rare. To gain a better understanding on the diversity and evolution of this group, we expanded prior phylogeographic work by incorporating populations from unsampled main Hawaiian Islands (Maui, Molokaʻi, Lanaʻi, and Hawaiʻi), increasing the number of gene markers (four mitochondrial and two nuclear genes), and conducting Maximum likelihood and Bayesian phylogenetic analyses. Our study revealed new lineages and expanded the distribution range of several lineages. The phylogeographic patterns of Ligia in the study area are complex, with Hawaiʻi, Oʻahu, and the Maui-Nui islands sharing major lineages, implying multiple inter-island historical dispersal events. In contrast, the oldest and most geographically distant of the major islands (Kauaʻi) shares no lineages with the other islands. Our results did not support the monophyly of all the supralittoral lineages (currently grouped into L. hawaiensis), or the monophyly of the terrestrial lineages (currently grouped into L. perkinsi), implying more than one evolutionary transition between coastal and inland forms. Geometric-morphometric analyses of three supralittoral clades revealed significant body shape differences among them. A taxonomic revision of Hawaiian Ligia is warranted. Our results are relevant for the protection of biodiversity found in an environment subject to high pressure from disturbances.
doi:10.1371/journal.pone.0085199
PMCID: PMC3875554  PMID: 24386463
5.  Progressive island colonization and ancient origin of Hawaiian Metrosideros (Myrtaceae) 
Knowledge of the evolutionary history of plants that are ecologically dominant in modern ecosystems is critical to understanding the historical development of those ecosystems. Metrosideros is a plant genus found in many ecological and altitudinal zones throughout the Pacific. In the Hawaiian Islands, Metrosideros polymorpha is an ecologically dominant species and is also highly polymorphic in both growth form and ecology. Using 10 non-coding chloroplast regions, we investigated haplotype diversity in the five currently recognized Hawaiian Metrosideros species and an established out-group, Metrosideros collina, from French Polynesia. Multiple haplotype groups were found, but these did not match morphological delimitations. Alternative morphologies sharing the same haplotype, as well as similar morphologies occurring within several distinct island clades, could be the result of developmental plasticity, parallel evolution or chloroplast capture. The geographical structure of the data is consistent with a pattern of age progressive island colonizations and suggests de novo intra-island diversification. If single colonization events resulted in a similar array of morphologies on each island, this would represent parallel radiations within a single, highly polymorphic species. However, we were unable to resolve whether the pattern is instead explained by ancient introgression and incomplete lineage sorting resulting in repeated chloroplast capture. Using several calibration methods, we estimate the colonization of the Hawaiian Islands to be potentially as old as 3.9 (−6.3) Myr with an ancestral position for Kaua'i in the colonization and evolution of Metrosideros in the Hawaiian Islands. This would represent a more ancient arrival of Metrosideros to this region than previous studies have suggested.
doi:10.1098/rspb.2008.0191
PMCID: PMC2602662  PMID: 18426752
chloroplast; Hawaiian Islands; Metrosideros; parallel evolution; plasticity; polymorphism
6.  Phylogeography and diversification history of the day-gecko genus Phelsuma in the Seychelles islands 
Background
Lying in a shallow continental shelf cyclically affected by oscillating sea levels since the Miocene, the Seychelles islands are particularly interesting for evolutionary studies. Recent molecular studies are generating an emerging picture of the origin of its biota, yet very little is known regarding their phylogeographic structure or on the factors promoting diversification within the archipelago. Here we aimed to obtain a detailed depiction of the genetic structure and evolution of one of the most widespread vertebrate groups in the archipelago: the day-geckos of the genus Phelsuma. In parallel, we aimed to infer divergence times between species and subspecies, testing a long-standing hypothesis that argues for different time since sympatry between species as the cause of their different morphological differentiation across the archipelago.
Results
Molecular data corroborated the existence of two main lineages, corresponding to the two currently recognized species. Divergences between species likely date back to the Mio-Pliocene, while more recent, Pleistocenic, divergences are suggested within each species. Populations from outer islands share mtDNA haplotypes with inner island populations, suggesting very recent dispersals (or introductions). We found no evidence of current gene flow between species, but results pointed to the possibility of gene flow between (now allopatric) subspecies. Time estimates suggest a synchronous divergence within each species (between island groups).
Conclusions
The geographic patterns of genetic variation agree with previous taxonomic subdivisions within each species and the origin of outer islands populations is clearly tracked. The similar intraspecific divergence time estimates obtained suggest that the differential body-size differentiation between species within each group of islands may be driven by factors other than character displacement proportional to time since sympatry, as previously suggested. These factors could include different habitats/resources available within each island group, niche differentiation and/or character displacement. We also bring again into consideration the hypothesis of body size being influenced by the distribution of native vegetation and social systems within this group, although it remains to be tested. Our results highlight not only the necessity of clarifying the role of ecology and interspecific interactions in this group’s morphological diversification and community assemblage, but also the importance of co-evolutionary mechanisms and their importance for appropriate conservation of island biodiversity. Further, we provide a detailed description of the phylogeographic structure of these taxa across these islands, which still remain poorly characterized in this respect.
doi:10.1186/1471-2148-13-3
PMCID: PMC3598968  PMID: 23289814
Phelsuma; Seychelles; Phylogeography; Species-trees; Diversification; Morphological evolution; Character displacement; Biogeography
7.  Polyglutamine variation in a flowering time protein correlates with island age in a Hawaiian plant radiation 
Background
A controversial topic in evolutionary developmental biology is whether morphological diversification in natural populations can be driven by expansions and contractions of amino acid repeats in proteins. To promote adaptation, selection on protein length variation must overcome deleterious effects of multiple correlated traits (pleiotropy). Thus far, systems that demonstrate this capacity include only ancient or artificial morphological diversifications. The Hawaiian Islands, with their linear geological sequence, present a unique environment to study recent, natural radiations. We have focused our research on the Hawaiian endemic mints (Lamiaceae), a large and diverse lineage with paradoxically low genetic variation, in order to test whether a direct relationship between coding-sequence repeat diversity and morphological change can be observed in an actively evolving system.
Results
Here we show that in the Hawaiian mints, extensive polyglutamine (CAG codon repeat) polymorphism within a homolog of the pleiotropic flowering time protein and abscisic acid receptor FCA tracks the natural environmental cline of the island chain, consequent with island age, across a period of 5 million years. CAG expansions, perhaps following their natural tendency to elongate, are more frequent in colonists of recently-formed, nutrient-rich islands than in their forebears on older, nutrient-poor islands. Values for several quantitative morphological variables related to reproductive investment, known from Arabidopsis fca mutant studies, weakly though positively correlate with increasing glutamine tract length. Together with protein modeling of FCA, which indicates that longer polyglutamine tracts could induce suboptimally mobile functional domains, we suggest that CAG expansions may form slightly deleterious alleles (with respect to protein function) that become fixed in founder populations.
Conclusion
In the Hawaiian mint FCA system, we infer that contraction of slightly deleterious CAG repeats occurred because of competition for resources along the natural environmental cline of the island chain. The observed geographical structure of FCA variation and its correlation with morphologies expected from Arabidopsis mutant studies may indicate that developmental pleiotropy played a role in the diversification of the mints. This discovery is important in that it concurs with other suggestions that repetitive amino acid motifs might provide a mechanism for driving morphological evolution, and that variation at such motifs might permit rapid tuning to environmental change.
doi:10.1186/1471-2148-7-105
PMCID: PMC1939987  PMID: 17605781
8.  Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. 
The Hawaiian honeycreepers are a dramatic example of adaptive radiation but contrast with the four other songbird lineages that successfully colonized the Hawaiian archipelago and failed to undergo similar diversification. To explore the processes that produced the diversity dichotomy in this insular fauna, we compared clade age and morphological diversity between the speciose honeycreepers and the comparatively depauperate Hawaiian thrushes. Mitochondrial-DNA-based genetic distances between these Hawaiian clades and their continental sister taxa indicate that the ancestral thrush colonized the Hawaiian Islands as early as the common ancestor of the honeycreepers. This similar timing of colonization indicates that the marked difference in diversity between the Hawaiian honeycreeper and thrush clades is unlikely to result from differences in these clades' tenures within the archipelago. If time cannot explain the contrasting diversities of these taxa, then an intrinsic, clade-specific trait may have fostered the honeycreeper radiation. As the honeycreepers have diversified most dramatically in morphological characters related to resource utilization, we used principal components analyses of bill characters to compare the magnitudes of morphological variation in the ancestral clades from which the Hawaiian honeycreeper and thrush lineages are derived, the Carduelini and Turdinae respectively. Although the Carduelini share a more recent common ancestor and have a lower species diversity than the Turdinae, these finch-like relatives of the honeycreepers exhibit significantly greater variation in bill morphology than do the continental relatives of the Hawaiian thrushes. The higher magnitude of morphological variation in the non-Hawaiian Carduelini suggests that the honeycreepers fall within a clade exhibiting a generally high evolutionary flexibility in bill morphology. Accordingly, although the magnitude of bill variation among the honeycreepers is similar to that of the entire passerine radiation, this dramatic morphological radiation represents an extreme manifestation of a general clade-specific ability to evolve novel morphologies.
doi:10.1098/rspb.2001.1789
PMCID: PMC1690860  PMID: 11788034
9.  Cryptic Speciation in the Caesalpinia hintonii Complex (Leguminosae: Caesalpinioideae) in a Seasonally Dry Mexican Forest 
Annals of Botany  2007;100(6):1307-1314.
Backgroud and Aims
The Caesalpinia hintonii group comprises six species of endemic shrubs or trees, C. epifanioi, C. hintonii, C. laxa, C. macvaughii, C. melanadenia and C. oyamae, found in scattered patches of seasonally dry forest in the Río Balsas depression and the neighbouring Tehuacán–Cuicatlán valley, which are part of the Mexican morphotectonic province of Sierra Madre del Sur. An evaluation is made of phylogeographic patterns and genetic diversity with a phylogenetic analysis of the C. hintonii complex in order to study the dynamics of speciation in this endemic group of legumes.
Methods
A phylogeographic study based on four highly variable non-coding plastid regions (trnL intron, trnL-F intergenic spacer, trnH-psbA intergenic spacer, and accD-psaI intergenic spacer) was carried out for the Caesalpinia hintonii complex. Five of the six taxa of the C. hintonii complex were included.
Key Results and Conclusions
The plastid analyses involving multiple accessions of each taxon from throughout their ranges resolved C. epifanioi and C. hintonii as well-supported clusters, but C. oyamae has two unexpectedly divergent lineages. Two well-supported geographic clades: eastern (C. epifanioi, C. melanadenia and C. oyamae) and western (C. hintonii and C. macvaughii) were established. The analyses performed provide evidence of recent morphostatic radiation in C. oyamae resulting from isolation and local adaptation. This pattern of genetic differentiation without morphological divergence may be a model that fits many groups of tropical woody taxa inhabiting similarly dry forests subjected to shifting selection.
doi:10.1093/aob/mcm213
PMCID: PMC2759254  PMID: 17913727
Caesalpinia hintonii complex; legumes; Mesoamerica; Mexico; plant phylogeography; population differentiation; seasonally dry forest
10.  Unexpected relationships of substructured populations in Chinese Locusta migratoria 
Background
Highly migratory species are usually expected to have minimal population substructure because strong gene flow has the effect of homogenizing genetic variation over geographical populations, counteracting random drift, selection and mutation. The migratory locust Locusta migratoria belongs to a monotypic genus, and is an infamous pest insect with exceptional migratory ability – with dispersal documented over a thousand kilometers. Its distributional area is greater than that of any other locust or grasshopper, occurring in practically all the temperate and tropical regions of the eastern hemisphere. Consequently, minimal population substructuring is expected. However, in marked contrast to its high dispersal ability, three geographical subspecies have been distinguished in China, with more than nine being biologically and morphologically identified in the world. Such subspecies status has been under considerable debate.
Results
By multilocus microsatellite genotyping analysis, we provide ample genetic evidence for strong population substructure in this highly migratory insect that conforms to geography. More importantly, our genetic data identified an unexpected cryptic subdivision and demonstrated a strong affiliation of the East China locusts to those in Northwest/Northern China. The migratory locusts in China formed three distinct groups, viz. (1) the Tibetan group, comprising locusts from Tibet and nearby West China high mountain regions; this is congruent with the previously recognized Tibetan subspecies, L. m. tibetensis; (2) the South China group, containing locusts from the Hainan islands; this corresponds to the Southeast Asia oriental tropical subspecies L. m. manilensis; (3) the North China group, including locusts from the Northwest and Northern China (the Asiatic subspecies L. m. migratoria), Central China and Eastern China regions. Therefore, the traditional concept on Locusta subspecies status established from Uvarov in 1930s needs to be revised. The three groups of locusts probably have separate evolutionary histories that were most likely linked to Quaternary glaciations events, and derived from different ancestral refugial populations following postglacial expansions.
Conclusion
The migratory locust populations in China have differentiated into three genetically distinct groups despite high dispersal capability. While this clarified long-standing suspicions on the subspecific diversification of this species in China, it also revealed that the locusts in the vast area of East China are not the oriental subspecies but the Asiatic subspecies, an unexpected substructuring pattern. The distribution pattern of the three locust groups in China may be primarily defined by adaptive differentiation coupled to Quaternary glaciations events. Our results are of general significance both for locust research and for phylogeographical study of flora and fauna in China, illustrating the potential importance of phylogeographical history in shaping the divergence and distribution patterns of widespread species with strong dispersal ability.
doi:10.1186/1471-2148-9-144
PMCID: PMC2718889  PMID: 19558707
11.  The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia 
Background
Considered a biodiversity hotspot, the Canary Islands have been the key subjects of numerous evolutionary studies concerning a large variety of organisms. The genus Cheirolophus (Asteraceae) represents one of the largest plant radiations in the Canarian archipelago. In contrast, only a few species occur in the Mediterranean region, the putative ancestral area of the genus. Here, our main aim was to reconstruct the phylogenetic and biogeographic history of Cheirolophus with special focus on explaining the origin of the large Canarian radiation.
Results
We found significant incongruence in phylogenetic relationships between nuclear and plastid markers. Each dataset provided resolution at different levels in Cheirolophus: the nuclear markers resolved the backbone of the phylogeny while the plastid data provided better resolution within the Canarian clade. The origin of Cheirolophus was dated in the Mid-Late Miocene, followed by rapid diversification into the three main Mediterranean lineages and the Macaronesian clade. A decrease in diversification rates was inferred at the end of the Miocene, with a new increase in the Late Pliocene concurrent with the onset of the Mediterranean climate. Diversification within the Macaronesian clade started in the Early-Mid Pleistocene, with unusually high speciation rates giving rise to the extant insular diversity.
Conclusions
Climate-driven diversification likely explains the early evolutionary history of Cheirolophus in the Mediterranean region. It appears that the exceptionally high diversification rate in the Canarian clade was mainly driven by allopatric speciation (including intra- and interisland diversification). Several intrinsic (e.g. breeding system, polyploid origin, seed dispersal syndrome) and extrinsic (e.g. fragmented landscape, isolated habitats, climatic and geological changes) factors probably contributed to the progressive differentiation of populations resulting in numerous microendemisms. Finally, hybridization events and emerging ecological adaptation may have also reinforced the diversification process.
doi:10.1186/1471-2148-14-118
PMCID: PMC4048045  PMID: 24888240
Allopatric speciation; Canary Islands; Diversification; Island radiation; Mediterranean Basin; Phylogeography
12.  “Darwin’s butterflies”? DNA barcoding and the radiation of the endemic Caribbean butterfly genus Calisto (Lepidoptera, Nymphalidae, Satyrinae) 
Comparative Cytogenetics  2011;5(3):191-210.
The genus Calisto Hübner, 1823 is the only member of the diverse, global subfamily Satyrinae found in the West Indies, and by far the richest endemic Caribbean butterfly radiation. Calisto species occupy an extremely diverse array of habitats, suggestive of adaptive radiation on the scale of other classic examples such as the Galápagos or Darwin’s finches. However, a reliable species classification is a key requisite before further evolutionary or ecological research. An analysis of 111 DNA ‘barcodes’ (655 bp of the mitochondrial gene COI) from 29 putative Calisto species represented by 31 putative taxa was therefore conducted to elucidate taxonomic relationships among these often highly cryptic and confusing taxa. The sympatric, morphologically and ecologically similar taxa Calisto confusa Lathy, 1899 and Calisto confusa debarriera Clench, 1943 proved to be extremely divergent, and we therefore recognize Calisto debarriera stat. n. as a distinct species, with Calisto neiba Schwartz & Gali, 1984 as a junior synonym syn. n. Species status of certain allopatric, morphologically similar sister species has been confirmed: Calisto hysius (Godart, 1824) (including its subspecies Calisto hysius aleucosticha Correa et Schwartz, 1986, stat. n.), and its former subspecies Calisto batesi Michener, 1943 showed a high degree of divergence (above 6%) and should be considered separate species. Calisto lyceius Bates, 1935/Calisto crypta Gali, 1985/Calisto franciscoi Gali, 1985 complex, also showed a high degree of divergence (above 6%), confirming the species status of these taxa. In contrast, our data suggest that the Calisto grannus Bates, 1939 species complex (including Calisto grannus dilemma González, 1987, Calisto grannus amazona González, 1987, stat. n., Calisto grannus micrommata Schwartz & Gali, 1984, stat. n., Calisto grannus dystacta González, 1987, stat. n., Calisto grannus phoinix González, 1987, stat. n., Calisto grannus sommeri Schwartz & Gali, 1984, stat. n., and Calisto grannus micheneri Clench, 1944, stat. n.) should be treated as a single polytypic species, as genetic divergence among sampled populations representing these taxa is low (and stable morphological apomorphies are absent). A widely-distributed pest of sugar cane, Calisto pulchella Lathy, 1899 showed higher diversification among isolated populations (3.5%) than expected, hence supporting former separation of this species into two taxa (pulchella and darlingtoni Clench, 1943), of which the latter might prove to be a separate species rather than subspecies. The taxonomic revisions presented here result in Calisto now containing 34 species and 17 subspecies. Three species endemic to islands other than Hispaniola appear to be derived lineages of various Hispaniolan clades, indicating ancient dispersal events from Hispaniola to Puerto Rico, Cuba, and Jamaica. Overall, the degree of intrageneric and intraspecific divergence within Calisto suggests a long and continuous diversification period of 4–8 Myr. The maximum divergence within the genus (ca. 13.3%) is almost equivalent to the maximum divergence of Calisto from the distant pronophiline relative Auca Hayward, 1953 from the southern Andes (14.1%) and from the presumed closest relative Eretris Thieme, 1905 (14.4%), suggesting that the genus began to diversify soon after its split from its continental sister taxon. In general, this ‘barcode’ divergence corresponds to the high degree of morphological and ecological variation found among major lineages within the genus.
doi:10.3897/CompCytogen.v5i3.1730
PMCID: PMC3833777  PMID: 24260629
COI; biogeography; DNA barcoding; islands; intraspecific variation; Lepidoptera; Nymphalidae; Satyrinae; speciation; taxonomy
13.  Molecular biogeography and diversification of the endemic terrestrial fauna of the Hawaiian Islands 
Oceanic islands have played a central role in biogeography and evolutionary biology. Here, we review molecular studies of the endemic terrestrial fauna of the Hawaiian archipelago. For some groups, monophyly and presumed single origin of the Hawaiian radiations have been confirmed (achatinelline tree snails, drepanidine honeycreepers, drosophilid flies, Havaika spiders, Hylaeus bees, Laupala crickets). Other radiations are derived from multiple colonizations (Tetragnatha and Theridion spiders, succineid snails, possibly Dicranomyia crane flies, Porzana rails). The geographic origins of many invertebrate groups remain obscure, largely because of inadequate sampling of possible source regions. Those of vertebrates are better known, probably because few lineages have radiated, diversity is far lower and morphological taxonomy permits identification of probable source regions. Most birds, and the bat, have New World origins. Within the archipelago, most radiations follow, to some degree, a progression rule pattern, speciating as they colonize newer from older islands sequentially, although speciation often also occurs within islands. Most invertebrates are single-island endemics. However, among multi-island species studied, complex patterns of diversification are exhibited, reflecting heightened dispersal potential (succineids, Dicranomyia). Instances of Hawaiian taxa colonizing other regions are being discovered (Scaptomyza flies, succineids). Taxonomy has also been elucidated by molecular studies (Achatinella snails, drosophilids). While molecular studies on Hawaiian fauna have burgeoned since the mid-1990s, much remains unknown. Yet the Hawaiian fauna is in peril: more than 70 per cent of the birds and possibly 90 per cent of the snails are extinct. Conservation is imperative if this unique fauna is to continue shedding light on profound evolutionary and biogeographic questions.
doi:10.1098/rstb.2008.0061
PMCID: PMC2607369  PMID: 18765363
arthropods; birds; dispersal; Hawaii; snails; speciation
14.  An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (Stenogyne rugosa, Lamiaceae): characterization and microsatellite markers 
BMC Plant Biology  2006;6:16.
Background
The endemic Hawaiian mints represent a major island radiation that likely originated from hybridization between two North American polyploid lineages. In contrast with the extensive morphological and ecological diversity among taxa, ribosomal DNA sequence variation has been found to be remarkably low. In the past few years, expressed sequence tag (EST) projects on plant species have generated a vast amount of publicly available sequence data that can be mined for simple sequence repeats (SSRs). However, these EST projects have largely focused on crop or otherwise economically important plants, and so far only few studies have been published on the use of intragenic SSRs in natural plant populations. We constructed an EST library from developing fleshy nutlets of Stenogyne rugosa principally to identify genetic markers for the Hawaiian endemic mints.
Results
The Stenogyne fruit EST library consisted of 628 unique transcripts derived from 942 high quality ESTs, with 68% of unigenes matching Arabidopsis genes. Relative frequencies of Gene Ontology functional categories were broadly representative of the Arabidopsis proteome. Many unigenes were identified as putative homologs of genes that are active during plant reproductive development. A comparison between unigenes from Stenogyne and tomato (both asterid angiosperms) revealed many homologs that may be relevant for fruit development. Among the 628 unigenes, a total of 44 potentially useful microsatellite loci were predicted. Several of these were successfully tested for cross-transferability to other Hawaiian mint species, and at least five of these demonstrated interesting patterns of polymorphism across a large sample of Hawaiian mints as well as close North American relatives in the genus Stachys.
Conclusion
Analysis of this relatively small EST library illustrated a broad GO functional representation. Many unigenes could be annotated to involvement in reproductive development. Furthermore, first tests of microsatellite primer pairs have proven promising for the use of Stenogyne rugosa EST SSRs for evolutionary and phylogeographic studies of the Hawaiian endemic mints and their close relatives. Given that allelic repeat length variation in developmental genes of other organisms has been linked with morphological evolution, these SSRs may also prove useful for analyses of phenotypic differences among Hawaiian mints.
doi:10.1186/1471-2229-6-16
PMCID: PMC1560379  PMID: 16928278
15.  Rapid and Recent World-Wide Diversification of Bluegrasses (Poa, Poaceae) and Related Genera 
PLoS ONE  2013;8(3):e60061.
Rapid species diversifications provide fascinating insight into the development of biodiversity in time and space. Most biological radiations studied to date, for example that of cichlid fishes or Andean lupines, are confined to isolated geographical areas like lakes, islands or island-like regions. Using DNA sequence data of the ribosomal internal transcribed spacer (ITS) for many species of the Poa alliance, a group comprising about 775 C3 grass species, revealed rapid and parallel diversifications in various parts of the world. Some of these radiations are restricted to isolated areas like the Andes, whereas others are typical of the lowlands of mainly the northern hemisphere. These radiations thus are not restricted to island-like areas and are seemingly actively ongoing. The ages of the diversifying clades are estimated to be 2.5–0.23 million years (Myr). Conservative diversification rates in the Poa alliance amount to 0.89–3.14 species per Myr, thus are in the order of, or even exceeding, other instances of well-known radiations. The grass radiations of the mainly cold-adapted Poa alliance coincide with the Late Tertiary global cooling, which resulted in the retreat of forests and the subsequent formation of cold-adapted grasslands especially in the northern, but also in parts of the southern hemisphere. The cold tolerance, suggested to be one of the ecological key innovations, may have been acquired during the early diversification of the subfamily Pooideae, but became significant millions of years later during the Pliocene/Pleistocene radiation of the Poa alliance.
doi:10.1371/journal.pone.0060061
PMCID: PMC3609727  PMID: 23544123
16.  Radiating on Oceanic Islands: Patterns and Processes of Speciation in the Land Snail Genus Theba (Risso 1826) 
PLoS ONE  2012;7(4):e34339.
Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.
doi:10.1371/journal.pone.0034339
PMCID: PMC3321021  PMID: 22493687
17.  Microsatellite Repeat Instability Fuels Evolution of Embryonic Enhancers in Hawaiian Drosophila 
PLoS ONE  2014;9(6):e101177.
For ∼30 million years, the eggs of Hawaiian Drosophila were laid in ever-changing environments caused by high rates of island formation. The associated diversification of the size and developmental rate of the syncytial fly embryo would have altered morphogenic gradients, thus necessitating frequent evolutionary compensation of transcriptional responses. We investigate the consequences these radiations had on transcriptional enhancers patterning the embryo to see whether their pattern of molecular evolution is different from non-Hawaiian species. We identify and functionally assay in transgenic D. melanogaster the Neurogenic Ectoderm Enhancers from two different Hawaiian Drosophila groups: (i) the picture wing group, and (ii) the modified mouthparts group. We find that the binding sites in this set of well-characterized enhancers are footprinted by diverse microsatellite repeat (MSR) sequences. We further show that Hawaiian embryonic enhancers in general are enriched in MSR relative to both Hawaiian non-embryonic enhancers and non-Hawaiian embryonic enhancers. We propose embryonic enhancers are sensitive to Activator spacing because they often serve as assembly scaffolds for the aggregation of transcription factor activator complexes. Furthermore, as most indels are produced by microsatellite repeat slippage, enhancers from Hawaiian Drosophila lineages, which experience dynamic evolutionary pressures, would become grossly enriched in MSR content.
doi:10.1371/journal.pone.0101177
PMCID: PMC4076327  PMID: 24978198
18.  Molecular Adaptation during a Rapid Adaptive Radiation 
Molecular Biology and Evolution  2013;30(5):1051-1059.
“Explosive” adaptive radiations on islands remain one of the most puzzling evolutionary phenomena and the evolutionary genetic processes behind such radiations remain unclear. Rapid morphological and ecological evolution during island radiations suggests that many genes may be under fairly strong selection, although this remains untested. Here, we report that during a rapid recent diversification in the Hawaiian endemic plant genus Schiedea (Caryophyllaceae), 5 in 36 studied genes evolved under positive selection. Positively selected genes are involved in defence mechanisms, photosynthesis, and reproduction. Comparison with eight mainland plant groups demonstrates both the relaxation of purifying selection and more widespread positive selection in Hawaiian Schiedea. This provides compelling evidence that adaptive evolution of protein-coding genes may play a significant role during island adaptive radiations.
doi:10.1093/molbev/mst013
PMCID: PMC3670742  PMID: 23355532
adaptive radiation; Hawaiian Islands; positive selection; relaxation of purifying selection; Schiedea
19.  Phylogeographic Analyses of Submesophotic Snappers Etelis coruscans and Etelis “marshi” (Family Lutjanidae) Reveal Concordant Genetic Structure across the Hawaiian Archipelago 
PLoS ONE  2014;9(4):e91665.
The Hawaiian Archipelago has become a natural laboratory for understanding genetic connectivity in marine organisms as a result of the large number of population genetics studies that have been conducted across this island chain for a wide taxonomic range of organisms. However, population genetic studies have been conducted for only two species occurring in the mesophotic or submesophotic zones (30+m) in this archipelago. To gain a greater understanding of genetic connectivity in these deepwater habitats, we investigated the genetic structure of two submesophotic fish species (occurring ∼200–360 m) in this archipelago. We surveyed 16 locations across the archipelago for submesophotic snappers Etelis coruscans (N = 787) and E. “marshi” (formerly E. carbunculus; N = 770) with 436–490 bp of mtDNA cytochrome b and 10–11 microsatellite loci. Phylogeographic analyses reveal no geographic structuring of mtDNA lineages and recent coalescence times that are typical of shallow reef fauna. Population genetic analyses reveal no overall structure across most of the archipelago, a pattern also typical of dispersive shallow fishes. However some sites in the mid-archipelago (Raita Bank to French Frigate Shoals) had significant population differentiation. This pattern of no structure between ends of the Hawaiian range, and significant structure in the middle, was previously observed in a submesophotic snapper (Pristipomoides filamentosus) and a submesophotic grouper (Hyporthodus quernus). Three of these four species also have elevated genetic diversity in the mid-archipelago. Biophysical larval dispersal models from previous studies indicate that this elevated diversity may result from larval supplement from Johnston Atoll, ∼800 km southwest of Hawaii. In this case the boundaries of stocks for fishery management cannot be defined simply in terms of geography, and fishery management in Hawaii may need to incorporate external larval supply into management plans.
doi:10.1371/journal.pone.0091665
PMCID: PMC3982960  PMID: 24722193
20.  Phylogenetics of the Antopocerus-Modified Tarsus Clade of Hawaiian Drosophila: Diversification across the Hawaiian Islands 
PLoS ONE  2014;9(11):e113227.
The Hawaiian Drosophilidae radiation is an ecologically and morphologically diverse clade of almost 700 described species. A phylogenetic approach is key to understanding the evolutionary forces that have given rise to this diverse lineage. Here we infer the phylogeny for the antopocerus, modified tarsus and ciliated tarsus (AMC) clade, a lineage comprising 16% (91 of 687 species) of the described Hawaiian Drosophilidae. To improve on previous analyses we constructed the largest dataset to date for the AMC, including a matrix of 15 genes for 68 species. Results strongly support most of the morphologically defined species groups as monophyletic. We explore the correlation of increased diversity in biogeography, sexual selection and ecology on the present day diversity seen in this lineage using a combination of dating methods, rearing records, and distributional data. Molecular dating analyses indicate that AMC lineage started diversifying about 4.4 million years ago, culminating in the present day AMC diversity. We do not find evidence that ecological speciation or sexual selection played a part in generating this diversity, but given the limited number of described larval substrates and secondary sexual characters analyzed we can not rule these factors out entirely. An increased rate of diversification in the AMC is found to overlap with the emergence of multiple islands in the current chain of high islands, specifically Oahu and Kauai.
doi:10.1371/journal.pone.0113227
PMCID: PMC4242607  PMID: 25420017
21.  Evaluating multiple criteria for species delimitation: an empirical example using Hawaiian palms (Arecaceae: Pritchardia) 
Background
Robust species delimitations are fundamental for conservation, evolutionary, and systematic studies, but they can be difficult to estimate, particularly in rapid and recent radiations. The consensus that species concepts aim to identify evolutionarily distinct lineages is clear, but the criteria used to distinguish evolutionary lineages differ based on the perceived importance of the various characteristics of evolving populations. We examined three different species-delimitation criteria (monophyly, absence of genetic intermediates, and diagnosability) to determine whether currently recognized species of Hawaiian Pritchardia are distinct lineages.
Results
Data from plastid and nuclear genes, microsatellite loci, and morphological characters resulted in various levels of lineage subdivision that were likely caused by differing evolutionary rates between data sources. Additionally, taxonomic entities may be confounded because of the effects of incomplete lineage sorting and/or gene flow. A coalescent species tree was largely congruent with the simultaneous analysis, consistent with the idea that incomplete lineage sorting did not mislead our results. Furthermore, gene flow among populations of sympatric lineages likely explains the admixture and lack of resolution between those groups.
Conclusions
Delimiting Hawaiian Pritchardia species remains difficult but the ability to understand the influence of the evolutionary processes of incomplete lineage sorting and hybridization allow for mechanisms driving species diversity to be inferred. These processes likely extend to speciation in other Hawaiian angiosperm groups and the biota in general and must be explicitly accounted for in species delimitation.
doi:10.1186/1471-2148-12-23
PMCID: PMC3356231  PMID: 22353848
Hawaii; Hybridization; Lineage sorting; Microsatellite; Pritchardia; Radiation
22.  Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach 
Background
Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC) that tests two hypotheses of marine allopatric speciation: 1.) "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs).
Results
Given the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given sufficient sampling.
Conclusion
Although soft vicariance and colonization are likely to produce similar genetic patterns when a single taxon-pair is used, our hierarchical Bayesian model can potentially detect if either history is a dominant process across co-distributed taxon-pairs. As comparative phylogeographic datasets grow to include > 100 co-distributed taxon-pairs, the HABC approach will be well suited to dissect temporal patterns in community assembly and evolution, thereby providing a bridge linking comparative phylogeography with community ecology.
doi:10.1186/1471-2148-8-322
PMCID: PMC2614435  PMID: 19038027
23.  Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early generations of admixture 
Annals of Botany  2013;112(7):1293-1302.
Background and Aims
The olive (Olea europaea subsp. europaea) was domesticated in the Mediterranean area but its wild relatives are distributed over three continents, from the Mediterranean basin to South Africa and south-western Asia. Recent studies suggested that this crop originated in the Levant while a secondary diversification occurred in most westward areas. A possible contribution of the Saharan subspecies (subsp. laperrinei) has been highlighted, but the data available were too limited to draw definite conclusions. Here, patterns of genetic differentiation in the Mediterranean and Saharan olives are analysed to test for recent admixture between these taxa.
Methods
Nuclear microsatellite and plastid DNA (ptDNA) data were compiled from previous studies and completed for a sample of 470 cultivars, 390 wild Mediterranean trees and 270 Saharan olives. A network was reconstructed for the ptDNA haplotypes, while a Bayesian clustering method was applied to identify the main gene pools in the data set and then simulate and test for early generations of admixture between Mediterranean and Saharan olives.
Key Results
Four lineages of ptDNA haplotypes are recognized: three from the Mediterranean basin and one from the Sahara. Only one haplotype, primarily distributed in the Sahara, is shared between laperrinei and europaea. This haplotype is detected once in ‘Dhokar’, a cultivar from the Maghreb. Nuclear microsatellites show geographic patterns of genetic differentiation in the Mediterranean olive that reflect the primary origins of cultivars in the Levant, and indicate a high genetic differentiation between europaea and laperrinei. No first-generation hybrid between europaea and laperrinei is detected, but recent, reciprocal admixture between Mediterranean and Saharan subspecies is found in a few accessions, including ‘Dhokar’.
Conclusions
This study reports for the first time admixture between Mediterranean and Saharan olives. Although its contribution remains limited, Laperrine's olive has been involved in the diversification of cultivated olives.
doi:10.1093/aob/mct196
PMCID: PMC3806528  PMID: 24013386
Admixture; domestication; Laperrine's olive; Mediterranean basin; microsatellite; Olea europaea; population genetic simulations; Sahara; secondary diversification; wild genetic resources
24.  Evolution, Insular Restriction, and Extinction of Oceanic Land Crabs, Exemplified by the Loss of an Endemic Geograpsus in the Hawaiian Islands 
PLoS ONE  2011;6(5):e19916.
Most oceanic islands harbor unusual and vulnerable biotas as a result of isolation. As many groups, including dominant competitors and predators, have not naturally reached remote islands, others were less constrained to evolve novel adaptations and invade adaptive zones occupied by other taxa on continents. Land crabs are an excellent example of such ecological release, and some crab lineages made the macro-evolutionary transition from sea to land on islands. Numerous land crabs are restricted to, although widespread among, oceanic islands, where they can be keystone species in coastal forests, occupying guilds filled by vertebrates on continents. In the remote Hawaiian Islands, land crabs are strikingly absent.
Here we show that absence of land crabs in the Hawaiian Islands is the result of extinction, rather than dispersal limitation. Analysis of fossil remains from all major islands show that an endemic Geograpsus was abundant before human colonization, grew larger than any congener, and extended further inland and to higher elevation than other land crabs in Oceania.
Land crabs are major predators of nesting sea birds, invertebrates and plants, affect seed dispersal, control litter decomposition, and are important in nutrient cycling; their removal can lead to large-scale shifts in ecological communities. Although the importance of land crabs is obvious on remote and relatively undisturbed islands, it is less apparent on others, likely because they are decimated by humans and introduced biota. The loss of Geograpsus and potentially other land crabs likely had profound consequences for Hawaiian ecosystems.
doi:10.1371/journal.pone.0019916
PMCID: PMC3095624  PMID: 21603620
25.  Microbial interactions and the ecology and evolution of Hawaiian Drosophilidae 
Adaptive radiations are characterized by an increased rate of speciation and expanded range of habitats and ecological niches exploited by those species. The Hawaiian Drosophilidae is a classic adaptive radiation; a single ancestral species colonized Hawaii approximately 25 million years ago and gave rise to two monophyletic lineages, the Hawaiian Drosophila and the genus Scaptomyza. The Hawaiian Drosophila are largely saprophagous and rely on approximately 40 endemic plant families and their associated microbes to complete development. Scaptomyza are even more diverse in host breadth. While many species of Scaptomyza utilize decomposing plant substrates, some species have evolved to become herbivores, parasites on spider egg masses, and exploit microbes on living plant tissue. Understanding the origin of the ecological diversity encompassed by these nearly 700 described species has been a challenge. The central role of microbes in drosophilid ecology suggests bacterial and fungal associates may have played a role in the diversification of the Hawaiian Drosophilidae. Here we synthesize recent ecological and microbial community data from the Hawaiian Drosophilidae to examine the forces that may have led to this adaptive radiation. We propose that the evolutionary success of the Hawaiian Drosophilidae is due to a combination of factors, including adaptation to novel ecological niches facilitated by microbes.
doi:10.3389/fmicb.2014.00616
PMCID: PMC4270190  PMID: 25566196
Hawaiian Drosophila; Scaptomyza; symbiosis; fungi; Pseudomonas; herbivory; adaptive radiation

Results 1-25 (651249)