Search tips
Search criteria

Results 1-25 (1295260)

Clipboard (0)

Related Articles

1.  Paraoxonase 1 Polymorphism and Prenatal Pesticide Exposure Associated with Adverse Cardiovascular Risk Profiles at School Age 
PLoS ONE  2012;7(5):e36830.
Prenatal environmental factors might influence the risk of developing cardiovascular disease later in life. The HDL-associated enzyme paraoxonase 1 (PON1) has anti-oxidative functions that may protect against atherosclerosis. It also hydrolyzes many substrates, including organophosphate pesticides. A common polymorphism, PON1 Q192R, affects both properties, but a potential interaction between PON1 genotype and pesticide exposure on cardiovascular risk factors has not been investigated. We explored if the PON1 Q192R genotype affects cardiovascular risk factors in school-age children prenatally exposed to pesticides.
Pregnant greenhouse-workers were categorized as high, medium, or not exposed to pesticides. Their children underwent a standardized examination at age 6-to-11 years, where blood pressure, skin folds, and other anthropometric parameters were measured. PON1-genotype was determined for 141 children (88 pesticide exposed and 53 unexposed). Serum was analyzed for insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 3 (IGFBP3), insulin and leptin. Body fat percentage was calculated from skin fold thicknesses. BMI results were converted to age and sex specific Z-scores.
Prenatally pesticide exposed children carrying the PON1 192R-allele had higher abdominal circumference, body fat content, BMI Z-scores, blood pressure, and serum concentrations of leptin and IGF-I at school age than unexposed children. The effects were related to the prenatal exposure level. For children with the PON1 192QQ genotype, none of the variables was affected by prenatal pesticide exposure.
Our results indicate a gene-environment interaction between prenatal pesticide exposure and the PON1 gene. Only exposed children with the R-allele developed adverse cardiovascular risk profiles thought to be associated with the R-allele.
PMCID: PMC3352943  PMID: 22615820
2.  Serum Levels of Free Insulin-Like Growth Factor (IGF)-I in Normal Children 
Serum levels of free insulin-like growth factor (IGF)-I were measured by immunoradiometric assay (IRMA) in fasting sera of 137 normal boys and 120 normal girls aged from 8 to 15 yr to study relationships between free IGF-I levels and ages, total IGF-I, IGF binding protein (IGFBP)-1, IGFBP-3, and acid-labile subunit (ALS) levels. In both sexes, serum free IGF-I levels and the ratios of free IGF-I to total IGF-I were significantly higher in the pubertal age groups than in the prepubertal age groups. Serum levels of free IGF-I showed a significant positive correlation with those of total IGF-I, IGFBP-3 and ALS, while they showed a significant negative correlation with those of IGFBP-1. These observations suggest that increase in serum free IGF-I levels during puberty is caused by a dramatic increase in total IGF-I, rather than IGFBP-3, and a decrease in IGFBP-1. Also, high free IGF-I levels may play an important role in pubertal growth spurt.
PMCID: PMC4004917  PMID: 24790301
free insulin-like growth factor (IGF)-I; total IGF-I; IGF binding protein (IGFBP)-1; IGFBP-3; acid-labile subunit (ALS)
3.  Racial Differences in the Association between Body Mass Index (BMI) and serum IGF-1, IGF-2, and IGFBP-3 
Endocrine-related cancer  2010;17(1):51.
African American (AA) race/ethnicity, lower body mass index (BMI), and higher insulin-like growth factor 1 (IGF-1) levels are associated with premenopausal breast cancer risk. This cross-sectional analysis investigated whether BMI or BMI at age 21 years contribute to racial differences in IGF-1, IGF-2, IGFBP-3, or free IGF-1. Participants included 816 white and 821 AA women between ages 40 and 79 years across a wide BMI range (18.5–40 kg/m2). Compared with white women, AA women had higher mean IGF-1 (146.3 vs. 134.4 ng/ml) and free IGF-1 (0.145 vs. 0.127) levels, and lower IGF-2 (1633.0 vs. 1769.3 ng/ml) and IGFBP-3 (3663.3 vs. 3842.5 ng/ml) levels (all p<0.01; adjusted for age, height, BMI, BMI at age 21, and menopause status). Regardless of race, IGF-1 and free IGF-1 levels sharply rose as BMI increased to 22–24 kg/m2, then declined thereafter, while IGF-2 and IGFBP-3 levels tended to rise with BMI. In contrast, BMI at age 21 was inversely associated with all IGF levels, but only among white women (p-interaction = 0.01). With the decline in IGF-1 with BMI at age 21 among whites, racial differences in IGF-1 significantly increased among women who were obese in early adulthood. In summary, BMI was associated with IGF-1 levels regardless of race/ethnicity, while obesity during childhood or young adulthood may have a greater impact on IGF-1 levels among white women. The effects of obesity throughout life on the IGF axis and racial differences in breast cancer risk require study.
PMCID: PMC2814999  PMID: 19786462
Insulin-like growth factor; obesity; race; breast cancer
4.  Ethanol inhibition of aspartyl-asparaginyl-β-hydroxylase in fetal alcohol spectrum disorder: Potential link to the impairments in central nervous system neuronal migration 
Alcohol (Fayetteville, N.Y.)  2009;43(3):225-240.
Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to alcohol and associated with hypoplasia and impaired neuronal migration in the cerebellum. Neuronal survival and motility are stimulated by insulin and insulin-like growth factor (IGF), whose signaling pathways are major targets of ethanol neurotoxicity. To better understand the mechanisms of ethanol-impaired neuronal migration during development, we examined the effects of chronic gestational exposure to ethanol on aspartyl (asparaginyl)-β-hydroxylase (AAH) expression, because AAH is regulated by insulin/IGF and mediates neuronal motility. Pregnant Long—Evans rats were pair-fed isocaloric liquid diets containing 0, 8, 18, 26, or 37% ethanol by caloric content from gestation day 6 through delivery. Cerebella harvested from postnatal day 1 pups were used to examine AAH expression in tissue, and neuronal motility in Boyden chamber assays. We also used cerebellar neuron cultures to examine the effects of ethanol on insulin/IGF—stimulated AAH expression, and assess the role of GSK-3β—mediated phosphorylation on AAH protein levels. Chronic gestational exposure to ethanol caused dose-dependent impairments in neuronal migration and corresponding reductions in AAH protein expression in developing cerebella. In addition, prenatal ethanol exposure inhibited insulin and IGF-I—stimulated directional motility in isolated cerebellar granule neurons. Ethanol-treated neuronal cultures (50 mM × 96 h) also had reduced levels of AAH protein. Mechanistically, we showed that AAH protein could be phosphorylated on Ser residues by GSK-3β, and that chemical inhibition of GSK-3β and/or global Caspases increases AAH protein in both control- and ethanol-exposed cells. Ethanol-impaired neuronal migration in FASD is associated with reduced AAH expression. Because ethanol increases the activities of both GSK-3β and Caspases, the inhibitory effect of ethanol on neuronal migration could be mediated by increased GSK-3β phosphorylation and Caspase degradation of AAH protein.
PMCID: PMC2893031  PMID: 19393862
Aspartyl (asparaginyl)-β-hydroxylase; Fetal alcohol syndrome; Neuronal migration; Insulin; Central nervous system; Glycogen synthase kinase 3β
5.  Insulin-like growth factor-I mitigates motor coordination deficits associated with neonatal alcohol exposure in rats 
Neurotoxicology and teratology  2008;31(1):40-48.
Prenatal alcohol exposure can affect brain development, leading to behavioral problems, including overactivity, motor dysfunction and learning deficits. Despite warnings about the effects of drinking during pregnancy, rates of fetal alcohol syndrome remain unchanged and thus, there is an urgent need to identify interventions that reduce the severity of alcohol’s teratogenic effects. Insulin-like growth factor I (IGF-I) is neuroprotective against ethanol-related toxicity and promotes white matter production following a number of insults. Given that prenatal alcohol leads to cell death and white matter deficits, the present study examined whether IGF-I could reduce the severity of behavioral deficits associated with developmental alcohol exposure. Sprague-Dawley rat pups received ethanol intubations (5.25 g/kg/day) or sham intubations on postnatal days (PD) 4–9, a period of brain development equivalent to the third trimester. On PD 10–13, subjects from each treatment received 0 or 10 μg IGF-I intranasally each day. Subjects were then tested on a series of behavioral tasks including open field activity (PD 18–21), parallel bar motor coordination (PD 30–32) and Morris maze spatial learning (PD 45–52). Ethanol exposure produced overactivity, motor coordination impairments, and spatial learning deficits. IGF-I treatment significantly mitigated ethanol’s effects on motor coordination, but not the other two behavioral deficits. These data indicate that IGF-I may be a potential treatment for some of ethanol’s damaging effects, a finding that has important implications for children of women who drink alcohol during pregnancy.
PMCID: PMC3164874  PMID: 18755266
fetal alcohol; open field activity; cerebellum; motor coordination; spatial learning
6.  si-RNA inhibition of brain insulin or insulin-like growth factor receptors causes developmental cerebellar abnormalities: relevance to fetal alcohol spectrum disorder 
Molecular Brain  2011;4:13.
In experimental models of fetal alcohol spectrum disorder (FASD), cerebellar hypoplasia and hypofoliation are associated with insulin and insulin-like growth factor (IGF) resistance with impaired signaling through pathways that mediate growth, survival, plasticity, metabolism, and neurotransmitter function. To more directly assess the roles of impaired insulin and IGF signaling during brain development, we administered intracerebroventricular (ICV) injections of si-RNA targeting the insulin receptor, (InR), IGF-1 receptor (IGF-1R), or IGF-2R into postnatal day 2 (P2) Long Evans rat pups and examined the sustained effects on cerebellar function, structure, and neurotransmitter-related gene expression (P20).
Rotarod tests on P20 demonstrated significant impairments in motor function, and histological studies revealed pronounced cerebellar hypotrophy, hypoplasia, and hypofoliation in si-InR, si-IGF-1R, and si-IGF-2R treated rats. Quantitative RT-PCR analysis showed that si-InR, and to a lesser extent si-IGF-2R, broadly inhibited expression of insulin and IGF-2 polypeptides, and insulin, IGF-1, and IGF-2 receptors in the brain. ELISA studies showed that si-InR increased cerebellar levels of tau, phospho-tau and β-actin, and inhibited GAPDH. In addition, si-InR, si-IGF-1R, and si-IGF-2R inhibited expression of choline acetyltransferase, which mediates motor function. Although the ICV si-RNA treatments generally spared the neurotrophin and neurotrophin receptor expression, si-InR and si-IGF-1R inhibited NT3, while si-IGF-1R suppressed BDNF.
early postnatal inhibition of brain InR expression, and to lesser extents, IGF-R, causes structural and functional abnormalities that resemble effects of FASD. The findings suggest that major abnormalities in brains with FASD are mediated by impairments in insulin/IGF signaling. Potential therapeutic strategies to reduce the long-term impact of prenatal alcohol exposure may include treatment with agents that restore brain insulin and IGF responsiveness.
PMCID: PMC3077327  PMID: 21443795
7.  Size at birth and plasma insulin-like growth factor-1 concentrations. 
Archives of Disease in Childhood  1995;73(4):287-293.
OBJECTIVE--To test the hypothesis that reduced fetal growth leads to altered plasma insulin-like growth factor-1 (IGF-1) concentrations in childhood. DESIGN--A follow up study of 4 year old children whose birth weights were recorded, and of 7 year old children whose weight, length, head circumference, and placental weight were measured at birth. SETTING--Pune, India, and Salisbury, England. SUBJECTS--200 children born during October 1987 to April 1989 in the King Edward Memorial Hospital, Pune, weighing over 2.0 kg at birth and not requiring special care, and 244 children born during July 1984 to February 1985 in the Salisbury Health District and still living there. MAIN OUTCOME MEASURE--Plasma IGF-1 concentrations. RESULTS--In both groups of children, and consistent with findings in other studies, plasma IGF-1 concentrations were higher in taller and heavier children, and higher in girls than boys. Allowing for sex and current size, concentrations were inversely related to birth weight (Pune p = 0.002; Salisbury p = 0.003). Thus at any level of weight or height, children of lower birth weight had higher IGF-1 concentrations. The highest concentrations were in children who were below average birth weight and above average weight or height when studied. Systolic blood pressures were higher in children with higher IGF-1 concentrations (Pune p = 0.01; Salisbury p = 0.04). CONCLUSIONS--Children of lower birth weight develop higher circulating concentrations of IGF-1 than expected for their height and weight. This is consistent with the hypothesis that under-nutrition in utero leads to reprogramming of the IGF-1 axis. The increase of plasma IGF-1 concentrations in low birthweight children may also be linked to postnatal catch-up growth. High IGF-1 concentrations may be one of the mechanisms linking reduced fetal growth and high blood pressure in later life.
PMCID: PMC1511321  PMID: 7492190
8.  Motor Function Deficits Following Chronic Prenatal Ethanol Exposure are Linked to Impairments in Insulin/IGF, Notch and Wnt Signaling in the Cerebellum 
Fetal alcohol spectrum disorder (FASD) is associated with deficits in cerebellar function that can persist through adolescence. Previous studies demonstrated striking inhibition of insulin and insulin-like growth factor (IGF) signaling in ethanol-exposed cerebella.
We sought to determine if FASD-induced impairments in motor function were associated with deficits in insulin/IGF signaling in juvenile cerebella. Given the growing evidence that insulin/IGF pathways cross-talk with Notch and Wnt to promote brain development and maturation; we also examined the integrity of canonical Wnt and Notch signaling networks in the brain following chronic prenatal ethanol exposure.
Pregnant Long Evans rats were fed isocaloric liquid diets containing 0% or 24% ethanol by caloric content from gestation day 6 through delivery. Pups were subjected to rotarod testing on postnatal days (P) 15–16 and sacrificed on P30. Cerebella were used for molecular and biochemical analysis of insulin/IGF-1, canonical Wnt, and Notch signaling mechanisms.
Prenatal ethanol exposures impaired rotarod performance, inhibited signaling through insulin and IGF-1 receptors, IRS-1, and Akt, increased activation of GSK-3β, and broadly suppressed genes mediating the canonical Wnt and Notch networks.
Abnormalities in cerebellar function following chronic prenatal ethanol exposure are associated with inhibition of insulin/IGF, canonical Wnt, and Notch networks that cross-talk via GSK-3β. Effective therapeutic measures for FASD may require multi-pronged support of interrelated signaling networks that regulate brain development.
PMCID: PMC4096945  PMID: 25035811
Fetal alcohol spectrum disorder; Insulin; IGF; Wnt; Notch; Cerebellum; Prenatal ethanol exposure; Signal transduction; Multiplex ELISA
9.  Liver-spleen axis, insulin-like growth factor-(IGF)-I axis and fat mass in overweight/obese females 
Fat mass (FM) in overweight/obese subjects has a primary role in determining low-grade chronic inflammation and, in turn, insulin resistance (IR) and ectopic lipid storage within the liver. Obesity, aging, and FM influence the growth hormone/insulin-like growth factor (IGF)-I axis, and chronic inflammation might reduce IGF-I signaling. Altered IGF-I axis is frequently observed in patients with Hepatic steatosis (HS). We tested the hypothesis that FM, or spleen volume and C-reactive protein (CRP)--all indexes of chronic inflammation--could affect the IGF-I axis status in overweight/obese, independently of HS.
The study population included 48 overweight/obese women (age 41 ± 13 years; BMI: 35.8 ± 5.8 kg/m2; range: 25.3-53.7), who underwent assessment of fasting plasma glucose and insulin, homeostasis model assessment of insulin resistance (HOMA), cholesterol and triglycerides, HDL-cholesterol, transaminases, high-sensitive CRP, uric acid, IGF-I, IGF binding protein (BP)-1, IGFBP-3, and IGF-I/IGFBP-3 ratio. Standard deviation score of IGF-I according to age (zSDS) were also calculated. FM was determined by bioelectrical impedance analysis. HS severity grading (score 0-4 according liver hyperechogenicity) and spleen longitudinal diameter (SLD) were evaluated by ultrasound.
Metabolic syndrome (MS) and HS were present in 33% and 85% of subjects, respectively. MS prevalence was 43% in subjects with increased SLD. IGF-I values, but not IGF-I zSDS, and IGF-I/IGFBP-3 ratio were significantly lower, while FM%, FPI, HOMA, ALT, CRP, were significantly higher in patients with severe HS than in those with mild HS. IGF-I zSDS (r = -0.42, r = -0.54, respectively; p < 0.05), and IGFBP-1 (r = -0.38, r = -0.42, respectively; p < 0.05) correlated negatively with HS severity and FM%. IGF-I/IGFBP-3 ratio correlated negatively with CRP, HS severity, and SLD (r = -0.30, r = -0.33, r = -0.43, respectively; p < 0.05). At multivariate analysis the best determinants of IGF-I were FM% (β = -0.49; p = 0.001) and IGFBP-1 (β = -0.32; p = 0.05), while SLD was in the IGF-I/IGFBP-3 ratio (β = -0.43; p = 0.004).
The present study suggests that lower IGF-I status in our study population is associated with higher FM, SLD, CRP and more severe HS.
PMCID: PMC3177905  PMID: 21846339
10.  Pharmacodynamic Considerations with Recombinant Human Insulin-Like Growth Factor-I in Children 
Hormone research  2005;63(5):220-227.
To report effects of weight-based recombinant human insulin-like growth factor-I (rhIGF-I) on IGF axis parameters in children with hyperinsulinism.
Open label trial with subcutaneous rhIGF-I (40 μg/kg/dose). Patients studied were children (1 month to 11 years) with diffuse hyperinsulinism (n = 7). Serial serum IGF and insulin-like growth factor binding protein (IGFBP) concentrations were measured by RIA and analyzed by linear Pearson regression.
Following the initial rhIGF-I dose, total insulin-like growth factor-I (IGF-I) rose by 56% at 30 min (p < 0.01) and 85% at 120 min (p < 0.02). Serum IGF-II, IGFBP-2, and IGFBP-3 levels did not change. Peak serum IGF-I levels within 12 h of the initial rhIGF-I dose were 167–700 mg/ml. The variable peak IGF-I response is attributable in part to IGFBP-3 differences across this pediatric age range. Models of rhIGF-I dosing based upon body surface area (BSA) or initial IGFBP-3 resulted in predictable peak serum IGF-I levels (r = 0.78; p < 0.03). Recalculating rhIGF-I dosing based upon the BSA · IGFBP-3 product correlated closely with peak IGF-I level (r = 0.85; p < 0.007).
Weight-based IGF-I dosing in this cohort resulted in variable IGF-I levels. Considering BSA and serum IGFBP-3 concentration in children is appropriate for subcutaneous IGF-I administration. A combination of these values may yield predictable individualization of rhIGF-I dosing.
PMCID: PMC3102299  PMID: 15886488
Hyperinsulinism; IGF-I dosing; rhIGF-I dosing; Pharmacokinetics; IGF-I; IGFBP
11.  Lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: a prospective study 
Environmental Health  2011;10:79.
Endocrine disrupting chemicals have been hypothesized to play a role in the obesity epidemic. Long-term effects of prenatal exposure to non-persistent pesticides on body composition have so far not been investigated. The purpose of this study was to assess possible effects of prenatal exposure to currently used pesticides on children's growth, endocrine and reproductive function.
In a prospective study of 247 children born by women working in greenhouses in early pregnancy, 168 were categorized as prenatally exposed to pesticides. At three months (n = 203) and at 6 to11 years of age (n = 177) the children underwent a clinical examination and blood sampling for analysis of IGF-I, IGFBP3 and thyroid hormones. Body fat percentage at age 6 to11 years was calculated from skin fold measurements. Pesticide related associations were tested by linear multiple regression analysis, adjusting for relevant confounders.
Compared to unexposed children birth weight and weight for gestational age were lower in the highly exposed children: -173 g (-322; -23), -4.8% (-9.0; -0.7) and medium exposed children: -139 g (-272; -6), -3.6% (-7.2; -0.0). Exposed (medium and highly together) children had significantly larger increase in BMI Z-score (0.55 SD (95% CI: 0.1; 1.0) from birth to school age) and highly exposed children had 15.8% (0.2; 34.6) larger skin folds and higher body fat percentage compared to unexposed. If prenatally exposed to both pesticides and maternal smoking (any amount), the sum of four skin folds was 46.9% (95% CI: 8.1; 99.5) and body fat percentage 29.1% (95% CI: 3.0; 61.4) higher. There were subtle associations between exposure and TSH Z-score -0.66(-1.287; -0.022) and IGF-I Z-score (girls: -0.62(-1.0; -0.22), boys: 0.38(-0.03; 0.79)), but not IGFBP3.
Occupational exposure to currently used pesticides may have adverse effects in spite of the added protection offered to pregnant women. Maternal exposure to combinations of modern, non-persistent pesticides during early pregnancy was associated with affected growth, both prenatally and postnatally. We found a biphasic association with lower weight at birth followed by increased body fat accumulation from birth to school age. We cannot rule out some residual confounding due to differences in social class, although this was adjusted for. Associations were stronger in highly exposed than in medium exposed children, and effects on body fat content at school age was potentiated by maternal smoking in pregnancy.
PMCID: PMC3196902  PMID: 21933378
pesticides; prenatal exposure; birth weight; body composition; maternal smoking
12.  Growth Factors and Adipocytokines in Prepubertal Children Born Small for Gestational Age 
Diabetes Care  2009;32(4):714-719.
The aim of this study was to test whether being born small for gestational age (SGA) has an impact on adiponectin and leptin levels and the IGF system in relation to insulin sensitivity, taking into consideration the severity of growth restriction.
Serum levels of adiponectin, leptin, fasting glucose, fasting insulin (IF), the homeostasis model assessment insulin resistance index (HOMA-IR), IGF-1, free IGF-1, IGF-binding protein (IGFBP)-1 and -3, total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides were evaluated in 57 children at age 4–10 years. Of these, 32 had been born appropriate size for gestational age (AGA) and 25 SGA (14 in the <3rd percentile and 11 in the 3rd–10th percentile).
The SGA 3rd–10th percentile children were already insulin resistant at prepubertal age (IF 39.6 ± 16.8 vs. 27 ± 12 pmol/l, P < 0.01, and HOMA-IR 1.4 ± 0.6 vs. 0.95 ± 0.42 in SGA vs. AGA children, P < 0.05). Their IGF-1 and IGFBP-3 concentrations were significantly lower than those in AGA children (160.4 ± 66.2 vs. 207 ± 66.8 μg/l, P < 0.05 and 2.3 ± 0.4 vs. 3.51 ± 1.21 mg/l in SGA vs. AGA children, P < 0.01). The SGA <3rd percentile children had higher adiponectin (15.6 ± 5.7 mg/l, P < 0.05) and IGFBP-1 levels (113.5 ± 33.9 μg/l, P < 0.05) than AGA children (11.3 ± 6.6 mg/l and 90.8 ± 24.2 μg/l, respectively) and lower IGF-1 and IGFBP-3 concentrations (162.6 ± 68.4 μg/l, P < 0.05 and 2.4 ± 0.7 mg/l, P < 0.01). They also had significantly lower waist circumference (P < 0.05). Leptin levels did not differ among groups, but an inverse correlation with IGFBP-1 (r = −0.55, P < 0.01) was found in the pooled SGA group.
Intrauterine growth restriction appears to affect the IGF axis at prepubertal age, and its severity plays a role in insulin sensitivity.
PMCID: PMC2660477  PMID: 19131467
13.  Bidirectional Crosstalk between Leptin and Insulin-like Growth Factor-I Signaling Promotes Invasion and Migration of Breast Cancer Cells via Transactivation of Epidermal Growth Factor Receptor 
Cancer research  2008;68(23):9712-9722.
Obesity is an independent risk factor for breast cancer, and obese breast cancer patients exhibit a higher risk for larger tumor burden and increased metastasis. Obesity, as associated with metabolic syndrome, results in an increase in circulating insulin-like growth factor (IGF), which acts as a mitogen. In addition, higher plasma level of adipocytokine leptin is associated with obesity. In the present study, we show that cotreatment with leptin and IGF-I significantly increases proliferation as well as invasion and migration of breast cancer cells. We found a novel bidirectional crosstalk between leptin and IGF-I signaling; IGF-I induced phosphorylation of leptin receptor (Ob-Rb) and leptin induced phosphorylation of IGF-I receptor (IGF-IR), whereas cotreatment induced synergistic phosphorylation and association of Ob-Rb and IGF-IR along with activation of downstream effectors, Akt and extracellular signal–regulated kinase. Leptin increased phosphorylation of IGF signaling molecules insulin-receptor substrate (IRS)-1 and IRS-2. Interestingly, we found that leptin and IGF-I cotreatment synergistically transactivated epidermal growth factor receptor (EGFR), depending on the proteolytic release of EGFR ligands, as the broad-spectrum matrix metalloproteinase inhibitor GM6001 could inhibit this effect. Using clinically relevant EGFR inhibitors, erlotinib and lapatinib, we found that inhibition of EGFR activation effectively inhibited leptin- and IGF-I–induced invasion and migration of breast cancer cells. Taken together, these data suggest a novel bidirectional crosstalk between leptin and IGF-I signaling that transactivates EGFR and promotes the metastatic properties as well as invasion and migration of breast cancer cells. Our findings indicate the possibility of using EGFR inhibitors erlotinib and lapatinib to counter the procancerous effects of leptin and IGF-I in breast cancers.
PMCID: PMC3180854  PMID: 19047149
14.  Growth hormone and prostate cancer: Guilty by association?1 
Recent case-control studies have found a 7–8% increase in the serum levels of insulin-like growth factor (IGF)-I in patients with prostate cancer (CaP), the most frequently diagnosed cancer in men. We hereby review what is currently known about growth hormone (GH) and the IGF axis in CaP, take a closer inspection of the studies published to date reporting IGF-I levels in CaP patients, and derive implications for the future medical management of patients receiving trophic hormone therapies as well as those at risk for developing CaP. The role of GH in controlling prostate growth and carcinogenesis is still unclear from animal studies and human disease patterns. However, multilayered perturbations of the IGF axis, including the autocrine production of IGFs, IGF binding proteins (IGFBPs) and IGFBP proteases, such as prostate-specific antigen, have been identified in CaP cells and tissues. Interestingly, IGFBP-3 is a potent inhibitor of prostatic IGF action and also mediates prostate apoptosis via an IGF-independent mechanism. Serum IGFBP-3 levels have been identified to be negatively correlated to the risk of CaP. Notably, GH therapy raises both IGF-I and IGFBP-3 levels in serum. Conclusions based on the studies of IGF-I levels in CaP patients are affected by both the populations studied and the types of IGF-I assay employed. While the studies do indicate an association between serum IGF-I levels and CaP risk, causality has not been established. Thus, serum IGF-I level may actually be a confounding variable, serving as a marker for local prostatic IGF-I production. Increased GH levels as seen in acromegaly have been associated with benign prostatic hyperplasia but not with CaP. Thus, serum IGF-I may lead to an ascertainment bias among younger men with benign prostatic hyperplasia who are more likely to present with prostatic symptoms and have subclinical CaP diagnosed, Should serum IGF-I levels be proven to play a causal role in the pathogenesis of CaP, interpreting the risk associated with therapies such as GH must take into account both the duration of exposure and the risk magnitude associated with the degree of serum IGF-I elevation. Since GH-deficient patients often have a subnormal IGF-I serum level, which normalizes on therapy, their CaP risk on GH therapy probably does not increase substantially above that of the normal population. Until further research in the area dictates otherwise, ongoing surveillance and routine monitoring of IGF-I and IGFBP-3 levels in GH recipients must become standard of care.
PMCID: PMC4152917  PMID: 10442574
Growth hormone; prostate cancer; insulin-like growth factor-1; insulin-like growth factor-binding proteins
15.  Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells 
Quercetin, the predominant flavonoid, has been reported to lower the risk of several cancers. This flavonoid found in onion, grapes, green vegetables, etc. has been shown to possess potent antiproliferative effects against various malignant cells. This study was designed to investigate its effects on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) proteins secretion and also apoptosis induction in the human prostate cancer cell line, PC-3.
We evaluated the secretion of IGF-I, -II and IGFBP-3 in quercetin treated cells by immunoradiometric (IRMA) method. Apoptosis was studied in quercetin treated cells by TUNEL and DNA fragmentation. Protein expressions of Bcl-2, Bcl-xL, Bax and caspase-3 were studied by western blot.
At a dose of 100 μM concentration, we observed increased IGFBP-3 accumulation in PC-3 cells conditioned medium with a dose dependent increase with 2 fold over a base line, and significantly reduced the both IGF-I and IGF-II levels. Apoptosis induction was also confirmed by TUNEL assay. Bcl-2 and Bcl-xL protein expressions were significantly decreased and Bax and caspase-3 were increased.
These results suggest that the decreased level of IGFs could be due to the increased levels of IGFBP-3, because of the high binding affinity towards IGFs, thereby decreasing the cell proliferation. The increased level of IGFBP-3 was associated with increased pro-apoptotic proteins and apoptosis in response to quercetin, suggesting it may be a p53-independent effector of apoptosis in prostate cancer cells.
PMCID: PMC1482693  PMID: 16600019
16.  Genetic and Dietary Determinants of Insulin-Like Growth Factor (IGF)-1 and IGF Binding Protein (BP)-3 Levels among Chinese Women 
PLoS ONE  2014;9(10):e108934.
Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher commoncancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations.
From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1to IGFBP-3 with IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels.
Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: P = 0.007).In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (P = 0.002). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] µg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38,378] µg/L).
IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220. High soy isoflavone intake may interact with carrying CC genotype for IGF-1-rs1520220 to lower women's serum IGF-1 levels more.
PMCID: PMC4186782  PMID: 25285521
17.  Plasma leptin and insulin-like growth factor I levels during acute exacerbations of chronic obstructive pulmonary disease 
Recent studies have provided evidence for a link between leptin and tumor necrosis factor-alpha (TNF-α). Insulin-like growth factor I (IGF-I) mediates the metabolic effects of growth hormone (GH). The GH axis is believed to be suppressed in chronic obstructive pulmonary disease (COPD). The aim of this study is to find out whether acute exacerbations of COPD are followed by changes in plasma leptin and insulin-like growth factor I (IGF-I) levels and furthermore, whether these changes are related to systemic inflammation.
We measured serum leptin, IGF-I, TNF-α, interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) levels in 52 COPD patients with acute exacerbation on admission to hospital (Day 1) and two weeks later (Day 15). 25 healthy age-matched subjects served as controls. COPD patients were also divided into two subgroups (29 with chronic bronchitis and 23 with emphysema). Serum leptin and IGF-I were measured by radioimmunoassay and TNF-α, IL-1β, IL-6 and IL-8 were measured by ELISA.
Serum leptin levels were significantly higher and serum IGF-I levels significantly lower in COPD patients on Day 1 than in healthy controls (p < 0.001). A positive correlation was observed between leptin and TNF-α on Day 1 (r = 0.620, p < 0.001). Emphysematous patients had significantly lower IGF-I levels compared to those with chronic bronchitis both on Day 1 and Day 15 (p = 0.003 and p < 0.001 respectively).
Inappropriately increased circulating leptin levels along with decreased IGF-I levels occured during acute exacerbations of COPD. Compared to chronic bronchitis, patients with emphysema had lower circulating IGF-I levels both at the onset of the exacerbation and two weeks later.
PMCID: PMC2670813  PMID: 19344528
18.  Insulin-like growth factor family and combined antisense approach in therapy of lung carcinoma. 
Molecular Medicine  2002;8(3):149-157.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.
PMCID: PMC2039980  PMID: 12142546
19.  Protracted Upregulation of Leptin and IGF1 is Associated with Activation of PI3K/Akt and JAK2 Pathway in Mouse Intestine after Ionizing Radiation Exposure 
Ionizing radiation is a known risk factor for gastrointestinal (GI) pathologies including cancer. Hormones and related signaling crosstalk, which could contribute to radiation-induced persistent pathophysiologic changes in the small intestine and colon, remain to be explored. The current study assessed perturbation of GI homeostasis-related hormones and signaling pathways at the systemic as well as at the tissue level in small intestine and colon. Mice (6-8 week old C57BL/6J) were exposed to 2 Gy γ radiation, serum and tissue samples were collected, and insulin like growth factor 1 (IGF-1) and leptin signaling were assessed two or twelve months after radiation exposure. Serum levels of IGF-1, IGF binding protein 3 (IGFBP3), leptin, and adiponectin were altered at these times after irradiation. Radiation was associated with increased IGF1 receptor (IGF1R) and obesity (leptin) receptor (Ob-R), decreased adiponectin receptor 1 (Adipo-R1) and 2 (Adipo-R2), and increased Ki-67 levels in small intestine and colon at both time points. Immunoblot analysis further showed increased IGF1R and Ob-R, and decreased Adipo-R2. Additionally, upregulation of PI3K/Akt and JAK2 signaling, which are downstream of IGF1 and leptin, was also observed in irradiated samples at both time points. These results when considered along with increased cell proliferation in the small intestine and colon demonstrate for the first time that ionizing radiation can persistently increase IGF1 and leptin and activate downstream proliferative pathways, which may contribute to GI functional alterations and carcinogenesis.
PMCID: PMC4323367
ionizing radiation; colorectal cancer; leptin; insulin like growth factor 1; intestinal homeostasis
20.  Serum Levels of Insulin-Like Growth Factor (IGF); IGF-Binding Proteins-3, -4, and -5; and Their Relationships to Bone Mineral Density and the Risk of Vertebral Fractures in Postmenopausal Women 
Calcified tissue international  2006;78(1):18-24.
We previously found that serum levels of insulin-like growth factor I (IGF-I) and IGF-binding protein (IGFBP)-3, but not IFGBP-2, were associated with bone mineral density (BMD) and the risk of vertebral fractures. The aim of the present study was to investigate the roles of IGFBP-4 and -5 in age-dependent bone loss and vertebral fracture risk in postmenopausal Japanese women and to compare them with those of IGF-I and IGFBP-3. One hundred and ninety-three Japanese women aged 46–88 years (mean 62.5) were enrolled in the cross-sectional study. BMD was measured at the lumbar spine, femoral neck, ultradistal radius (UDR), and total body by dual-energy X-ray absorptiometry. Serum levels of IGFBP-4 and -5 as well as IGF-I and IGFBP-3 were measured by radioimmunoassay. Serum levels of IGF-I, IGFBP-3, and IGFBP-5 declined with age, while serum IGFBP-4 increased with age. Multiple regression analysis was performed between BMD at each skeletal site and serum levels of IGF-I and IGFBPs adjusted for age, body weight, height, and serum creatinine. BMD at the UDR was significantly and positively correlated with all serum levels of IGF-I and IGFBPs measured (P < 0.01), while BMD at the femoral neck was correlated with none of them. Serum IGF-I level was significantly and positively correlated with BMD at all sites except the femoral neck (P < 0.01), while serum IGFBP-3 and -4 levels were significantly and positively correlated with only radial BMD (P < 0.01). Serum IGFBP-5 level was positively correlated with UDR BMD (P < 0.001) and negatively correlated with total BMD (P < 0.05). Serum IGF-I, IGFBP-3, and IFGBP-5 levels were significantly lower in women with vertebral fractures than in those without fractures (mean ± SD: 97.1 ± 32.1 vs. 143.9 ± 40.9 ng/dl, P < 0.0001; 2.18 ± 1.02 vs. 3.23 ± 1.07 µg/ml, P < 0.0001; 223.6 ± 63.3 vs. 246.5 ± 71.5 ng/ml, P = 0.0330, respectively). When multivariate logistic regression analysis was performed with the presence of vertebral fractures as a dependent variable and serum levels of IGF-I and IGFBPs adjusted for age, body weight, height, serum creatinine, and serum alubumin as independent variables, IGF-I and IGFBP-3 were selected as indices affecting the presence of vertebral fractures [odds ratio (OR) = 0.29, 95% confidential interval (CI) 0.15–0.57 per SD increase, P = 0.0003 and OR = 0.31, 95% CI 0.16–0.61 per SD increase, P = 0.0007, respectively]. To compare the significance values, IGF-I, IGFBP-3, and age were simultaneously added as independent variables in the analysis. IGFBP-3 was more strongly associated with the presence of vertebral fractures than IGF-I and age (P = 0.0006, P = 0.0148, and P = 0.0013, respectively). Thus, after comprehensive measurements of serum levels of IGF-I and IGFBPs, it seems that serum IGF-I level is most efficiently associated with bone mass and that serum IGFBP-3 level is most strongly associated with the presence of vertebral fractures in postmenopausal women among the IGF system components examined.
PMCID: PMC2904611  PMID: 16397738
Insulin-like growth factor-binding protein; Insulin-like growth factor; Bone mineral density; Vertebral fracture; Postmenopausal women
21.  Neonatal IGF-1/IGFBP-1 axis and retinopathy of prematurity are associated with increased blood pressure in preterm children 
Preterm children are at risk of developing increased blood pressure (BP). We evaluated possible associations between BP, early insulin-like growth factor-1 (IGF-1) and IGF-binding protein-1 (IGFBP-1) levels and retinopathy of prematurity (ROP) in preterm children.
The study included 32 infants: median gestational age 28.1 weeks (range 24.6–31.3) and birthweight standard deviation scores (SDS) (±SD) 1.0 ± 2.7. IGF-1 and IGFBP-1 at postnatal weeks 32.6–34.6 and ROP stages were established after birth. BP was measured at the age of 4 years. The ratio (IGF-1)2/IGFBP-1 was created to investigate the influence of both IGF-1 and IGFBP-1 to later BP.
Diastolic BP correlated with IGFBP-1, inversely correlated with IGF-1 and IGF-12/IGFBP-1 (r = −0.71, p < 0.0001) and positively correlated with catch-up growth velocity from lowest weight SDS to age 36.5 weeks (r = 0.48, p < 0.01), independent of gestational age. Children with moderate-to-severe ROP as neonates had higher mean arterial BP [78 (±95%CI 74–83) vs 71 (±95%CI 68–75) mm Hg, p < 0.05] adjusted for gestational age and birthweight SDS compared to children diagnosed with no to mild ROP.
Low neonatal IGF-12/IGFBP-1 and severe ROP were associated with higher BP in 4-year-old children born very preterm and may thus predict future cardiovascular morbidity.
PMCID: PMC4253130  PMID: 24148095
Catch-up growth; Diastolic blood pressure; IGF-1; IGFBP-1; Preterm children; Retinopathy of prematurity
22.  Excessive gestational weight gain and obesity contribute to altered expression of maternal insulin-like growth factor binding protein-3 
Excessive gestational weight gain (GWG) increases risk of large for gestational age neonates and subsequent tracking of excess weight throughout the life course for both mother and child. Although the physiological mechanisms underlying these associations are incomplete, the insulin-like growth factor (IGF) axis has garnered attention for its role in fetal growth and development. Our purpose was to characterize the IGF axis protein expression patterns in mother–infant dyads in respect of excessive GWG.
We obtained fasting serum samples and corresponding cord blood from eight controls (ADHERE group: ie, those who gained in accordance with 2009 Institute of Medicine GWG recommendations) and 13 exceeders (EXCEED group: ie, those who exceeded Institute of Medicine GWG recommendations). At study completion, we examined protein expression of IGF-I, IGF-II, IGF binding protein (IGFBP)-1, IGFBP-3, IGFBP-4, and hormone concentrations in both maternal and cord blood.
Between-group comparisons were made and revealed elevated maternal leptin (P ≤ 0.05) concentrations in gravidas who exceeded recommendations. There was a significantly higher number of obese women in the EXCEED group (P < 0.05). After adjustment, maternal leptin levels were positively correlated with maternal homeostasis model of assessment for insulin resistance score and excessive GWG (P ≤ 0.01). However, serum IGFBP-3 expression in the EXCEED mothers was greater than that in the ADHERE group (P ≤ 0.05).
These findings provide preliminary evidence suggesting that small deviations in IGFBP-regulated IGF bioavailability arising from excessive GWG/positive energy balance may affect adipocyte differentiation through subclinical insulin resistance.
PMCID: PMC3794982  PMID: 24124394
gestational weight gain; insulin-like growth factors; insulin-like growth factor binding protein-3; pregnancy; insulin sensitivity
23.  Expression of Insulin-Like Growth Factor System Genes During the Early Postnatal Neurogenesis in the Mouse Hippocampus 
Journal of neuroscience research  2007;85(8):1618-1627.
Insulin-like growth factor-1 (IGF-1) is essential to hippocampal neurogenesis and the neuronal response to hypoxia/ischemia injury. IGF (IGF-1 and -2) signaling is mediated primarily by the type 1 IGF receptor (IGF-1R) and modulated by six high-affinity binding proteins (IGFBP) and the type 2 IGF receptor (IGF-2R), collectively termed IGF system proteins. Defining the precise cells that express each is essential to understanding their roles. With the exception of IGFBP-1, we found that mouse hippocampus expresses mRNA for each of these proteins during the first 2 weeks of postnatal life. Compared to postnatal day 14 (P14), mRNA abundance at P5 was higher for IGF-1, IGFBP-2, -3, and -5 (by 71%, 108%, 100%, and 98%, respectively), lower for IGF-2, IGF-2R, and IGFBP-6 (by 65%, 78%, and 44%, respectively), and unchanged for IGF-1R and IGFBP-4. Using laser capture microdissection (LCM), we found that granule neurons and pyramidal neurons exhibited identical patterns of expression of IGF-1, IGF-1R, IGF-2R, IGFBP-2, and -4, but did not express other IGF system genes. We then compared IGF system expression in mature granule neurons and their progenitors. Progenitors exhibited higher mRNA levels of IGF-1 and IGF-1R (by 130% and 86%, respectively), lower levels of IGF-2R (by 72%), and similar levels of IGFBP-4. Our data support a role for IGF in hippocampal neurogenesis and provide evidence that IGF actions are regulated within a defined in vivo milieu.
PMCID: PMC2302789  PMID: 17455296
insulin-like growth factor (IGF); hippocampus; dentate gyrus; laser capture microdissection (LCM)
24.  Plasma Insulin-like Growth Factors, Insulin-like Binding Protein-3, and Outcome in Metastatic Colorectal Cancer: Results from Intergroup Trial N9741 
Insulin-like growth factor (IGF)-I and IGF-II stimulate neoplastic cell growth and inhibit apoptosis, whereas IGF-binding protein-3 (IGFBP-3) inhibits the bioavailability of IGF-I and has independent proapoptotic activity. We examined the influence of baseline plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide on outcome among patients receiving first-line chemotherapy for metastatic colorectal cancer.
Experimental Design
The plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide as well as data on prognostic factors and body size were measured at baseline among 527 patients participating in a randomized trial of first-line chemotherapy for metastatic colorectal cancer.
Higher baseline plasma IGFBP-3 levels were associated with a significantly greater chemotherapy response rate (P = 0.03) after adjusting for other prognostic factors, whereas neither IGF-I nor IGF-II levels significantly predicted tumor response. Higher levels of IGF-I, IGF-II, and IGFBP-3 were all univariately associated with improved overall survival (P = 0.0001 for all). In a model that mutually adjusted for IGF-I and IGFBP-3, as well as other prognostic factors, increasing baseline-circulating IGFBP-3 was associated with a significantly longer time to tumor progression (P = 0.03), whereas circulating IGF-I was not associated with disease progression (P = 0.95). Levels of C-peptide were not associated with any measure of patient outcome.
Among colorectal cancer patients receiving first-line chemotherapy, increasing levels of IGFBP-3, an endogenous antagonist to IGF-I, are associated with an improved objective treatment response and a prolonged time to cancer progression. The IGF pathway may represent an important target for future treatment strategies.
PMCID: PMC2855207  PMID: 19073970
25.  Radioimmunological determination of insulinlike growth factors I and II in normal subjects and in patients with growth disorders and extrapancreatic tumor hypoglycemia. 
Journal of Clinical Investigation  1981;68(5):1321-1330.
Serum levels of immunoreactive insulinlike growth factors (IGF) I and II were determined by a modified IGF I and a new IGF II radioimmunoassay in normal children and adults, and in patients with acromegaly, isolated growth hormone deficiency, and extrapancreatic tumor hypoglycemia. Serum samples were gel filtered by a simple routine procedure at acidic pH to dissociate and separate IGF from the IGF carrier protein. Mean immunoreactive IGF I levels (+/- SD; corrected for crossreactivity of IGF II) were 193 +/- 58 ng/ml in normal adult subjects, 712 +/- 245 ng/ml in acromegalic patients and 24 +/- 14 ng/ml in patients with isolated growth hormone deficiency. The lack of growth hormone alone, irrespective of an otherwise normal hormonal status, appears to be responsible for the drastic decrease of IGF I levels. Oversecretion of growth hormone does not increase the levels of immunoreactive IGF II: mean levels (+/- SD; corrected for crossreactivity of IGF I) in normal and acromegalic subjects are virtually identical (647 +/- 126 and 641 +/- 189 ng/ml, respectively). Apparently, normal growth hormone levels stimulate IGF II production already maximally. However in growth hormone deficiency immunoreactive IGF II is significantly decreased (252 +/- 99 ng/ml). Thus, IGF II, like IGF I, is growth hormone dependent. But in contrast to IGF I, the growth hormone dependence of IGF II seems to become apparent only at subnormal growth hormone levels. In normal children IGF I is age dependent: it is low in newborn cord sera (51 +/- 20 ng/ml) and gradually rises into the adult range with increasing age. At the onset of and during puberty mean IGF I levels lie above prepubertal values. In contrast, IGF II levels in normal children are independent of age and pubertal stage beyond the first year of life, whereas newborns have significantly lower IGF II values. Hypoglycemia resulting from extrapancreatic tumors is not associated with increased immunoreactive IGF I or II levels. IGF I is decreased in most of the sera (mean level +/- SD:56 +/- 39 ng/ml) whereas IGF II lies in the normal range (556 +/- 195 ng/ml).
PMCID: PMC370928  PMID: 7028787

Results 1-25 (1295260)