PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (384723)

Clipboard (0)
None

Related Articles

1.  DDN: a caBIG® analytical tool for differential network analysis 
Bioinformatics  2011;27(7):1036-1038.
Summary: Differential dependency network (DDN) is a caBIG® (cancer Biomedical Informatics Grid) analytical tool for detecting and visualizing statistically significant topological changes in transcriptional networks representing two biological conditions. Developed under caBIG® 's In Silico Research Centers of Excellence (ISRCE) Program, DDN enables differential network analysis and provides an alternative way for defining network biomarkers predictive of phenotypes. DDN also serves as a useful systems biology tool for users across biomedical research communities to infer how genetic, epigenetic or environment variables may affect biological networks and clinical phenotypes. Besides the standalone Java application, we have also developed a Cytoscape plug-in, CytoDDN, to integrate network analysis and visualization seamlessly.
Availability: The Java and MATLAB source code can be downloaded at the authors' web site http://www.cbil.ece.vt.edu/software.htm
Contact: yuewang@vt.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr052
PMCID: PMC3065688  PMID: 21296752
2.  Gene Selection for Multiclass Prediction by Weighted Fisher Criterion 
Gene expression profiling has been widely used to study molecular signatures of many diseases and to develop molecular diagnostics for disease prediction. Gene selection, as an important step for improved diagnostics, screens tens of thousands of genes and identifies a small subset that discriminates between disease types. A two-step gene selection method is proposed to identify informative gene subsets for accurate classification of multiclass phenotypes. In the first step, individually discriminatory genes (IDGs) are identified by using one-dimensional weighted Fisher criterion (wFC). In the second step, jointly discriminatory genes (JDGs) are selected by sequential search methods, based on their joint class separability measured by multidimensional weighted Fisher criterion (wFC). The performance of the selected gene subsets for multiclass prediction is evaluated by artificial neural networks (ANNs) and/or support vector machines (SVMs). By applying the proposed IDG/JDG approach to two microarray studies, that is, small round blue cell tumors (SRBCTs) and muscular dystrophies (MDs), we successfully identified a much smaller yet efficient set of JDGs for diagnosing SRBCTs and MDs with high prediction accuracies (96.9% for SRBCTs and 92.3% for MDs, resp.). These experimental results demonstrated that the two-step gene selection method is able to identify a subset of highly discriminative genes for improved multiclass prediction.
doi:10.1155/2007/64628
PMCID: PMC3171347  PMID: 17713593
3.  Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection 
We investigate the problems of multiclass cancer classification with gene selection from gene expression data. Two different constructed multiclass classifiers with gene selection are proposed, which are fuzzy support vector machine (FSVM) with gene selection and binary classification tree based on SVM with gene selection. Using F test and recursive feature elimination based on SVM as gene selection methods, binary classification tree based on SVM with F test, binary classification tree based on SVM with recursive feature elimination based on SVM, and FSVM with recursive feature elimination based on SVM are tested in our experiments. To accelerate computation, preselecting the strongest genes is also used. The proposed techniques are applied to analyze breast cancer data, small round blue-cell tumors, and acute leukemia data. Compared to existing multiclass cancer classifiers and binary classification tree based on SVM with F test or binary classification tree based on SVM with recursive feature elimination based on SVM mentioned in this paper, FSVM based on recursive feature elimination based on SVM can find most important genes that affect certain types of cancer with high recognition accuracy.
doi:10.1155/JBB.2005.160
PMCID: PMC1184049  PMID: 16046822
4.  Stable feature selection and classification algorithms for multiclass microarray data 
Biology Direct  2012;7:33.
Background
Recent studies suggest that gene expression profiles are a promising alternative for clinical cancer classification. One major problem in applying DNA microarrays for classification is the dimension of obtained data sets. In this paper we propose a multiclass gene selection method based on Partial Least Squares (PLS) for selecting genes for classification. The new idea is to solve multiclass selection problem with the PLS method and decomposition to a set of two-class sub-problems: one versus rest (OvR) and one versus one (OvO). We use OvR and OvO two-class decomposition for other recently published gene selection method. Ranked gene lists are highly unstable in the sense that a small change of the data set often leads to big changes in the obtained ordered lists. In this paper, we take a look at the assessment of stability of the proposed methods. We use the linear support vector machines (SVM) technique in different variants: one versus one, one versus rest, multiclass SVM (MSVM) and the linear discriminant analysis (LDA) as a classifier. We use balanced bootstrap to estimate the prediction error and to test the variability of the obtained ordered lists.
Results
This paper focuses on effective identification of informative genes. As a result, a new strategy to find a small subset of significant genes is designed. Our results on real multiclass cancer data show that our method has a very high accuracy rate for different combinations of classification methods, giving concurrently very stable feature rankings.
Conclusions
This paper shows that the proposed strategies can improve the performance of selected gene sets substantially. OvR and OvO techniques applied to existing gene selection methods improve results as well. The presented method allows to obtain a more reliable classifier with less classifier error. In the same time the method generates more stable ordered feature lists in comparison with existing methods.
Reviewers
This article was reviewed by Prof Marek Kimmel, Dr Hans Binder (nominated by Dr Tomasz Lipniacki) and Dr Yuriy Gusev
doi:10.1186/1745-6150-7-33
PMCID: PMC3599581  PMID: 23031190
5.  Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data 
PLoS ONE  2013;8(3):e53253.
The amount of metagenomic data is growing rapidly while the computational methods for metagenome analysis are still in their infancy. It is important to develop novel statistical learning tools for the prediction of associations between bacterial communities and disease phenotypes and for the detection of differentially abundant features. In this study, we presented a novel statistical learning method for simultaneous association prediction and feature selection with metagenomic samples from two or multiple treatment populations on the basis of count data. We developed a linear programming based support vector machine with and joint penalties for binary and multiclass classifications with metagenomic count data (metalinprog). We evaluated the performance of our method on several real and simulation datasets. The proposed method can simultaneously identify features and predict classes with the metagenomic count data.
doi:10.1371/journal.pone.0053253
PMCID: PMC3608598  PMID: 23555553
6.  Building multiclass classifiers for remote homology detection and fold recognition 
BMC Bioinformatics  2006;7:455.
Background
Protein remote homology detection and fold recognition are central problems in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for solving these problems. These methods are primarily used to solve binary classification problems and they have not been extensively used to solve the more general multiclass remote homology prediction and fold recognition problems.
Results
We present a comprehensive evaluation of a number of methods for building SVM-based multiclass classification schemes in the context of the SCOP protein classification. These methods include schemes that directly build an SVM-based multiclass model, schemes that employ a second-level learning approach to combine the predictions generated by a set of binary SVM-based classifiers, and schemes that build and combine binary classifiers for various levels of the SCOP hierarchy beyond those defining the target classes.
Conclusion
Analyzing the performance achieved by the different approaches on four different datasets we show that most of the proposed multiclass SVM-based classification approaches are quite effective in solving the remote homology prediction and fold recognition problems and that the schemes that use predictions from binary models constructed for ancestral categories within the SCOP hierarchy tend to not only lead to lower error rates but also reduce the number of errors in which a superfamily is assigned to an entirely different fold and a fold is predicted as being from a different SCOP class. Our results also show that the limited size of the training data makes it hard to learn complex second-level models, and that models of moderate complexity lead to consistently better results.
doi:10.1186/1471-2105-7-455
PMCID: PMC1635067  PMID: 17042943
7.  Recognition of Multiple Imbalanced Cancer Types Based on DNA Microarray Data Using Ensemble Classifiers 
BioMed Research International  2013;2013:239628.
DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier, and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive to class imbalance.
doi:10.1155/2013/239628
PMCID: PMC3770038  PMID: 24078908
8.  Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine 
Background
Brain computer interface (BCI) is an emerging technology for paralyzed patients to communicate with external environments. Among current BCIs, the steady-state visual evoked potential (SSVEP)-based BCI has drawn great attention due to its characteristics of easy preparation, high information transfer rate (ITR), high accuracy, and low cost. However, electroencephalogram (EEG) signals are electrophysiological responses reflecting the underlying neural activities which are dependent upon subject’s physiological states (e.g., emotion, attention, etc.) and usually variant among different individuals. The development of classification approaches to account for each individual’s difference in SSVEP is needed but was seldom reported.
Methods
This paper presents a multiclass support vector machine (SVM)-based classification approach for gaze-target detections in a phase-tagged SSVEP-based BCI. In the training steps, the amplitude and phase features of SSVEP from off-line recordings were used to train a multiclass SVM for each subject. In the on-line application study, effective epochs which contained sufficient SSVEP information of gaze targets were first determined using Kolmogorov-Smirnov (K-S) test, and the amplitude and phase features of effective epochs were subsequently inputted to the multiclass SVM to recognize user’s gaze targets.
Results
The on-line performance using the proposed approach has achieved high accuracy (89.88 ± 4.76%), fast responding time (effective epoch length = 1.13 ± 0.02 s), and the information transfer rate (ITR) was 50.91 ± 8.70 bits/min.
Conclusions
The multiclass SVM-based classification approach has been successfully implemented to improve the classification accuracy in a phase-tagged SSVEP-based BCI. The present study has shown the multiclass SVM can be effectively adapted to each subject’s SSVEPs to discriminate SSVEP phase information from gazing at different gazed targets.
doi:10.1186/1475-925X-12-46
PMCID: PMC3671978  PMID: 23692974
9.  Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes☆☆☆ 
NeuroImage : Clinical  2013;2:883-893.
Most available pattern recognition methods in neuroimaging address binary classification problems. Here, we used relevance vector machine (RVM) in combination with booststrap resampling (‘bagging’) for non-hierarchical multiclass classification. The method was tested on 120 cerebral 18fluorodeoxyglucose (FDG) positron emission tomography (PET) scans performed in patients who exhibited parkinsonian clinical features for 3.5 years on average but that were outside the prevailing perception for Parkinson's disease (PD). A radiological diagnosis of PD was suggested for 30 patients at the time of PET imaging. However, at follow-up several years after PET imaging, 42 of them finally received a clinical diagnosis of PD. The remaining 78 APS patients were diagnosed with multiple system atrophy (MSA, N = 31), progressive supranuclear palsy (PSP, N = 26) and corticobasal syndrome (CBS, N = 21), respectively. With respect to this standard of truth, classification sensitivity, specificity, positive and negative predictive values for PD were 93% 83% 75% and 96%, respectively using binary RVM (PD vs. APS) and 90%, 87%, 79% and 94%, respectively, using multiclass RVM (PD vs. MSA vs. PSP vs. CBS). Multiclass RVM achieved 45%, 55% and 62% classification accuracy for, MSA, PSP and CBS, respectively. Finally, a majority confidence ratio was computed for each scan on the basis of class pairs that were the most frequently assigned by RVM. Altogether, the results suggest that automatic multiclass RVM classification of FDG PET scans achieves adequate performance for the early differentiation between PD and APS on the basis of cerebral FDG uptake patterns when the clinical diagnosis is felt uncertain. This approach cannot be recommended yet as an aid for distinction between the three APS classes under consideration.
Highlights
•Multiclass classification is one of the challenges of computer-aided diagnosis.•This was addressed here using relevance vector machine and bootstrap aggregation.•Performance was tested on FDG-PET scans from 120 parkinsonian patients.•Four diagnostic classes under consideration as defined on average 3.5 years after PET.•Confusion matrices, majority confidence ratio and discriminant maps were computed.
doi:10.1016/j.nicl.2013.06.004
PMCID: PMC3778264  PMID: 24179839
Computer-aided diagnosis; Data mining; Pattern recognition; Boostrap resampling; Bagging; Error-Correcting Output Code; Multiclass classification; Relevance vector machine; FDG PET; Parkinson's disease; Multiple system atrophy; Progressive supranuclear palsy; Corticobasal syndrome
10.  An Ensemble Method for Predicting Subnuclear Localizations from Primary Protein Structures 
PLoS ONE  2013;8(2):e57225.
Background
Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods.
Methodology/Principal Findings
A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis.
Conclusions
It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method. It is freely available at http://bioinformatics.awowshop.com/snlpred_page.php.
doi:10.1371/journal.pone.0057225
PMCID: PMC3584121  PMID: 23460833
11.  Multiclass Prediction with Partial Least Square Regression for Gene Expression Data: Applications in Breast Cancer Intrinsic Taxonomy 
BioMed Research International  2013;2013:248648.
Multiclass prediction remains an obstacle for high-throughput data analysis such as microarray gene expression profiles. Despite recent advancements in machine learning and bioinformatics, most classification tools were limited to the applications of binary responses. Our aim was to apply partial least square (PLS) regression for breast cancer intrinsic taxonomy, of which five distinct molecular subtypes were identified. The PAM50 signature genes were used as predictive variables in PLS analysis, and the latent gene component scores were used in binary logistic regression for each molecular subtype. The 139 prototypical arrays for PAM50 development were used as training dataset, and three independent microarray studies with Han Chinese origin were used for independent validation (n = 535). The agreement between PAM50 centroid-based single sample prediction (SSP) and PLS-regression was excellent (weighted Kappa: 0.988) within the training samples, but deteriorated substantially in independent samples, which could attribute to much more unclassified samples by PLS-regression. If these unclassified samples were removed, the agreement between PAM50 SSP and PLS-regression improved enormously (weighted Kappa: 0.829 as opposed to 0.541 when unclassified samples were analyzed). Our study ascertained the feasibility of PLS-regression in multi-class prediction, and distinct clinical presentations and prognostic discrepancies were observed across breast cancer molecular subtypes.
doi:10.1155/2013/248648
PMCID: PMC3893734  PMID: 24490149
12.  Support Vector Machine Implementations for Classification & Clustering 
BMC Bioinformatics  2006;7(Suppl 2):S4.
Background
We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have been successfully employed for notably better performance over standard kernels. Currently there are two approaches for implementing multiclass SVMs. One is called external multi-class that arranges several binary classifiers as a decision tree such that they perform a single-class decision making function, with each leaf corresponding to a unique class. The second approach, namely internal-multiclass, involves solving a single optimization problem corresponding to the entire data set (with multiple hyperplanes).
Results
Each SVM approach encapsulates a significant amount of model-fitting information in its choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed for notably better performance over standard kernels. Two SVM approaches to multiclass discrimination are described: (1) internal multiclass (with a single optimization), and (2) external multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach, along with further refinements to the internal-multiclass SVM algorithms that offer significant improvement in training time without sacrificing accuracy. In situations where the data isn't clearly separable, making for poor discrimination, signal clustering is used to provide robust and useful information – to this end, novel, SVM-based clustering methods are also described. As with the classification, there are Internal and External SVM Clustering algorithms, both of which are briefly described.
doi:10.1186/1471-2105-7-S2-S4
PMCID: PMC1683575  PMID: 17118147
13.  Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM 
Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set.
doi:10.1155/2012/850259
PMCID: PMC3465880  PMID: 23056036
14.  Deletion of the CaBIG1 Gene Reduces β-1,6-Glucan Synthesis, Filamentation, Adhesion, and Virulence in Candida albicans  
Infection and Immunity  2006;74(4):2373-2381.
The human fungal pathogen Candida albicans is able to change its shape in response to various environmental signals. We analyzed the C. albicans BIG1 homolog, which might be involved in β-1,6-glucan biosynthesis in Saccharomyces cerevisiae. C. albicans BIG1 is a functional homolog of an S. cerevisiae BIG1 gene, because the slow growth of an S. cerevisiae big1 mutant was restored by introduction of C. albicans BIG1. CaBig1p was expressed constitutively in both the yeast and hyphal forms. A specific localization of CaBig1p at the endoplasmic reticulum or plasma membrane similar to the subcellular localization of S. cerevisiae Big1p was observed in yeast form. The content of β-1,6-glucan in the cell wall was decreased in the Cabig1Δ strain in comparison with the wild-type or reconstituted strain. The C. albicans BIG1 disruptant showed reduced filamentation on a solid agar medium and in a liquid medium. The Cabig1Δ mutant showed markedly attenuated virulence in a mouse model of systemic candidiasis. Adherence to human epithelial HeLa cells and fungal burden in kidneys of infected mice were reduced in the Cabig1Δ mutant. Deletion of CaBIG1 abolished hyphal growth and invasiveness in the kidneys of infected mice. Our results indicate that adhesion failure and morphological abnormality contribute to the attenuated virulence of the Cabig1Δ mutant.
doi:10.1128/IAI.74.4.2373-2381.2006
PMCID: PMC1418944  PMID: 16552067
15.  The caBIG Terminology Review Process 
Journal of biomedical informatics  2008;42(3):571-580.
The National Cancer Institute (NCI) is developing an integrated biomedical informatics infrastructure, the cancer Biomedical Informatics Grid (caBIG®), to support collaboration within the cancer research community. A key part of the caBIG architecture is the establishment of terminology standards for representing data. In order to evaluate the suitability of existing controlled terminologies, the caBIG Vocabulary and Data Elements Workspace (VCDE WS) working group has developed a set of criteria that serve to assess a terminology's structure, content, documentation, and editorial process. This paper describes the evolution of these criteria and the results of their use in evaluating four standard terminologies: the Gene Ontology (GO), the NCI Thesaurus (NCIt), the Common Terminology for Adverse Events (known as CTCAE), and the laboratory portion of the Logical Objects, Identifiers, Names and Codes (LOINC). The resulting caBIG criteria are presented as a matrix that may be applicable to any terminology standardization effort.
doi:10.1016/j.jbi.2008.12.003
PMCID: PMC2729758  PMID: 19154797
Terminology; Ontology; Auditing; Evaluation
16.  Sparse distance-based learning for simultaneous multiclass classification and feature selection of metagenomic data 
Bioinformatics  2011;27(23):3242-3249.
Motivation: Direct sequencing of microbes in human ecosystems (the human microbiome) has complemented single genome cultivation and sequencing to understand and explore the impact of commensal microbes on human health. As sequencing technologies improve and costs decline, the sophistication of data has outgrown available computational methods. While several existing machine learning methods have been adapted for analyzing microbiome data recently, there is not yet an efficient and dedicated algorithm available for multiclass classification of human microbiota.
Results: By combining instance-based and model-based learning, we propose a novel sparse distance-based learning method for simultaneous class prediction and feature (variable or taxa, which is used interchangeably) selection from multiple treatment populations on the basis of 16S rRNA sequence count data. Our proposed method simultaneously minimizes the intraclass distance and maximizes the interclass distance with many fewer estimated parameters than other methods. It is very efficient for problems with small sample sizes and unbalanced classes, which are common in metagenomic studies. We implemented this method in a MATLAB toolbox called MetaDistance. We also propose several approaches for data normalization and variance stabilization transformation in MetaDistance. We validate this method on several real and simulated 16S rRNA datasets to show that it outperforms existing methods for classifying metagenomic data. This article is the first to address simultaneous multifeature selection and class prediction with metagenomic count data.
Availability: The MATLAB toolbox is freely available online at http://metadistance.igs.umaryland.edu/.
Contact: zliu@umm.edu
Supplementary Information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr547
PMCID: PMC3223360  PMID: 21984758
17.  freeIbis: an efficient basecaller with calibrated quality scores for Illumina sequencers 
Bioinformatics  2013;29(9):1208-1209.
Motivation: The conversion of the raw intensities obtained from next-generation sequencing platforms into nucleotide sequences with well-calibrated quality scores is a critical step in the generation of good sequence data. While recent model-based approaches can yield highly accurate calls, they require a substantial amount of processing time and/or computational resources. We previously introduced Ibis, a fast and accurate basecaller for the Illumina platform. We have continued active development of Ibis to take into account developments in the Illumina technology, as well as to make Ibis fully open source.
Results: We introduce here freeIbis, which offers significant improvements in sequence accuracy owing to the use of a novel multiclass support vector machine (SVM) algorithm. Sequence quality scores are now calibrated based on empirically observed scores, thus providing a high correlation to their respective error rates. These improvements result in downstream advantages including improved genotyping accuracy.
Availability and implementation: FreeIbis is freely available for use under the GPL (http://bioinf.eva.mpg.de/freeibis/). It requires a Python interpreter and a C++ compiler. Tailored versions of LIBOCAS and LIBLINEAR are distributed along with the package.
Contact: kelso@eva.mpg.de
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt117
PMCID: PMC3634191  PMID: 23471300
18.  Combining classifiers for improved classification of proteins from sequence or structure 
BMC Bioinformatics  2008;9:389.
Background
Predicting a protein's structural or functional class from its amino acid sequence or structure is a fundamental problem in computational biology. Recently, there has been considerable interest in using discriminative learning algorithms, in particular support vector machines (SVMs), for classification of proteins. However, because sufficiently many positive examples are required to train such classifiers, all SVM-based methods are hampered by limited coverage.
Results
In this study, we develop a hybrid machine learning approach for classifying proteins, and we apply the method to the problem of assigning proteins to structural categories based on their sequences or their 3D structures. The method combines a full-coverage but lower accuracy nearest neighbor method with higher accuracy but reduced coverage multiclass SVMs to produce a full coverage classifier with overall improved accuracy. The hybrid approach is based on the simple idea of "punting" from one method to another using a learned threshold.
Conclusion
In cross-validated experiments on the SCOP hierarchy, the hybrid methods consistently outperform the individual component methods at all levels of coverage.
Code and data sets are available at
doi:10.1186/1471-2105-9-389
PMCID: PMC2561051  PMID: 18808707
19.  SaTScan on a Cloud: On-Demand Large Scale Spatial Analysis of Epidemics 
Online Journal of Public Health Informatics  2010;2(1):ojphi.v2i1.2910.
By using cloud computing it is possible to provide on- demand resources for epidemic analysis using computer intensive applications like SaTScan. Using 15 virtual machines (VM) on the Nimbus cloud we were able to reduce the total execution time for the same ensemble run from 8896 seconds in a single machine to 842 seconds in the cloud. Using the caBIG tools and our iterative software development methodology the time required to complete the implementation of the SaTScan cloud system took approximately 200 man-hours, which represents an effort that can be secured within the resources available at State Health Departments. The approach proposed here is technically advantageous and practically possible.
doi:10.5210/ojphi.v2i1.2910
PMCID: PMC3615753  PMID: 23569576
20.  Inhibition in Multiclass Classification 
Neural computation  2012;24(9):2473-2507.
The role of inhibition is investigated in a multiclass support vector machine formalism inspired by the brain structure of insects. The so-called mushroom bodies have a set of output neurons, or classification functions, that compete with each other to encode a particular input. Strongly active output neurons depress or inhibit the remaining outputs without knowing which is correct or incorrect. Accordingly, we propose to use a classification function that embodies unselective inhibition and train it in the large margin classifier framework. Inhibition leads to more robust classifiers in the sense that they perform better on larger areas of appropriate hyperparameters when assessed with leave-one-out strategies. We also show that the classifier with inhibition is a tight bound to probabilistic exponential models and is Bayes consistent for 3-class problems. These properties make this approach useful for data sets with a limited number of labeled examples. For larger data sets, there is no significant comparative advantage to other multiclass SVM approaches.
doi:10.1162/NECO_a_00321
PMCID: PMC3717401  PMID: 22594829
21.  Multiclass relevance units machine: benchmark evaluation and application to small ncRNA discovery 
BMC Genomics  2013;14(Suppl 2):S6.
Background
Classification is the problem of assigning each input object to one of a finite number of classes. This problem has been extensively studied in machine learning and statistics, and there are numerous applications to bioinformatics as well as many other fields. Building a multiclass classifier has been a challenge, where the direct approach of altering the binary classification algorithm to accommodate more than two classes can be computationally too expensive. Hence the indirect approach of using binary decomposition has been commonly used, in which retrieving the class posterior probabilities from the set of binary posterior probabilities given by the individual binary classifiers has been a major issue.
Methods
In this work, we present an extension of a recently introduced probabilistic kernel-based learning algorithm called the Classification Relevance Units Machine (CRUM) to the multiclass setting to increase its applicability. The extension is achieved under the error correcting output codes framework. The probabilistic outputs of the binary CRUMs are preserved using a proposed linear-time decoding algorithm, an alternative to the generalized Bradley-Terry (GBT) algorithm whose application to large-scale prediction settings is prohibited by its computational complexity. The resulting classifier is called the Multiclass Relevance Units Machine (McRUM).
Results
The evaluation of McRUM on a variety of real small-scale benchmark datasets shows that our proposed Naïve decoding algorithm is computationally more efficient than the GBT algorithm while maintaining a similar level of predictive accuracy. Then a set of experiments on a larger scale dataset for small ncRNA classification have been conducted with Naïve McRUM and compared with the Gaussian and linear SVM. Although McRUM's predictive performance is slightly lower than the Gaussian SVM, the results show that the similar level of true positive rate can be achieved by sacrificing false positive rate slightly. Furthermore, McRUM is computationally more efficient than the SVM, which is an important factor for large-scale analysis.
Conclusions
We have proposed McRUM, a multiclass extension of binary CRUM. McRUM with Naïve decoding algorithm is computationally efficient in run-time and its predictive performance is comparable to the well-known SVM, showing its potential in solving large-scale multiclass problems in bioinformatics and other fields of study.
doi:10.1186/1471-2164-14-S2-S6
PMCID: PMC3582431  PMID: 23445533
22.  Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems 
BMC Bioinformatics  2011;12:253.
Background
Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits.
Results
A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework.
Conclusions
sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.
doi:10.1186/1471-2105-12-253
PMCID: PMC3133555  PMID: 21693065
23.  Multiclass classification of microarray data samples with a reduced number of genes 
BMC Bioinformatics  2011;12:59.
Background
Multiclass classification of microarray data samples with a reduced number of genes is a rich and challenging problem in Bioinformatics research. The problem gets harder as the number of classes is increased. In addition, the performance of most classifiers is tightly linked to the effectiveness of mandatory gene selection methods. Critical to gene selection is the availability of estimates about the maximum number of genes that can be handled by any classification algorithm. Lack of such estimates may lead to either computationally demanding explorations of a search space with thousands of dimensions or classification models based on gene sets of unrestricted size. In the former case, unbiased but possibly overfitted classification models may arise. In the latter case, biased classification models unable to support statistically significant findings may be obtained.
Results
A novel bound on the maximum number of genes that can be handled by binary classifiers in binary mediated multiclass classification algorithms of microarray data samples is presented. The bound suggests that high-dimensional binary output domains might favor the existence of accurate and sparse binary mediated multiclass classifiers for microarray data samples.
Conclusions
A comprehensive experimental work shows that the bound is indeed useful to induce accurate and sparse multiclass classifiers for microarray data samples.
doi:10.1186/1471-2105-12-59
PMCID: PMC3056725  PMID: 21342522
24.  Functional connectivity-based signatures of schizophrenia revealed by multiclass pattern analysis of resting-state fMRI from schizophrenic patients and their healthy siblings 
Background
Recently, a growing number of neuroimaging studies have begun to investigate the brains of schizophrenic patients and their healthy siblings to identify heritable biomarkers of this complex disorder. The objective of this study was to use multiclass pattern analysis to investigate the inheritable characters of schizophrenia at the individual level, by comparing whole-brain resting-state functional connectivity of patients with schizophrenia to their healthy siblings.
Methods
Twenty-four schizophrenic patients, twenty-five healthy siblings and twenty-two matched healthy controls underwent the resting-state functional Magnetic Resonance Imaging (rs-fMRI) scanning. A linear support vector machine along with principal component analysis was used to solve the multi-classification problem. By reconstructing the functional connectivities with high discriminative power, three types of functional connectivity-based signatures were identified: (i) state connectivity patterns, which characterize the nature of disruption in the brain network of patients with schizophrenia; (ii) trait connectivity patterns, reflecting shared connectivities of dysfunction in patients with schizophrenia and their healthy siblings, thereby providing a possible neuroendophenotype and revealing the genetic vulnerability to develop schizophrenia; and (iii) compensatory connectivity patterns, which underlie special brain connectivities by which healthy siblings might compensate for an increased genetic risk for developing schizophrenia.
Results
Our multiclass pattern analysis achieved 62.0% accuracy via leave-one-out cross-validation (p < 0.001). The identified state patterns related to the default mode network, the executive control network and the cerebellum. For the trait patterns, functional connectivities between the cerebellum and the prefrontal lobe, the middle temporal gyrus, the thalamus and the middle temporal poles were identified. Connectivities among the right precuneus, the left middle temporal gyrus, the left angular and the left rectus, as well as connectivities between the cingulate cortex and the left rectus showed higher discriminative power in the compensatory patterns.
Conclusions
Based on our experimental results, we saw some indication of differences in functional connectivity patterns in the healthy siblings of schizophrenic patients compared to other healthy individuals who have no relations with the patients. Our preliminary investigation suggested that the use of resting-state functional connectivities as classification features to discriminate among schizophrenic patients, their healthy siblings and healthy controls is meaningful.
doi:10.1186/1475-925X-12-10
PMCID: PMC3577608  PMID: 23390976
Schizophrenia; Healthy siblings; Functional magnetic resonance imaging; Resting-state; Functional connectivity; Multiclass pattern analysis
25.  Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine 
This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered.
doi:10.1155/2014/502348
PMCID: PMC4027016  PMID: 24883068

Results 1-25 (384723)