PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (613291)

Clipboard (0)
None

Related Articles

1.  Involvement of surfactant protein D in emphysema revealed by genetic association study 
Surfactant protein D (SFTPD) induces emphysema in knockout mice, but the association of SFTPD with chronic obstructive pulmonary disease (COPD) and emphysema in humans is unclear. Therefore, we aimed to determine the association between genetic variations in SFTPD and susceptibility to COPD and emphysema.
Two populations were studied: population A comprised 270 smokers, including 188 COPD and 82 at-risk subjects, and population B comprised 1131 autopsy cases including 160 cases with emphysema. Six single-nucleotide polymorphisms (SNPs) that tagged the linkage disequilibrium blocks on the entire SFTPD gene were genotyped; the associations of the genotypes with COPD, pulmonary function, percentage of the low-attenuation area (LAA%), and percentage of the airway wall area (WA%) were determined in population A. In population B, the associations of the genotypes with emphysema were assessed.
A C allele at SNP rs721917 that results in the replacement of Met with Thr at position 11 in SFTPD was positively correlated with the LAA% in the upper lung (P=1.1 × 10−5) and overall LAA% (P=1.0 × 10−4), and negatively correlated with the serum concentration of SFTPD (P=7 × 10−11) in the population A. The C/C (rs721917/rs10887199) haplotype was associated with emphysema in both the populations.
Subjects with a C allele at rs721917 have a lower serum SFTPD concentration and are more susceptible to emphysema. This suggests a protective effect of SFTPD against COPD and emphysema.
doi:10.1038/ejhg.2011.183
PMCID: PMC3260918  PMID: 21934714
chronic obstructive pulmonary disease; emphysema; genetic variation; pulmonary surfactant-associated protein D
2.  A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci 
PLoS Genetics  2009;5(3):e1000421.
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.
Author Summary
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD), which is a heritable multi-factorial trait. Identifying the genetic determinants of COPD risk will have tremendous public health importance. This study describes the first genome-wide association study (GWAS) in COPD. We conducted a GWAS in a homogenous case-control cohort from Norway and evaluated the top 100 single nucleotide polymorphisms in the family-based International COPD Genetics Network. The polymorphisms that showed replication were further evaluated in subjects from the US National Emphysema Treatment Trial and controls from the Normative Aging Study and then in a fourth cohort of extended pedigrees from the Boston Early-Onset COPD population. Two polymorphisms in the α-nicotinic acetylcholine receptor 3/5 locus on chromosome 15 showed unambiguous evidence of association with COPD. This locus has previously been implicated in both smoking behavior and risk of lung cancer, suggesting the possibility of multiple functional polymorphisms in the region or a single polymorphism with wide phenotypic consequences. The hedgehog interacting protein (HHIP) locus on chromosome 4, which is associated with COPD, is also a significant risk locus for COPD.
doi:10.1371/journal.pgen.1000421
PMCID: PMC2650282  PMID: 19300482
3.  Genome-wide Association Study Identifies BICD1 as a Susceptibility Gene for Emphysema 
Rationale: Chronic obstructive pulmonary disease (COPD), characterized by airflow limitation, is a disorder with high phenotypic and genetic heterogeneity. Pulmonary emphysema is a major but variable component of COPD; familial data suggest that different components of COPD, such as emphysema, may be influenced by specific genetic factors.
Objectives: To identify genetic determinants of emphysema assessed through high-resolution chest computed tomography in individuals with COPD.
Methods: We performed a genome-wide association study (GWAS) of emphysema determined from chest computed tomography scans with a total of 2,380 individuals with COPD in three independent cohorts of white individuals from (1) a cohort from Bergen, Norway, (2) the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and (3) the National Emphysema Treatment Trial (NETT). We tested single-nucleotide polymorphism associations with the presence or absence of emphysema determined by radiologist assessment in two of the three cohorts and a quantitative emphysema trait (percentage of lung voxels less than –950 Hounsfield units) in all three cohorts.
Measurements and Main Results: We identified association of a single-nucleotide polymorphism in BICD1 with the presence or absence of emphysema (P = 5.2 × 10−7 with at least mild emphysema vs. control subjects; P = 4.8 × 10−8 with moderate and more severe emphysema vs. control subjects).
Conclusions: Our study suggests that genetic variants in BICD1 are associated with qualitative emphysema in COPD. Variants in BICD1 are associated with length of telomeres, which suggests that a mechanism linked to accelerated aging may be involved in the pathogenesis of emphysema.
Clinical trial registered with www.clinicaltrials.gov (NCT00292552).
doi:10.1164/rccm.201004-0541OC
PMCID: PMC3040393  PMID: 20709820
emphysema; chronic obstructive pulmonary disease; BICD1; single-nucleotide polymorphism
4.  POLYMORPHISMS IN THE SUPEROXIDE DISMUTASE-3 GENE ARE ASSOCIATED WITH EMPHYSEMA IN COPD 
COPD  2010;7(4):262-268.
Superoxide dismutase-3 (SOD3) is a major extracellular antioxidant enzyme, and previous studies have indicated a possible role of this gene in chronic obstructive pulmonary disease (COPD). We hypothesized that polymorphisms in the SOD3 gene would be associated with COPD and COPD-related phenotypes.
We genotyped three SOD3 polymorphisms (rs8192287 (E1), rs8192288 (I1) and rs1799895 (R213G)) in a case-control cohort, with severe COPD cases from the National Emphysema Treatment Trial (NETT, n=389) and smoking controls from the Normative Aging Study (NAS, n=472). We examined whether the SNPs were associated with COPD status, lung function variables, and quantitative CT measurements of emphysema and airway wall thickness. Further, we tried to replicate our initial findings in two family-based studies, the International COPD Genetics Network (ICGN, n=3061) and the Boston Early-Onset COPD Study (EOCOPD, n=949).
In NETT COPD cases, the minor alleles of SNPs E1 and I1 were associated with a higher percentage of emphysema (%LAA950) on chest CT scan (p=0.029 and p=0.0058). The association with E1 was replicated in the ICGN family study, where the minor allele was associated with more emphysema (p=0.048). Airway wall thickness was positively associated with the E1 SNP in ICGN; however, this finding was not confirmed in NETT. Quantitative CT data were not available in EOCOPD. The SNPs were not associated with lung function variables or COPD status in any of the populations.
In conclusion, polymorphisms in the SOD3 gene were associated with CT emphysema but not COPD susceptibility, highlighting the importance of phenotype definition in COPD genetics studies.
doi:10.3109/15412555.2010.496821
PMCID: PMC2923920  PMID: 20673035
5.  A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13 
Human Molecular Genetics  2011;21(4):947-957.
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10−9). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV1 (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
doi:10.1093/hmg/ddr524
PMCID: PMC3298111  PMID: 22080838
6.  Prolonged Injury and Altered Lung Function after Ozone Inhalation in Mice with Chronic Lung Inflammation 
Surfactant protein–D (Sftpd) is a pulmonary collectin important in down-regulating macrophage inflammatory responses. In these experiments, we analyzed the effects of chronic macrophage inflammation attributable to loss of Sftpd on the persistence of ozone-induced injury, macrophage activation, and altered functioning in the lung. Wild-type (Sftpd+/+) and Sftpd−/− mice (aged 8 wk) were exposed to air or ozone (0.8 parts per million, 3 h). Bronchoalveolar lavage (BAL) fluid and tissue were collected 72 hours later. In Sftpd−/− mice, but not Sftpd+/+ mice, increased BAL protein and nitrogen oxides were observed after ozone inhalation, indicating prolonged lung injury and oxidative stress. Increased numbers of macrophages were also present in BAL fluid and in histologic sections from Sftpd−/− mice. These cells were enlarged and foamy, suggesting that they were activated. This conclusion was supported by findings of increased BAL chemotactic activity, and increased expression of inducible nitric oxide synthase in lung macrophages. In both Sftpd+/+ and Sftpd−/− mice, inhalation of ozone was associated with functional alterations in the lung. Although these alterations were limited to central airway mechanics in Sftpd+/+ mice, both central airway and parenchymal mechanics were modified by ozone exposure in Sftpd−/− mice. The most notable changes were evident in resistance and elastance spectra and baseline lung function, and in lung responsiveness to changes in positive end-expiratory pressure. These data demonstrate that a loss of Sftpd is associated with prolonged lung injury, oxidative stress, and macrophage accumulation and activation in response to ozone, and with more extensive functional changes consistent with the loss of parenchymal integrity.
doi:10.1165/rcmb.2011-0433OC
PMCID: PMC3547091  PMID: 22878412
ozone; surfactant protein–D; macrophages; iNOS; lung function
7.  Genetic Associations With Hypoxemia and Pulmonary Arterial Pressure in COPD* 
Chest  2008;135(3):737-744.
Background
Hypoxemia, hypercarbia, and pulmonary arterial hypertension are known complications of advanced COPD. We sought to identify genetic polymorphisms associated with these traits in a population of patients with severe COPD from the National Emphysema Treatment Trial (NETT).
Methods
In 389 participants from the NETT Genetics Ancillary Study, single-nucleotide polymorphisms (SNPs) were genotyped in five candidate genes previously associated with COPD susceptibility (EPHX1, SERPINE2, SFTPB, TGFB1, and GSTP1). Linear regression models were used to test for associations among these SNPs and three quantitative COPD-related traits (Pao2, Paco2, and pulmonary artery systolic pressure). Genes associated with hypoxemia were tested for replication in probands from the Boston Early-Onset COPD Study.
Results
In the NETT Genetics Ancillary Study population, SNPs in microsomal epoxide hydrolase (EPHX1) [p = 0.01 to 0.04] and serpin peptidase inhibitor, clade E, member 2 (SERPINE2) [p = 0.04 to 0.008] were associated with hypoxemia. One SNP within surfactant protein B (SFTPB) was associated with pulmonary artery systolic pressure (p = 0.01). In probands from the Boston Early-Onset COPD Study, SNPs in EPHX1 and in SERPINE2 were associated with the requirement for supplemental oxygen.
Conclusions
In participants with severe COPD, SNPs in EPHX1 and SERPINE2 were associated with hypoxemia in two separate study populations, and SNPs from SFTPB were associated with pulmonary artery pressure in the NETT participants.
doi:10.1378/chest.08-1993
PMCID: PMC2906241  PMID: 19017876
case-control studies; COPD; genetics; phenotype; single-nucleotide polymorphism
8.  Influence of genetic variability at the surfactant proteins A and D in community-acquired pneumonia: a prospective, observational, genetic study 
Critical Care  2011;15(1):R57.
Introduction
Genetic variability of the pulmonary surfactant proteins A and D may affect clearance of microorganisms and the extent of the inflammatory response. The genes of these collectins (SFTPA1, SFTPA2 and SFTPD) are located in a cluster at 10q21-24. The objective of this study was to evaluate the existence of linkage disequilibrium (LD) among these genes, and the association of variability at these genes with susceptibility and outcome of community-acquired pneumonia (CAP). We also studied the effect of genetic variability on SP-D serum levels.
Methods
Seven non-synonymous polymorphisms of SFTPA1, SFTPA2 and SFTPD were analyzed. For susceptibility, 682 CAP patients and 769 controls were studied in a case-control study. Severity and outcome were evaluated in a prospective study. Haplotypes were inferred and LD was characterized. SP-D serum levels were measured in healthy controls.
Results
The SFTPD aa11-C allele was significantly associated with lower SP-D serum levels, in a dose-dependent manner. We observed the existence of LD among the studied genes. Haplotypes SFTPA1 6A2 (P = 0.0009, odds ration (OR) = 0.78), SFTPA2 1A0 (P = 0.002, OR = 0.79), SFTPA1-SFTPA2 6A2-1A0 (P = 0.0005, OR = 0.77), and SFTPD-SFTPA1-SFTPA2 C-6A2-1A0 (P = 0.00001, OR = 0.62) were underrepresented in patients, whereas haplotypes SFTPA2 1A10 (P = 0.00007, OR = 6.58) and SFTPA1-SFTPA2 6A3-1A (P = 0.0007, OR = 3.92) were overrepresented. Similar results were observed in CAP due to pneumococcus, though no significant differences were now observed after Bonferroni corrections. 1A10 and 6A-1A were associated with higher 28-day and 90-day mortality, and with multi-organ dysfunction syndrome (MODS) and acute respiratory distress syndrome (ARDS) respectively. SFTPD aa11-C allele was associated with development of MODS and ARDS.
Conclusions
Our study indicates that missense single nucleotide polymorphisms and haplotypes of SFTPA1, SFTPA2 and SFTPD are associated with susceptibility to CAP, and that several haplotypes also influence severity and outcome of CAP.
doi:10.1186/cc10030
PMCID: PMC3221990  PMID: 21310059
9.  NOS2 Is Critical to the Development of Emphysema in Sftpd Deficient Mice but Does Not Affect Surfactant Homeostasis 
PLoS ONE  2014;9(1):e85722.
Rationale
Surfactant protein D (SP-D) has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene) related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis.
Objective
In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout mice (DiNOS).
Methods
Structural data obtained by design-based stereology to quantify the emphysema-like phenotype and disturbances of the intracellular surfactant were correlated to invasive pulmonary function tests and inflammatory markers including activation markers of alveolar macrophages and compared to SP-D (Sftpd−/−) and iNOS single knockout mice (NOS2−/−) as well as wild type (WT) littermates.
Measurements and Results
DiNOS mice had reduced inflammatory cells in BAL and BAL-derived alveolar macrophages showed an increased expression of markers of an alternative activation as well as reduced inflammation. As evidenced by increased alveolar numbers and surface area, emphysematous changes were attenuated in DiNOS while disturbances of the surfactant system remained virtually unchanged. Sftpd−/− demonstrated alterations of intrinsic mechanical properties of lung parenchyma as shown by reduced stiffness and resistance at its static limits, which could be corrected by additional ablation of NOS2 gene in DiNOS.
Conclusion
iNOS related inflammation in the absence of SP-D is involved in the emphysematous remodeling leading to a loss of alveoli and associated alterations of elastic properties of lung parenchyma while disturbances of surfactant homeostasis are mediated by different mechanisms.
doi:10.1371/journal.pone.0085722
PMCID: PMC3897517  PMID: 24465666
10.  Genome-Wide Association Analysis of Body Mass in Chronic Obstructive Pulmonary Disease 
Cachexia, whether assessed by body mass index (BMI) or fat-free mass index (FFMI), affects a significant proportion of patients with chronic obstructive pulmonary disease (COPD), and is an independent risk factor for increased mortality, increased emphysema, and more severe airflow obstruction. The variable development of cachexia among patients with COPD suggests a role for genetic susceptibility. The objective of the present study was to determine genetic susceptibility loci involved in the development of low BMI and FFMI in subjects with COPD. A genome-wide association study (GWAS) of BMI was conducted in three independent cohorts of European descent with Global Initiative for Chronic Obstructive Lung Disease stage II or higher COPD: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-Points (ECLIPSE; n = 1,734); Norway-Bergen cohort (n = 851); and a subset of subjects from the National Emphysema Treatment Trial (NETT; n = 365). A genome-wide association of FFMI was conducted in two of the cohorts (ECLIPSE and Norway). In the combined analyses, a significant association was found between rs8050136, located in the first intron of the fat mass and obesity–associated (FTO) gene, and BMI (P = 4.97 × 10−7) and FFMI (P = 1.19 × 10−7). We replicated the association in a fourth, independent cohort consisting of 502 subjects with COPD from COPDGene (P = 6 × 10−3). Within the largest contributing cohort of our analysis, lung function, as assessed by forced expiratory volume at 1 second, varied significantly by FTO genotype. Our analysis suggests a potential role for the FTO locus in the determination of anthropomorphic measures associated with COPD.
doi:10.1165/rcmb.2010-0294OC
PMCID: PMC3266061  PMID: 21037115
chronic obstructive pulmonary disease genetics; chronic obstructive pulmonary disease epidemiology; chronic obstructive pulmonary disease metabolism; genome-wide association study
11.  SOX5 Is a Candidate Gene for Chronic Obstructive Pulmonary Disease Susceptibility and Is Necessary for Lung Development 
Rationale: Chromosome 12p has been linked to chronic obstructive pulmonary disease (COPD) in the Boston Early-Onset COPD Study (BEOCOPD), but a susceptibility gene in that region has not been identified.
Objectives: We used high-density single-nucleotide polymorphism (SNP) mapping to implicate a COPD susceptibility gene and an animal model to determine the potential role of SOX5 in lung development and COPD.
Methods: On chromosome 12p, we genotyped 1,387 SNPs in 386 COPD cases from the National Emphysema Treatment Trial and 424 control smokers from the Normative Aging Study. SNPs with significant associations were then tested in the BEOCOPD study and the International COPD Genetics Network. Based on the human results, we assessed histology and gene expression in the lungs of Sox5−/− mice.
Measurements and Main Results: In the case-control analysis, 27 SNPs were significant at P ≤ 0.01. The most significant SNP in the BEOCOPD replication was rs11046966 (National Emphysema Treatment Trial–Normative Aging Study P = 6.0 × 10−4, BEOCOPD P = 1.5 × 10−5, combined P = 1.7 × 10−7), located 3′ to the gene SOX5. Association with rs11046966 was not replicated in the International COPD Genetics Network. Sox5−/− mice showed abnormal lung development, with a delay in maturation before the saccular stage, as early as E16.5. Lung pathology in Sox5−/− lungs was associated with a decrease in fibronectin expression, an extracellular matrix component critical for branching morphogenesis.
Conclusions: Genetic variation in the transcription factor SOX5 is associated with COPD susceptibility. A mouse model suggests that the effect may be due, in part, to its effects on lung development and/or repair processes.
doi:10.1164/rccm.201010-1751OC
PMCID: PMC3137139  PMID: 21330457
chronic obstructive pulmonary disease; emphysema; knockout mice; lung development; single nucleotide polymorphism
12.  Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations 
Case-control studies have successfully identified many significant genetic associations for complex diseases, but lack of replication has been a criticism of case-control genetic association studies in general. We selected 12 candidate genes with reported associations to chronic obstructive pulmonary disease (COPD) and genotyped 29 polymorphisms in a family-based study and in a case-control study. In the Boston Early-Onset COPD Study families, significant associations with quantitative and/or qualitative COPD-related phenotypes were found for the tumor necrosis factor (TNF)-α −308G>A promoter polymorphism (P < 0.02), a coding variant in surfactant protein B (SFTPB Thr131Ile) (P = 0.03), and the (GT)31 allele of the heme oxygenase (HMOX1) promoter short tandem repeat (P = 0.02). In the case-control study, the SFTPB Thr131Ile polymorphism was associated with COPD, but only in the presence of a gene-by-environment interaction term (P = 0.01 for both main effect and interaction). The 30-repeat, but not the 31-repeat, allele of HMOX1 was associated (P = 0.04). The TNF −308G>A polymorphism was not significant. In addition, the microsomal epoxide hydrolase “fast” allele (EPHX1 His139Arg) was significantly associated in the case-control study (P = 0.03). Although some evidence for replication was found for SFTPB and HMOX1, none of the previously published COPD genetic associations was convincingly replicated across both study designs.
doi:10.1165/rcmb.2005-0073OC
PMCID: PMC2715305  PMID: 15817713
association studies; case-control studies; emphysema; genetics; single nucleotide polymorphism
13.  Polymorphic Variation in Surfactant Protein B is Associated with COPD Exacerbations 
Rationale
COPD exacerbations reduce quality of life and increase mortality. Genetic variation may explain the substantial variability seen in exacerbation frequency among COPD subjects with similar lung function. We analyzed whether polymorphisms in five candidate genes previously associated with COPD susceptibility also demonstrate association with COPD exacerbations.
Methods
Eighty-eight single nucleotide polymorphisms in microsomal epoxide hydrolase (EPHX1), transforming growth factor beta 1 (TGFB1), SERPINE2, glutathione S-transferase pi (GSTP1), and surfactant protein B (SFTPB) were genotyped in 389 non-Hispanic white participants in the National Emphysema Treatment Trial. Exacerbations were defined as COPD-related emergency room visits or hospitalizations using Centers for Medicare and Medicaid Services claims data.
Measurements and Main Results
216 subjects (56%) experienced one or more exacerbations during the study period. An SFTPB promoter polymorphism, rs3024791, was associated with COPD exacerbations (p=0.008). Logistic regression models confirmed the association with rs3024791 (p = 0.007). Poisson regression models demonstrated association of multiple SFTPB SNPs with exacerbation rates: rs2118177 (p = 0.006), rs2304566 (p = 0.002), rs1130866 (p = 0.04), and rs3024791 (p = 0.002). Polymorphisms in EPHX1, GSTP1, TGFB1, and SERPINE2 did not demonstrate association with COPD exacerbations.
Conclusions
Variants in SFTPB are associated with COPD susceptibility and COPD exacerbation frequency.
doi:10.1183/09031936.00040208
PMCID: PMC2761762  PMID: 18550614
association analysis; COPD; exacerbations; genetics; surfactant protein B; single nucleotide polymorphisms
14.  Analysis of Exonic Elastin Variants in Severe, Early-Onset Chronic Obstructive Pulmonary Disease 
The destruction of elastic fibers has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Emphysema has been described in autosomal dominant cutis laxa, which can be caused by mutations in the elastin gene. Previously, a rare functional mutation in the terminal exon of elastin was found in a case of severe, early-onset COPD. To test the hypothesis that other similar elastin mutations may predispose to COPD, we screened 90 probands from the Boston Early-Onset COPD Study and 90 smoking control subjects from the Normative Aging Study for mutations in elastin exons using high-resolution DNA melt analysis followed by resequencing. Rare nonsynonymous single-nucleotide polymorphisms (SNPs) seen only in cases were examined for segregation with airflow obstruction within pedigrees. Common nonsynonymous SNPs were tested for association with COPD in a family-based analysis of 949 subjects from the Boston Early-Onset COPD Study, and in a case–control analysis in 389 COPD cases from the National Emphysema Treatment Trial and 472 control subjects from the Normative Aging Study. Of 28 elastin variants found, 3 were nonsynonymous SNPs found only in cases. The previously described Gly773Asp mutation was found in another proband. The other two SNPs did not clearly segregate with COPD within families. Two common nonsynonymous SNPs did not demonstrate significant associations in either a family-based or case–control analysis. Exonic SNPs in the elastin gene do not appear to be common risk factors for severe COPD.
doi:10.1165/rcmb.2008-0340OC
PMCID: PMC2689920  PMID: 19029017
elastin; chronic obstructive pulmonary disease; emphysema; genetic polymorphism
15.  Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease 
Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility.
Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD.
Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated.
Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts.
Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility.
Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
doi:10.1164/rccm.201206-1013OC
PMCID: PMC3622441  PMID: 23144326
biomarker; chronic obstructive pulmonary disease; genome-wide association study
16.  The Association of Genome-Wide Significant Spirometric Loci with Chronic Obstructive Pulmonary Disease Susceptibility 
Two recent metaanalyses of genome-wide association studies conducted by the CHARGE and SpiroMeta consortia identified novel loci yielding evidence of association at or near genome-wide significance (GWS) with FEV1 and FEV1/FVC. We hypothesized that a subset of these markers would also be associated with chronic obstructive pulmonary disease (COPD) susceptibility. Thirty-two single-nucleotide polymorphisms (SNPs) in or near 17 genes in 11 previously identified GWS spirometric genomic regions were tested for association with COPD status in four COPD case-control study samples (NETT/NAS, the Norway case-control study, ECLIPSE, and the first 1,000 subjects in COPDGene; total sample size, 3,456 cases and 1,906 controls). In addition to testing the 32 spirometric GWS SNPs, we tested a dense panel of imputed HapMap2 SNP markers from the 17 genes located near the 32 GWS SNPs and in a set of 21 well studied COPD candidate genes. Of the previously identified GWS spirometric genomic regions, three loci harbored SNPs associated with COPD susceptibility at a 5% false discovery rate: the 4q24 locus including FLJ20184/INTS12/GSTCD/NPNT, the 6p21 locus including AGER and PPT2, and the 5q33 locus including ADAM19. In conclusion, markers previously associated at or near GWS with spirometric measures were tested for association with COPD status in data from four COPD case-control studies, and three loci showed evidence of association with COPD susceptibility at a 5% false discovery rate.
doi:10.1165/rcmb.2011-0055OC
PMCID: PMC3262664  PMID: 21659657
17.  COPD 
Clinical Evidence  2008;2008:1502.
Introduction
Chronic obstructive pulmonary disease (COPD) is a disease state characterised by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Classically, it is thought to be a combination of emphysema and chronic bronchitis, although only one of these may be present in some people with COPD. The main risk factor for the development and deterioration of COPD is smoking.
Methods and outcomes
We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of maintenance drug treatment in stable COPD? What are the effects of maintenance drug treatment in stable COPD? What are the effects of non-drug interventions in people with stable COPD? We searched: Medline, Embase, The Cochrane Library, and other important databases up to February 2007 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
Results
We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
Conclusions
In this systematic review we present information relating to the effectiveness and safety of the following interventions: alpha1 antitrypsin, antibiotics (prophylactic), anticholinergics (inhaled), beta2 agonists (inhaled), corticosteroids (oral and inhaled), general physical activity enhancement, inspiratory muscle training, maintaining healthy weight, mucolytics, oxygen treatment (long-term domiciliary treatment), peripheral muscle strength training, psychosocial and pharmacological interventions for smoking cessation, pulmonary rehabilitation, and theophylline.
Key Points
The main risk factor for the development and deterioration of chronic obstructive pulmonary disease (COPD) is smoking.
Inhaled anticholinergics and beta2 agonists improve lung function and symptoms and reduce exacerbations in stable COPD compared with placebo. It is unclear whether inhaled anticholinergics or inhaled beta2 agonists are the more consistently effective drug class in the treatment of COPD.Short-acting anticholinergics seem to be associated with a small improvement in quality of life compared with beta2 agonists. Long-acting inhaled anticholinergic drugs may improve lung function compared with long-acting beta2 agonists.Combined treatment with inhaled anticholinergics and beta2 agonists may improve symptoms and lung function and reduce exacerbations compared with either treatment alone, although long-term effects are unknown.
Inhaled corticosteroids reduce exacerbations in COPD and reduce decline in FEV1, but the beneficial effects are small. Oral corticosteroids may improve short-term lung function, but have serious adverse effects. Combined inhaled corticosteroids plus long-acting beta2 agonists improve lung function and symptoms and reduce exacerbations compared with placebo, and may be more effective than either treatment alone.
Long-term domiciliary oxygen treatment may improve survival in people with severe daytime hypoxaemia.
Theophylline may improve lung function compared with placebo, but adverse effects limit their usefulness in stable COPD.
We don't know whether mucolytic drugs, prophylactic antibiotics, or alpha1 antitrypsin improve outcomes in people with COPD compared with placebo.
Combined psychosocial and pharmacological interventions for smoking cessation can slow the deterioration of lung function, but have not been shown to reduce long-term mortality compared with usual care.
Multi-modality pulmonary rehabilitation and exercises can improve exercise capacity in people with stable COPD, but nutritional supplementation has not been shown to be beneficial.
PMCID: PMC2907933  PMID: 19445783
18.  COPD 
Clinical Evidence  2011;2011:1502.
Introduction
Chronic obstructive pulmonary disease (COPD) is a disease state characterised by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Classically, it is thought to be a combination of emphysema and chronic bronchitis, although only one of these may be present in some people with COPD. The main risk factor for the development and deterioration of COPD is smoking.
Methods and outcomes
We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of maintenance drug treatment in stable COPD? What are the effects of smoking cessation interventions in people with stable COPD? What are the effects of non-drug interventions in people with stable COPD? We searched: Medline, Embase, The Cochrane Library, and other important databases up to April 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
Results
We found 119 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
Conclusions
In this systematic review, we present information relating to the effectiveness and safety of the following interventions: alpha1 antitrypsin, antibiotics (prophylactic), anticholinergics (inhaled), beta2 agonists (inhaled), corticosteroids (oral and inhaled), general physical activity enhancement, inspiratory muscle training, nutritional supplementation, mucolytics, oxygen treatment (long-term domiciliary treatment), peripheral muscle strength training, psychosocial and pharmacological interventions for smoking cessation, pulmonary rehabilitation, and theophylline.
Key Points
The main risk factor for the development and deterioration of chronic obstructive pulmonary disease (COPD) is smoking.
Inhaled anticholinergics and beta2 agonists improve lung function and symptoms and reduce exacerbations in stable COPD compared with placebo. It is unclear whether inhaled anticholinergics or inhaled beta2 agonists are the more consistently effective drug class in the treatment of COPD.Short-acting anticholinergics seem to be associated with a small improvement in quality of life compared with beta2 agonists. Long-acting inhaled anticholinergics may improve lung function compared with long-acting beta2 agonists.Combined treatment with inhaled anticholinergics plus beta2 agonists may improve symptoms and lung function and reduce exacerbations compared with either treatment alone, although long-term effects are unknown.
Inhaled corticosteroids reduce exacerbations in COPD and reduce decline in FEV1, but the beneficial effects are small. Oral corticosteroids may improve short-term lung function, but have serious adverse effects. Combined inhaled corticosteroids plus long-acting beta2 agonists improve lung function, symptoms, and health-related quality of life, and reduce exacerbations compared with placebo, and may be more effective than either treatment alone.
Long-term domiciliary oxygen treatment may improve survival in people with severe daytime hypoxaemia.
Theophylline may improve lung function compared with placebo, but adverse effects limit its usefulness in stable COPD.
We don't know whether mucolytic drugs, prophylactic antibiotics, or alpha1 antitrypsin improve outcomes in people with COPD compared with placebo.
Combined psychosocial and pharmacological interventions for smoking cessation can slow the deterioration of lung function, but have not been shown to reduce long-term mortality compared with usual care.
Multi-modality pulmonary rehabilitation can improve exercise capacity, dyspnoea, and health-related quality of life in people with stable COPD; general physical exercises and peripheral muscle training can improve exercise capacity; inspiratory muscle training may improve lung function and exercise capacity; but nutritional supplementation has not been shown to be beneficial.
PMCID: PMC3275305  PMID: 21639960
19.  Budesonide/Formoterol Enhances the Expression of Pro Surfactant Protein-B in Lungs of COPD Patients 
PLoS ONE  2013;8(12):e83881.
Rationale & Aim
Pulmonary surfactants are essential components of lung homeostasis. In chronic obstructive pulmonary disease (COPD), surfactant expression decreases in lungs whereas, there is a paradoxical increase in protein expression in plasma. The latter has been associated with poor health outcomes in COPD. The purpose of this study was to determine the relationship of surfactants and other pneumoproteins in bronchoalveolar lavage (BAL) fluid and plasma to airflow limitation and the effects of budesonide/formoterol on this relationship.
Methods
We recruited (clinical trials.gov identifier: NCT00569712) 7 smokers without COPD and 30 ex and current smokers with COPD who were free of exacerbations for at least 4 weeks. All subjects were treated with budesonide/formoterol 400/12 µg twice a day for 4 weeks. BAL fluid and plasma samples were obtained at baseline and the end of the 4 weeks. We measured lung-predominant pneumoproteins: pro-Surfactant Protein-B (pro-SFTPB), Surfactant Protein-D (SP-D), Club Cell Secretory Protein-16 (CCSP-16) and Pulmonary and Activation-Regulated Chemokine (PARC/CCL-18) in BAL fluid and plasma.
Results
BAL Pro-SFTPB concentrations had the strongest relationship with airflow limitation as measured by FEV1/FVC (Spearman rho = 0.509; p = 0.001) and FEV1% of predicted (Spearman rho =  0.362; p = 0.028). Plasma CCSP-16 concentrations were also significantly related to airflow limitation (Spearman rho = 0.362; p = 0.028 for FEV1% of predicted). The other biomarkers in BAL fluid or plasma were not significantly associated with airflow limitation. In COPD subjects, budesonide/formoterol significantly increased the BAL concentrations of pro-SFTPB by a median of 62.46 ng/ml (p = 0.022) or 48.7% from baseline median value.
Conclusion
Increased severity of COPD is associated with reduced Pro-SFTPB levels in BAL fluid. Short-term treatment with budesonide/formoterol increases these levels in BAL fluid. Long term studies will be needed to determine the clinical relevance of this observation.
doi:10.1371/journal.pone.0083881
PMCID: PMC3873417  PMID: 24386300
20.  Association Between Single-Nucleotide Polymorphisms in Interleukin-12A and Risk of Chronic Obstructive Pulmonary Disease 
DNA and Cell Biology  2012;31(9):1475-1479.
Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction due to chronic bronchitis, emphysema, and/or disease of small airways. It has been reported that the genetic variation may play a role in the development and severity of COPD. The purpose of this study was to investigate whether single-nucleotide polymorphisms (SNP) in interleukin (IL)-12A and IL-12B were associated with COPD in a Chinese population. The IL-12A rs2243115 and IL-12B rs3212227 polymorphisms were genotyped by performing polymerase chain reaction–restriction fragment length polymorphism in 298 patients with COPD and 346 healthy controls. We observed that the frequencies of GT and GT+GG of IL-12A rs2243115 were significantly different from TT in the COPD group and the control group (GT vs. TT: odds ratio [OR]=2.35, 95% confidence interval [CI]=1.55–3.57, p<0.001; GT+GG vs. TT: OR=2.46, 95% CI=1.63–3.71, p<0.001). These data suggest that the IL-12A rs2243115 polymorphism may contribute to genetic susceptibility to COPD in a Chinese population.
Chronic obstructive pulmonary disease is caused by both environmental factors (such as smoking) and underlying genetic polymorphisms. In this article, a role of the proinflammatory cytokine, IL-12, is shown to be associated with the risk of disease.
doi:10.1089/dna.2012.1719
PMCID: PMC3429285  PMID: 22734699
21.  Pathogenic triad in COPD: oxidative stress, protease–antiprotease imbalance, and inflammation 
Patients with chronic obstructive pulmonary disease (COPD) exhibit dominant features of chronic bronchitis, emphysema, and/or asthma, with a common phenotype of airflow obstruction. COPD pulmonary physiology reflects the sum of pathological changes in COPD, which can occur in large central airways, small peripheral airways, and the lung parenchyma. Quantitative or high-resolution computed tomography is used as a surrogate measure for assessment of disease progression. Different biological or molecular markers have been reported that reflect the mechanistic or pathogenic triad of inflammation, proteases, and oxidants and correspond to the different aspects of COPD histopathology. Similar to the pathogenic triad markers, genetic variations or polymorphisms have also been linked to COPD-associated inflammation, protease–antiprotease imbalance, and oxidative stress. Furthermore, in recent years, there have been reports identifying aging-associated mechanistic markers as downstream consequences of the pathogenic triad in the lungs from COPD patients. For this review, the authors have limited their discussion to a review of mechanistic markers and genetic variations and their association with COPD histopathology and disease status.
doi:10.2147/COPD.S10770
PMCID: PMC3157944  PMID: 21857781
senescence; apoptosis; chronic obstructive pulmonary disease; bronchitis; emphysema
22.  Serum PARC/CCL-18 Concentrations and Health Outcomes in Chronic Obstructive Pulmonary Disease 
Rationale: There are no accepted blood-based biomarkers in chronic obstructive pulmonary disease (COPD). Pulmonary and activation-regulated chemokine (PARC/CCL-18) is a lung-predominant inflammatory protein that is found in serum.
Objectives: To determine whether PARC/CCL-18 levels are elevated and modifiable in COPD and to determine their relationship to clinical end points of hospitalization and mortality.
Methods: PARC/CCL-18 was measured in serum samples from individuals who participated in the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) and LHS (Lung Health Study) studies and a prednisolone intervention study.
Measurements and Main Results: Serum PARC/CCL-18 levels were higher in subjects with COPD than in smokers or lifetime nonsmokers without COPD (105 vs. 81 vs. 80 ng/ml, respectively; P < 0.0001). Elevated PARC/CCL-18 levels were associated with increased risk of cardiovascular hospitalization or mortality in the LHS cohort and with total mortality in the ECLIPSE cohort.
Conclusions: Serum PARC/CCL-18 levels are elevated in COPD and track clinical outcomes. PARC/CCL-18, a lung-predominant chemokine, could be a useful blood biomarker in COPD.
Clinical trial registered with www.clinicaltrials.gov (NCT 00292552).
doi:10.1164/rccm.201008-1220OC
PMCID: PMC3114051  PMID: 21216880
biomarker; chronic obstructive pulmonary disease; PARC/CCL-18; chemokine
23.  Circulating surfactant protein D as a potential lung-specific biomarker of health outcomes in COPD: a pilot study 
Background
There is a paucity of surrogate lung-specific biological markers that can be used to track disease progression and predict clinical outcomes in chronic obstructive pulmonary disease (COPD). The principal aim of this pilot study was to determine whether circulating surfactant protein D (SPD) or Clara Cell protein-16 (CC16) levels are associated with lung function or health status in patients with severe COPD.
Methods
We studied 23 patients with advanced COPD. Lung function measurements, Chronic Respiratory Disease Questionnaire (CRQ) scores, and serum levels of SPD, CC16, and C-reactive protein (CRP) were determined at baseline and at 3 months.
Results
At baseline, FEV1 was inversely associated with serum SPD levels (P = 0.045) but not with CC16 (P = 0.675) or CRP levels (P = 0.549). Over a 3 month period, changes in SPD levels correlated significantly with changes in CRQ scores (adjusted P = 0.008) such that patients who had the largest declines in serum SPD levels experienced the largest gains in health status. The association was particularly notable between circulating SPD level and the dyspnea domain of the CRQ score (P = 0.018). Changes in CC16 or CRP levels did not correlate with changes in CRQ scores.
Conclusion
Changes in serum SPD levels tracked well with changes in health status over a 3 month period in patients with severe COPD. These data suggest that circulating SPD levels may be useful biomarkers to track health outcomes of COPD patients.
doi:10.1186/1471-2466-7-13
PMCID: PMC2096624  PMID: 17922919
24.  Loci Identified by Genome-wide Association Studies Influence Different Disease-related Phenotypes in Chronic Obstructive Pulmonary Disease 
Rationale: Genome-wide association studies have shown significant associations between variants near hedgehog interacting protein HHIP, FAM13A, and cholinergic nicotinic acetylcholine receptor CHRNA3/5 with increased risk of chronic obstructive pulmonary disease (COPD) in smokers; however, the disease mechanisms behind these associations are not well understood.
Objectives: To identify the association between replicated loci and COPD-related phenotypes in well-characterized patient populations.
Methods: The relationship between these three loci and COPD-related phenotypes was assessed in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-point (ECLIPSE) cohort. The results were validated in the family-based International COPD Genetics Network (ICGN).
Measurements and Main Results: The CHRNA3/5 locus was significantly associated with pack-years of smoking (P = 0.002 and 3 × 10−4), emphysema assessed by a radiologist using high-resolution computed tomography (P = 2 × 10−4 and 4.8 × 10−5), and airflow obstruction (P = 0.004 and 1.8 × 10−5) in the ECLIPSE and ICGN populations, respectively. However, variants in the IREB2 gene were only significantly associated with FEV1. The HHIP locus was not associated with smoking intensity but was associated with FEV1/FVC (P = 1.9 × 10−4 and 0.004 in the ECLIPSE and ICGN populations). The HHIP locus was also associated with fat-free body mass (P = 0.007) and with both retrospectively (P = 0.015) and prospectively (P = 0.024) collected COPD exacerbations in the ECLIPSE cohort. Single-nucleotide polymorphisms in the FAM13A locus were associated with lung function.
Conclusions: The CHRNA3/5 locus was associated with increased smoking intensity and emphysema in individuals with COPD, whereas the HHIP and FAM13A loci were not associated with smoking intensity. The HHIP locus was associated with the systemic components of COPD and with the frequency of COPD exacerbations. FAM13A locus was associated with lung function.
doi:10.1164/rccm.201002-0151OC
PMCID: PMC3029936  PMID: 20656943
COPD exacerbations; nicotine addiction; high-resolution CT; genetic association analysis; emphysema
25.  Models of chronic obstructive pulmonary disease 
Respiratory Research  2004;5(1):18.
Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations.
doi:10.1186/1465-9921-5-18
PMCID: PMC533858  PMID: 15522115
Chronic obstructive pulmonary disease; COPD; asthma; animal; mice; rat; guinea pig; tobacco smoke; nitrogen dioxide; sulfur dioxide

Results 1-25 (613291)