PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1106039)

Clipboard (0)
None

Related Articles

1.  Analysis of repetitive element DNA methylation by MethyLight 
Nucleic Acids Research  2005;33(21):6823-6836.
Repetitive elements represent a large portion of the human genome and contain much of the CpG methylation found in normal human postnatal somatic tissues. Loss of DNA methylation in these sequences might account for most of the global hypomethylation that characterizes a large percentage of human cancers that have been studied. There is widespread interest in correlating the genomic 5-methylcytosine content with clinical outcome, dietary history, lifestyle, etc. However, a high-throughput, accurate and easily accessible technique that can be applied even to paraffin-embedded tissue DNA is not yet available. Here, we report the development of quantitative MethyLight assays to determine the levels of methylated and unmethylated repeats, namely, Alu and LINE-1 sequences and the centromeric satellite alpha (Satα) and juxtacentromeric satellite 2 (Sat2) DNA sequences. Methylation levels of Alu, Sat2 and LINE-1 repeats were significantly associated with global DNA methylation, as measured by high performance liquid chromatography, and the combined measurements of Alu and Sat2 methylation were highly correlative with global DNA methylation measurements. These MethyLight assays rely only on real-time PCR and provide surrogate markers for global DNA methylation analysis. We also describe a novel design strategy for the development of methylation-independent MethyLight control reactions based on Alu sequences depleted of CpG dinucleotides by evolutionary deamination on one strand. We show that one such Alu-based reaction provides a greatly improved detection of DNA for normalization in MethyLight applications and is less susceptible to normalization errors caused by cancer-associated aneuploidy and copy number changes.
doi:10.1093/nar/gki987
PMCID: PMC1301596  PMID: 16326863
2.  Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood 
Epigenetics  2011;6(5):623-629.
Reduced levels of global DNA methylation are associated with genomic instability and are independent predictors of cancer risk. Little is known about the environmental determinants of global DNA methylation in peripheral blood. We examined the association between demographic and lifestyle factors and levels of global leukocyte DNA methylation in 161 cancer-free subjects enrolled in the North Texas Healthy Heart Study aged 45–75 years in 2008. We used in-person interviews for demographics and lifestyle factors, a self-administrated Block food frequency questionnaire for diet, and bioelectrical impedance analysis and CT-scan for body composition. We measured genomic DNA methylation using bisulfite conversion of DNA and pyrosequencing for LINE-1. Body composition measures including body mass index, waist circumference, areas of subcutaneous fat and visceral fat, percent of fat mass and fat-free mass were not associated with global genomic DNA methylation after controlling the effect of age, gender and race/ethnicity. Instead, female gender was significantly associated with a reduced level of global methylation (β = −2.77, 95% CI: −4.33, −1.22). Compared to non-Hispanic whites, non-Hispanic blacks (β = −2.02, 95% CI: −3.55, −0.50) had significantly lower levels of global methylation. No association was found with age, cigarette smoking, alcohol drinking and dietary intake of nutrients in one-carbon metabolism. Global leukocyte DNA methylation differs by gender and race/ethnicity, suggesting these variables need to be taken into consideration in studies of global DNA methylation as an epigenetic marker for cancer.
doi:10.4161/epi.6.5.15335
PMCID: PMC3230547  PMID: 21739720
gender; race/ethnicity; DNA methylation
3.  Recreational and household physical activity at different time points and DNA global methylation 
Background
DNA methylation patterns are heritable but can change over time and in response to exposures. Lower global DNA methylation, which may result in increased genomic and chromosomal instability, has been associated with increased cancer risk. Physical activity is a modifiable factor that has been inversely related to the risk of cancer. Changes in DNA methylation may be a mechanism by which lifestyle and environment factors influence disease. We investigated the relationship between DNA methylation and physical activity in a sample of women enrolled in The Sister Study, a large U.S. cohort study of women aged 35–74 years with a family history of breast cancer.
Methods
Global DNA methylation was measured using bisulfite converted DNA and pyrosequencing of a LINE-1 repetitive sequence in the peripheral blood of 647 non-Hispanic white women. Physical activity (average hours per week) was retrospectively assessed for three time periods: childhood (ages 5–12), teenage years (ages 13–19) and the previous twelve months.
Findings
Compared with women with physical activity levels below the median for all three time periods, those at or above the median physical activity for one (β= 0.20, 95% CI: −0.10, 0.49), two (β= 0.22, 95% CI: −0.08, 0.52) or all three (β= 0.33, 95% CI: 0.01, 0.66) time periods had increased global methylation.
Interpretation
Maintaining higher levels of physical activity over these three time periods was associated with increased global DNA methylation, consistent with reported associations between exercise and decreased cancer risk.
doi:10.1016/j.ejca.2013.02.013
PMCID: PMC3686968  PMID: 23473616
DNA methylation; LINE-1; physical activity; pyrosequencing; Sister Study
4.  LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer 
The CpG island methylator phenotype (CIMP) with widespread promoter CpG island methylation is a phenotype in colorectal cancer, associated with microsatellite instability (MSI) and BRAF mutation. Genome-wide hypomethylation may also play an important role in genomic instability. However, the relation between global DNA methylation level and methylation in individual CpG islands remains uncertain. Utilizing 869 population-based colorectal cancers, we measured LINE-1 (long interspersed nucleotide element-1) methylation level by Pyrosequencing, which correlates with global DNA methylation level. We quantified DNA methylation in 8 CIMP-specific promoters (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) by real-time PCR (MethyLight technology). LINE-1 methylation levels in tumors were approximately normally distributed (mean 61.4%, median 62.3%, standard deviation 9.6%). Among the 869 tumors, 128 (15%) were classified as CIMP-high (≥6/8 methylated promoters). The mean LINE-1 methylation level was higher in CIMP-high tumors (65.1%, p<0.0001) than non-CIMP-high tumors (60.7%), and higher in MSI-high tumors (64.7%, p<0.0001) than non-MSI-high tumors (60.7%). When tumors were stratified by MSI/CIMP status, compared to non-MSI-high non-CIMP-high tumors (mean LINE-1 methylation level 60.4%), the mean LINE-1 methylation level was higher in MSI-high CIMP-high (64.8%, p<0.0001), MSI-high non-CIMP-high (64.6%, p=0.03) and non-MSI-high CIMP-high tumors (66.1%, p=0.0003). In addition, 18q loss of heterozygosity in non-MSI-high tumors was correlated with LINE-1 hypomethylation (p=0.004). In conclusion, both CIMP-high and MSI-high are inversely associated with LINE-1 hypomethylation, suggesting that CIMP/MSI and genomic hypomethylation may represent different pathways to colorectal cancer. Our data also support a possible link between global hypomethylation and chromosomal instability.
doi:10.1002/ijc.23470
PMCID: PMC2630175  PMID: 18366060
colon cancer; methylation; epigenomics; CIMP; LINE-1
5.  Adult global DNA methylation in relation to pre-natal nutrition 
Background Exposure to a pre-natal famine environment has been associated with a persistent decrease in DNA methylation of the IGF2 gene, although study findings on other loci have been highly variable. There have been no studies to date of the relation between pre-natal famine and overall global DNA methylation in adulthood.
Methods Our study population includes 350 births with pre-natal exposure to the Dutch famine of 1944–45 selected from three birth clinics, 290 births from these clinics born before or after the famine as unexposed time controls and 307 same-sex siblings of either birth group as unexposed family controls. All study subjects were interviewed and underwent a medical examination at a mean age of 58 years when blood samples were also collected. As measures of genomic DNA methylation, we analysed two repetitive elements, LINE-1 (long interspersed nucleotide element 1) and Sat2 (Satellite 2 DNA sequence) by pyrosequencing and MethyLight, respectively, and overall genomic DNA methylation using the Luminometric methylation assay (LUMA).
Results Mean DNA methylation by LUMA was 75.2% [standard deviation (SD) 4.7], by LINE-1 was 77.1% (SD 2.5) and by Sat2 was 122.2 (SD 56.2). Pre-natal famine exposure was associated with negligible changes in all three assays {LUMA: −0.16% [95% confidence interval (95% CI) −0.49 to 0.81], P = 0.63; LINE-1: −0.05 % (95% CI −0.33 to 0.22), P = 0.70; and Sat2: −0.51% (95% CI −7.38 to 6.36), P = 0.88} relative to unexposed controls, adjusting for age at examination and within family clustering.
Conclusion Our results show no relation between overall global DNA methylation in adults and pre-natal famine exposure. Further work should focus on selected regions in the genome that may be differentially methylated in response to changes in early life exposures and predict adult health outcomes.
doi:10.1093/ije/dyr137
PMCID: PMC3304521  PMID: 22422450
Pre-natal exposure delayed effects; Dutch famine; The Netherlands; World War II; DNA methylation; LINE-1; Sat2; LUMA
6.  A 115-bp MethyLight assay for detection of p16 (CDKN2A) methylation as a diagnostic biomarker in human tissues 
BMC Medical Genetics  2011;12:67.
Background
p16 Methylation is a potential biomarker for prediction of malignant transformation of epithelial dysplasia. A probe-based, quantitative, methylation-specific PCR (MSP) called MethyLight may become an eligible method for detecting this marker clinically. We studied oral mucosa biopsies with epithelial dysplasia from 78 patients enrolled in a published 4-years' followup cohort, in which cancer risk for patients with p16 methylation-positive dysplasia was significantly higher than those without p16 methylation (by 150-bp MSP and bisulfite sequencing; +133 ~ +283, transcription starting site, +1). The p16 methylation status in samples (N = 102) containing sufficient DNA was analyzed by the 70-bp classic (+238 ~ +307) and 115-bp novel (+157 ~ +272) MethyLight assays, respectively.
Results
p16 Methylation was detectable in 75 samples using the classic MethyLight assay. The methylated-p16 positive rate and proportion of methylated-p16 by the MethyLight in MSP-positive samples were higher than those in MSP-negative samples (positive rate: 37/44 vs. 38/58, P=0.035, two-sided; proportion [median]: 0.78 vs. 0.02, P <0.007). Using the published results of MSP as a golden standard, we found sensitivity, specificity, and accuracy for this MethyLight assay to be 70.5%, 84.5%, and 55.0%, respectively. Because amplicon of the classic MethyLight procedure only partially overlapped with the MSP amplicon, we further designed a 115-bp novel MethyLight assay in which the amplicon on the sense-strand fully overlapped with the MSP amplicon on the antisense-strand. Using the 115-bp MethyLight assay, we observed methylated-p16 in 26 of 44 MSP-positive samples and 2 of 58 MSP-negative ones (P = 0.000). These results were confirmed with clone sequencing. Sensitivity, specificity, and accuracy using the 115-bp MethyLight assay were 59.1%, 98.3%, and 57.4%, respectively. Significant differences in the oral cancer rate were observed during the followup between patients (≥60 years) with and without methylated-p16 as detected by the 115-bp MethyLight assay (6/8 vs. 6/22, P = 0.034, two-sided).
Conclusions
The 115-bp MethyLight assay is a useful and practical assay with very high specificity for the detection of p16 methylation clinically.
doi:10.1186/1471-2350-12-67
PMCID: PMC3120739  PMID: 21569495
7.  Global methylation profiles in DNA from different blood cell types 
Epigenetics  2011;6(1):76-85.
DNA methylation measured in white blood cell DNA is increasingly being used in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran) and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources [WBC, Gran, mononuclear (MN) and lymphoblastoid cell lines (LCL)], we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA) and [3H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LCL, MN or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [3H]-methyl acceptance, LINE1 and Alu assays. Methylation in MN was correlated with methylation in WBC for the [3H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant correlations ranging from 0.3–0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39–0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18–0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.
doi:10.4161/epi.6.1.13391
PMCID: PMC3052916  PMID: 20890131
[3H]-methyl acceptance assay; Alu; DNA demethylation; epigenetics; LINE1; LUMA; methylight; Sat2
8.  Global DNA methylation levels in girls with and without a family history of breast cancer 
Epigenetics  2011;6(1):29-33.
Lower levels of global DNA methylation in white blood cell (WBC) DNA have been associated with adult cancers. It is unknown whether individuals with a family history of cancer also have lower levels of global DNA methylation early in life. We examined global DNA methylation in WBC (measured in three repetitive elements, LINE1, Sat2 and Alu, by MethyLight and in LINE1 by pyrosequencing) in 51 girls aged 6–17 years. Compared to girls without a family history of breast cancer, methylation levels were lower for all assays in girls with a family history of breast cancer and statistically significantly lower for Alu and LINE1 pyrosequencing. After adjusting for age, body mass index (BMI) and Tanner stage, only methylation in Alu was associated with family history of breast cancer. If these findings are replicated in larger studies, they suggest that lower levels of global WBC DNA methylation observed later in life in adults with cancer may also be present early in life in children with a family history of cancer.
doi:10.4161/epi.6.1.13393
PMCID: PMC3052913  PMID: 20930546
Alu; DNA global methylation; early life exposure; epigenetics; LINE1; methylight; pyrosequencing; Sat2
9.  A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern in Human Adipose Tissue 
PLoS Genetics  2013;9(6):e1003572.
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.
Author Summary
Given the important role of epigenetics in gene regulation and disease development, we here present the genome-wide DNA methylation pattern of 476,753 CpG sites in adipose tissue obtained from healthy men. Since environmental factors potentially change metabolism through epigenetic modifications, we examined if a six months exercise intervention alters the DNA methylation pattern as well as gene expression in human adipose tissue. Our results show that global DNA methylation changes and 17,975 individual CpG sites alter the levels of DNA methylation in response to exercise. We also found differential DNA methylation of 39 candidate genes for obesity and type 2 diabetes in human adipose tissue after exercise. Additionally, we provide functional proof that genes, which exhibit both differential DNA methylation and gene expression in human adipose tissue in response to exercise, influence adipocyte metabolism. Together, this study provides the first detailed map of the genome-wide DNA methylation pattern in human adipose tissue and links exercise to altered adipose tissue DNA methylation, potentially affecting adipocyte metabolism.
doi:10.1371/journal.pgen.1003572
PMCID: PMC3694844  PMID: 23825961
10.  Global DNA methylation levels in white blood cells as a biomarker for hepatocellular carcinoma risk: a nested case–control study 
Carcinogenesis  2012;33(7):1340-1345.
Global DNA hypomethylation is associated with genomic instability and human cancer and blood DNAs collected at the time of cancer diagnosis have been used to examine the relationship between global methylation and cancer risk. To test the hypothesis that global hypomethylation is associated with increased risk of hepatocellular carcinoma (HCC), we conducted a prospective case–control study nested within a community-based cohort with 16 years of follow-up. We measured methylation levels in Satellite 2 (Sat2) by MethyLight and LINE-1 by pyrosequencing using baseline white blood cell DNA from 305 HCC cases and 1254 matched controls. We found that Sat2 hypomethylation was associated with HCC risk [odds ratio (OR) per unit decrease in natural log Sat2 methylation = 1.77, 95% confidence interval (CI) = 1.06–2.95]. The association was significant among individuals diagnosed with HCC before age 62 (OR per unit decrease in natural log Sat2 methylation = 2.47, 95% CI = 1.06–5.73) but not after (OR = 1.67, 95% CI = 0.84–3.32). We did not observe an association of LINE-1 with HCC overall risk by age at diagnosis. Among carriers of hepatitis B virus surface antigen (HBsAg), with each 1U decrease in natural log Sat2 methylation level, the OR for HCC increased by 2.19 (95% CI = 1.00–4.89). LINE-1 hypomethylation was associated with about a 2-fold increased risk of HCC, with ORs (95% CI) of 2.39 (1.06–5.39), 2.09 (0.91–4.77) and 2.28 (0.95–5.51, P trend = 0.14) for HBsAg carriers in the third, second and lowest quartile of LINE-1 methylation, respectively compared with carriers in the fourth. These results suggest that global hypomethylation may be a useful biomarker of HCC susceptibility.
doi:10.1093/carcin/bgs160
PMCID: PMC3499052  PMID: 22581841
11.  Genomic Methylation Changes Over Time in Peripheral Blood Mononuclear Cell DNA: Differences by Assay Type and Baseline Values 
Background
Lower levels of genomic DNA methylation in blood DNA has been associated with risk of different cancers and several cancer risk factors. To understand the use of genomic methylation measures as biomarkers of cancer risk, data are needed on within-individual changes over time.
Methods
Using information from 77 subjects with blood collected at 2 visits on average 8 years apart, we examined whether levels of DNA methylation change with time and if so, whether selected cancer risk factors predict these changes. We measured DNA methylation levels in peripheral blood mononuclear cells (PBMC) using three assays that have been used in epidemiologic studies: (i) luminometric methylation assay (LUMA)(ii) LINE-1 by pyrosequencing, and (iii) Sat2 by MethyLight.
Results
Close to a third of all individuals had large changes over time (≥10%) in LUMA with 19.5% increasing and 13.0% decreasing. For Sat2, two-thirds of individuals had large changes with 40% increasing and 26% decreasing over time. In contrast, only 3.9% of individuals had large changes in LINE-1 over time. The degree of change in PBMC DNA methylation was statistically significantly inversely associated with methylation levels at baseline; greater decreases were observed in individuals with higher baseline values for each assay.
Conclusions
These data, if replicated, suggest that changes in DNA methylation over time are highly associated with baseline values of the assay and vary by assay type.
Impact
These findings suggest that assays that change more over time may warrant consideration for studies that measure later life exposures.
doi:10.1158/1055-9965.EPI-12-0300
PMCID: PMC4032622  PMID: 22665578
12.  Global hypomethylation in hepatocellular carcinoma and its relationship to aflatoxin B1 exposure 
World Journal of Hepatology  2012;4(5):169-175.
AIM: To determine global DNA methylation in paired hepatocellular carcinoma (HCC) samples using several different assays and explore the correlations between hypomethylation and clinical parameters and biomarkers, including that of aflatoxin B1 exposure.
METHODS: Using the radio labeled methyl acceptance assay as a measure of global hypomethylation, as well as two repetitive elements, including satellite 2 (Sat2) by MethyLight and long interspersed nucleotide elements (LINE1), by pyrosequencing.
RESULTS: By all three assays, mean methylation levels in tumor tissues were significantly lower than that in adjacent tissues. Methyl acceptance assay log (mean ± SD) disintegrations/min/ng DNA are 70.0 ± 54.8 and 32.4 ± 15.6, respectively, P = 0.040; percent methylation of Sat2 42.2 ± 55.1 and 117.9 ± 88.8, respectively, P < 0.0001 and percent methylation LINE1 48.6 ± 14.8 and 71.7 ± 1.4, respectively, P < 0.0001. Aflatoxin B1-albumin (AFB1-Alb) adducts, a measure of exposure to this dietary carcinogen, were inversely correlated with LINE1 methylation (r = -0.36, P = 0.034).
CONCLUSION: Consistent hypomethylation in tumor compared to adjacent tissue was found by the three different methods. AFB1 exposure is associated with DNA global hypomethylation, suggesting that chemical carcinogens may influence epigenetic changes in humans.
doi:10.4254/wjh.v4.i5.169.
PMCID: PMC3365436  PMID: 22666524
Hepatocellular carcinoma; Epigenetics; Hypomethylation; [3H]-methyl acceptance assay; Satellite 2; Long interspersed nucleotide element-1; Aflatoxin B1
13.  DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight 
Nucleic Acids Research  2008;36(14):4689-4698.
Alterations in cytosine-5 DNA methylation are frequently observed in most types of human cancer. Although assays utilizing PCR amplification of bisulfite-converted DNA are widely employed to analyze these DNA methylation alterations, they are generally limited in throughput capacity, detection sensitivity, and or resolution. Digital PCR, in which a DNA sample is analyzed in distributive fashion over multiple reaction chambers, allows for enumeration of discrete template DNA molecules, as well as sequestration of non-specific primer annealing templates into negative chambers, thereby increasing the signal-to-noise ratio in positive chambers. Here, we have applied digital PCR technology to bisulfite-converted DNA for single-molecule high-resolution DNA methylation analysis and for increased sensitivity DNA methylation detection. We developed digital bisulfite genomic DNA sequencing to efficiently determine single-basepair DNA methylation patterns on single-molecule DNA templates without an interim cloning step. We also developed digital MethyLight, which surpasses traditional MethyLight in detection sensitivity and quantitative accuracy for low quantities of DNA. Using digital MethyLight, we identified single-molecule, cancer-specific DNA hypermethylation events in the CpG islands of RUNX3, CLDN5 and FOXE1 present in plasma samples from breast cancer patients.
doi:10.1093/nar/gkn455
PMCID: PMC2504308  PMID: 18628296
14.  Repetitive element DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry 
Carcinogenesis  2012;33(10):1946-1952.
Global decreases in DNA methylation, particularly in repetitive elements, have been associated with genomic instability and human cancer. Emerging, though limited, data suggest that in white blood cell (WBC) DNA levels of methylation, overall or in repetitive elements, may be associated with cancer risk. We measured methylation levels of three repetitive elements [Satellite 2 (Sat2)], long interspersed nuclear element-1 (LINE-1) and Alu) by MethyLight, and LINE-1 by pyrosequencing in a total of 282 breast cancer cases and 347 unaffected sisters from the New York site of the Breast Cancer Family Registry (BCFR) using DNA from both granulocytes and total WBC. We found that methylation levels in all markers were correlated between sisters (Spearman correlation coefficients ranged from 0.17 to 0.55). Sat2 methylation was statistically significantly associated with increased breast cancer risk [odds ratio (OR) = 2.09, 95% confidence interval (CI) = 1.09–4.03; for each unit decrease in the natural log of the methylation level, OR = 2.12, 95% CI = 0.88–5.11 for the lowest quartile compared with the highest quartile]. These associations were only observed in total WBC but not granulocyte DNA. There was no association between breast cancer and LINE-1 and Alu methylation. If replicated in larger prospective studies, these findings support that selected markers of epigenetic changes measured in WBC, such as Sat2, may be potential biomarkers of breast cancer risk.
doi:10.1093/carcin/bgs201
PMCID: PMC3499042  PMID: 22678115
15.  Role of DNA Methylation and Epigenetic Silencing of HAND2 in Endometrial Cancer Development 
PLoS Medicine  2013;10(11):e1001551.
TB filled in by Laureen
Please see later in the article for the Editors' Summary
Background
Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development.
Methods and Findings
Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression.
Conclusions
HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cancer, which is responsible for 13% of global deaths, can develop anywhere in the body, but all cancers are characterized by uncontrolled cell growth and reduced cellular differentiation (the process by which unspecialized cells such as “stem” cells become specialized during development, tissue repair, and normal cell turnover). Genetic alterations—changes in the sequence of nucleotides (DNA's building blocks) in specific genes—are required for this cellular transformation and subsequent cancer development (carcinogenesis). However, recent evidence suggests that epigenetic modifications—reversible, heritable changes in gene function that occur in the absence of nucleotide sequence changes—may also be involved in carcinogenesis. For example, the addition of methyl groups to a set of genes called stem cell polycomb group target genes (PCGTs; polycomb genes control the expression of their target genes by modifying their DNA or associated proteins) is one of the earliest molecular changes in human cancer development, and increasing evidence suggests that hypermethylation of PCGTs is an epigenetic hallmark of cancer.
Why Was This Study Done?
The methylation of PCGTs, which is triggered by age and by environmental factors that are associated with cancer development, reduces cellular differentiation and leads to the accumulation of undifferentiated cells that are susceptible to cancer development. It is unclear, however, whether epigenetic modifications have a causal role in carcinogenesis. Here, the researchers investigate the involvement of epigenetic factors in the development of endometrial (womb) cancer. The risk of endometrial cancer (which affects nearly 50,000 women annually in the United States) is largely determined by environmental and lifestyle factors. Specifically, the risk of this cancer is increased in women in whom estrogen (a hormone that drives cell proliferation in the endometrium) is functionally dominant over progesterone (a hormone that inhibits endometrial proliferation and causes cell differentiation); obese women and women who have taken estrogen-only hormone replacement therapies fall into this category. Thus, endometrial cancer is an ideal model in which to study whether epigenetic mechanisms underlie carcinogenesis.
What Did the Researchers Do and Find?
The researchers collected data on genome-wide DNA methylation at cytosine- and guanine-rich sites in endometrial cancers and normal endometrium and integrated this information with the human interactome and transcriptome (all the physical interactions between proteins and all the genes expressed, respectively, in a cell) using an algorithm called Functional Epigenetic Modules (FEM). This analysis identified HAND2 as the hub of the most highly ranked differential methylation hotspot in endometrial cancer. HAND2 is a progesterone-regulated stem cell PCGT. It encodes a transcription factor that is expressed in the endometrial stroma (the connective tissue that lies below the epithelial cells in which most endometrial cancers develop) and that suppresses the production of the growth factors that mediate the growth-inducing effects of estrogen on the endometrial epithelium. The researchers hypothesized, therefore, that epigenetic deregulation of HAND2 could be a key step in endometrial cancer development. In support of this hypothesis, the researchers report that HAND2 methylation was increased in premalignant endometrial lesions (cancer-prone, abnormal-looking tissue) compared to normal endometrium, and was associated with suppression of HAND2 expression. Moreover, a high level of endometrial HAND2 methylation in premalignant lesions predicted a poor response to progesterone treatment (which stops the growth of some endometrial cancers), and analysis of HAND2 methylation in endometrial secretions collected from women with postmenopausal bleeding (a symptom of endometrial cancer) accurately identified individuals with early stage endometrial cancer. Finally, mice in which the Hand2 gene was specifically deleted in the endometrium developed precancerous endometrial lesions with age.
What Do These Findings Mean?
These and other findings identify HAND2 methylation as a common, key molecular alteration in endometrial cancer. These findings need to be confirmed in more women, and studies are needed to determine the immediate molecular and cellular consequences of HAND2 silencing in endometrial stromal cells. Nevertheless, these results suggest that HAND2 methylation could potentially be used as a biomarker for the early detection of endometrial cancer and for predicting treatment response. More generally, these findings support the idea that methylation of HAND2 (and, by extension, the methylation of other PCGTs) is not a passive epigenetic feature of cancer but is functionally involved in cancer development, and provide a framework for identifying other genes that are epigenetically regulated and functionally important in carcinogenesis.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001551
The US National Cancer Institute provides information on all aspects of cancer and has detailed information about endometrial cancer for patients and professionals (in English and Spanish)
The not-for-profit organization American Cancer Society provides information on cancer and how it develops and specific information on endometrial cancer (in several languages)
The UK National Health Service Choices website includes an introduction to cancer, a page on endometrial cancer, and a personal story about endometrial cancer
The not-for-profit organization Cancer Research UK provides general information about cancer and specific information about endometrial cancer
Wikipedia has a page on cancer epigenetics (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The Eve Appeal charity that supported this research provides useful information on gynecological cancers
doi:10.1371/journal.pmed.1001551
PMCID: PMC3825654  PMID: 24265601
16.  White blood cell global methylation and IL-6 promoter methylation in association with diet and lifestyle risk factors in a cancer-free population 
Epigenetics  2012;7(6):606-614.
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18–78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009–2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.
doi:10.4161/epi.20236
PMCID: PMC3398989  PMID: 22531363
DNA Methylation; cancer; diet; lifestyle factors
17.  Assessing Causality in the Association between Child Adiposity and Physical Activity Levels: A Mendelian Randomization Analysis 
PLoS Medicine  2014;11(3):e1001618.
Here, Timpson and colleagues performed a Mendelian Randomization analysis to determine whether childhood adiposity causally influences levels of physical activity. The results suggest that increased adiposity causes a reduction in physical activity in children; however, this study does not exclude lower physical activity also leading to increasing adiposity.
Please see later in the article for the Editors' Summary
Background
Cross-sectional studies have shown that objectively measured physical activity is associated with childhood adiposity, and a strong inverse dose–response association with body mass index (BMI) has been found. However, few studies have explored the extent to which this association reflects reverse causation. We aimed to determine whether childhood adiposity causally influences levels of physical activity using genetic variants reliably associated with adiposity to estimate causal effects.
Methods and Findings
The Avon Longitudinal Study of Parents and Children collected data on objectively assessed activity levels of 4,296 children at age 11 y with recorded BMI and genotypic data. We used 32 established genetic correlates of BMI combined in a weighted allelic score as an instrumental variable for adiposity to estimate the causal effect of adiposity on activity.
In observational analysis, a 3.3 kg/m2 (one standard deviation) higher BMI was associated with 22.3 (95% CI, 17.0, 27.6) movement counts/min less total physical activity (p = 1.6×10−16), 2.6 (2.1, 3.1) min/d less moderate-to-vigorous-intensity activity (p = 3.7×10−29), and 3.5 (1.5, 5.5) min/d more sedentary time (p = 5.0×10−4). In Mendelian randomization analyses, the same difference in BMI was associated with 32.4 (0.9, 63.9) movement counts/min less total physical activity (p = 0.04) (∼5.3% of the mean counts/minute), 2.8 (0.1, 5.5) min/d less moderate-to-vigorous-intensity activity (p = 0.04), and 13.2 (1.3, 25.2) min/d more sedentary time (p = 0.03). There was no strong evidence for a difference between variable estimates from observational estimates. Similar results were obtained using fat mass index. Low power and poor instrumentation of activity limited causal analysis of the influence of physical activity on BMI.
Conclusions
Our results suggest that increased adiposity causes a reduction in physical activity in children and support research into the targeting of BMI in efforts to increase childhood activity levels. Importantly, this does not exclude lower physical activity also leading to increased adiposity, i.e., bidirectional causation.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The World Health Organization estimates that globally at least 42 million children under the age of five are obese. The World Health Organization recommends that all children undertake at least one hour of physical activity daily, on the basis that increased physical activity will reduce or prevent excessive weight gain in children and adolescents. In practice, while numerous studies have shown that body mass index (BMI) shows a strong inverse correlation with physical activity (i.e., active children are thinner than sedentary ones), exercise programs specifically targeted at obese children have had only very limited success in reducing weight. The reasons for this are not clear, although environmental factors such as watching television and lack of exercise facilities are traditionally blamed.
Why Was This Study Done?
One of the reasons why obese children do not lose weight through exercise might be that being fat in itself leads to a decrease in physical activity. This is termed reverse causation, i.e., obesity causes sedentary behavior, rather than the other way around. The potential influence of environmental factors (e.g., lack of opportunity to exercise) makes it difficult to prove this argument. Recent research has demonstrated that specific genotypes are related to obesity in children. Specific variations within the DNA of individual genes (single nucleotide polymorphisms, or SNPs) are more common in obese individuals and predispose to greater adiposity across the weight distribution. While adiposity itself can be influenced by many environmental factors that complicate the interpretation of observed associations, at the population level, genetic variation is not related to the same factors, and over the life course cannot be changed. Investigations that exploit these properties of genetic associations to inform the interpretation of observed associations are termed Mendelian randomization studies. This research technique is used to reduce the influence of confounding environmental factors on an observed clinical condition. The authors of this study use Mendelian randomization to determine whether a genetic tendency towards high BMI and fat mass is correlated with reduced levels of physical activity in a large cohort of children.
What Did the Researchers Do and Find?
The researchers looked at a cohort of children from a large long-term health research project (the Avon Longitudinal Study of Parents and Children). BMI and total body fat were recorded. Total daily activity was measured via a small movement-counting device. In addition, the participants underwent genotyping to detect the presence of several SNPs known to be linked to obesity. For each child a total BMI allelic score was determined based on the number of obesity-related genetic variants carried by that individual. The association between obesity and reduced physical activity was then studied in two ways. Direct correlation between actual BMI and physical activity was measured (observational data). Separately, the link between BMI allelic score and physical activity was also determined (Mendelian randomization or instrumental variable analysis). The observational data showed that boys were more active than girls and had lower BMI. Across both sexes, a higher-than-average BMI was associated with lower daily activity. In genetic analyses, allelic score had a positive correlation with BMI, with one particular SNP being most strongly linked to high BMI and total fat mass. A high allelic score for BMI was also correlated with lower levels of daily physical activity. The authors conclude that children who are obese and have an inherent predisposition to high BMI also have a propensity to reduced levels of physical activity, which may compound their weight gain.
What Do These Findings Mean?
This study provides evidence that being fat is in itself a risk factor for low activity levels, separately from external environmental influences. This may be an example of “reverse causation,” i.e., high BMI causes a reduction in physical activity. Alternatively, there may be a bidirectional causality, so that those with a genetic predisposition to high fat mass exercise less, leading to higher BMI, and so on, in a vicious circle. A significant limitation of the study is that validated allelic scores for physical activity are not available. Thus, it is not possible to determine whether individuals with a high allelic score for BMI also have a propensity to exercise less, or whether it is simply the circumstance of being overweight that discourages activity. This study does suggest that trying to persuade obese children to lose weight by exercising more is likely to be ineffective unless additional strategies to reduce BMI, such as strict diet control, are also implemented.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001618.
The US Centers for Disease Control and Prevention provides obesity-related statistics, details of prevention programs, and an overview on public health strategy in the United States
A more worldwide view is given by the World Health Organization
The UK National Health Service website gives information on physical activity guidelines for different age groups
The International Obesity Task Force is a network of organizations that seeks to alert the world to the growing health crisis threatened by soaring levels of obesity
MedlinePlus—which brings together authoritative information from the US National Library of Medicine, National Institutes of Health, and other government agencies and health-related organizations—has a page on obesity
Additional information on the Avon Longitudinal Study of Parents and Children is available
The British Medical Journal has an article that describes Mendelian randomization
doi:10.1371/journal.pmed.1001618
PMCID: PMC3958348  PMID: 24642734
18.  Deposition of Histone Variant H2A.Z within Gene Bodies Regulates Responsive Genes 
PLoS Genetics  2012;8(10):e1002988.
The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that loss of H2A.Z in Arabidopsis has only a minor effect on the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is primarily caused by the exclusion of H2A.Z from methylated DNA. RNA sequencing and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. Loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to environmental and developmental stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes.
Author Summary
Eukaryotes package their DNA to fit within the nucleus using well-conserved proteins, called histones, that form the building blocks of nucleosomes, the fundamental units of chromatin. Histone variants are specialized versions of these proteins that change the chromatin landscape by altering the biochemical properties and interacting partners of the nucleosome. H2A.Z, a conserved eukaryotic histone variant, is preferentially enriched at the beginnings of genes, though the significance of this enrichment remains unknown. We and others have shown that H2A.Z is conspicuously absent from methylated DNA across the genome in plants and animals. Typically considered a mark of epigenetic silencing, DNA methylation has more recently been discovered in the bodies of many genes. Here, we present evidence that the genome-wide anticorrelation between DNA methylation and H2A.Z enrichment in Arabidopsis is the result of DNA methylation acting to prevent H2A.Z incorporation. We demonstrate that the presence of H2A.Z within gene bodies is correlated with lower transcription levels and higher variability in expression patterns across tissue types and environmental conditions, and we propose that a major function of gene-body DNA methylation is to exclude H2A.Z from the bodies of highly and constitutively expressed genes.
doi:10.1371/journal.pgen.1002988
PMCID: PMC3469445  PMID: 23071449
19.  Dnmt3a Protects Active Chromosome Domains against Cancer-Associated Hypomethylation 
PLoS Genetics  2012;8(12):e1003146.
Changes in genomic DNA methylation patterns are generally assumed to play an important role in the etiology of human cancers. The Dnmt3a enzyme is required for the establishment of normal methylation patterns, and mutations in Dnmt3a have been described in leukemias. Deletion of Dnmt3a in a K-ras–dependent mouse lung cancer model has been shown to promote tumor progression, which suggested that the enzyme might suppress tumor development by stabilizing DNA methylation patterns. We have used whole-genome bisulfite sequencing to comprehensively characterize the methylomes from Dnmt3a wildtype and Dnmt3a-deficient mouse lung tumors. Our results show that profound global methylation changes can occur in K-ras–induced lung cancer. Dnmt3a wild-type tumors were characterized by large hypomethylated domains that correspond to nuclear lamina-associated domains. In contrast, Dnmt3a-deficient tumors showed a uniformly hypomethylated genome. Further data analysis revealed that Dnmt3a is required for efficient maintenance methylation of active chromosome domains and that Dnmt3a-deficient tumors show moderate levels of gene deregulation in these domains. In summary, our results uncover conserved features of cancer methylomes and define the role of Dnmt3a in maintaining DNA methylation patterns in cancer.
Author Summary
Dnmt3a is generally assumed to be a de novo DNA methyltransferase that plays an important role in establishing DNA methylation patterns during embryogenesis. However, mutations in the human DNMT3A gene have been detected in various cancers, suggesting that the enzyme might also be relevant for DNA methylation in adult tissues and in tumors. We have established genome-wide methylation profiles at single base pair resolution to define Dnmt3a-dependent methylation changes in a mouse tumor model. Our results show that mouse tumors with a functional Dnmt3a enzyme are characterized by regional hypomethylation, while Dnmt3a-deficient tumors showed a uniformly hypomethylated genome. Further data analysis revealed that Dnmt3a is required for maintaining normal DNA methylation patterns specifically in gene bodies and in active chromosome domains. Our study thus defines the role of Dnmt3a in maintaining DNA methylation patterns and provides a paradigm for understanding the effects of DNMT3A mutations on human cancer methylomes.
doi:10.1371/journal.pgen.1003146
PMCID: PMC3527206  PMID: 23284304
20.  Function and Evolution of DNA Methylation in Nasonia vitripennis 
PLoS Genetics  2013;9(10):e1003872.
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries, with elevated levels over exons, primarily in the 5′ regions of genes. It is also elevated near the sites of translational initiation and termination, with reduced levels in 5′ and 3′ UTRs. Methylated genes have higher median expression levels and lower expression variation across development stages than non-methylated genes. There is no difference in frequency of differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those that are not conserved show broader expression across development than comparable non-methylated genes. Finally, examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may result in increased developmental specialization in evolution and acquisition of methylation may lead to broader constitutive expression.
Author Summary
Insects use methylation to modulate genome function in a different manner from vertebrates. Here, we quantified the global methylation profile in a parasitic wasp species, Nasonia vitripennis, a model with some advantages over ant and honeybee for functional and genetic analyses of methylation, such as short generation time, inbred lines, and inter-fertile species. Using a highly inbred line permitted us to precisely characterize DNA methylation, which is compared to gene expression variation across developmental stages, and contrasted to other insect species. DNA methylation is almost exclusively on the 5′-most 1 kbp coding exons, and ∼1/3 of protein coding genes are methylated. Methylated genes tend to occur in small clusters in the genome. Unlike many organisms, Nasonia leaves nearly all transposable element genes non-methylated. Methylated genes exhibit more uniform expression across developmental stages for both moderately and highly expressed genes, suggesting that DNA methylation is marking the genes for constitutive expression. Among pairs of differentially methylated duplicated genes, the paralogs that lose DNA methylation after duplication in the Nasonia lineage show lower expression and greater specialization of expression. Finally, by comparative analysis, we show that methylated genes are more conserved at three different time scales during evolution.
doi:10.1371/journal.pgen.1003872
PMCID: PMC3794928  PMID: 24130511
21.  CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies 
Gut  2006;55(7):1000-1006.
Background
The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation.
Aim
To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation.
Materials and methods
We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts.
Results
There was a clear bimodal distribution of 80 microsatellite instability‐high (MSI‐H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having ⩾4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild‐type KRAS. Both CIMP MSI‐H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non‐CIMP counterparts (non‐CIMP MSI‐H (0%, p<10−5) and non‐CIMP MSS tumours (6.6%, p<10−4), respectively).
Conclusion
CIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.
doi:10.1136/gut.2005.082933
PMCID: PMC1856352  PMID: 16407376
colon cancer; epigenetics; hypermethylation; real time polymerase chain reaction; methylight
22.  Characterization of Genome-Methylome Interactions in 22 Nuclear Pedigrees 
PLoS ONE  2014;9(7):e99313.
Genetic polymorphisms can shape the global landscape of DNA methylation, by either changing substrates for DNA methyltransferases or altering the DNA binding affinity of cis-regulatory proteins. The interactions between CpG methylation and genetic polymorphisms have been previously investigated by methylation quantitative trait loci (mQTL) and allele-specific methylation (ASM) analysis. However, it remains unclear whether these approaches can effectively and comprehensively identify all genetic variants that contribute to the inter-individual variation of DNA methylation levels. Here we used three independent approaches to systematically investigate the influence of genetic polymorphisms on variability in DNA methylation by characterizing the methylation state of 96 whole blood samples in 52 parent-child trios from 22 nuclear pedigrees. We performed targeted bisulfite sequencing with padlock probes to quantify the absolute DNA methylation levels at a set of 411,800 CpG sites in the human genome. With mid-parent offspring analysis (MPO), we identified 10,593 CpG sites that exhibited heritable methylation patterns, among which 70.1% were SNPs directly present in methylated CpG dinucleotides. We determined the mQTL analysis identified 49.9% of heritable CpG sites for which regulation occurred in a distal cis-regulatory manner, and that ASM analysis was only able to identify 5%. Finally, we identified hundreds of clusters in the human genome for which the degree of variation of CpG methylation, as opposed to whether or not CpG sites were methylated, was associated with genetic polymorphisms, supporting a recent hypothesis on the genetic influence of phenotypic plasticity. These results show that cis-regulatory SNPs identified by mQTL do not comprise the full extent of heritable CpG methylation, and that ASM appears overall unreliable. Overall, the extent of genome-methylome interactions is well beyond what is detectible with the commonly used mQTL and ASM approaches, and is likely to include effects on plasticity.
doi:10.1371/journal.pone.0099313
PMCID: PMC4096397  PMID: 25019935
23.  Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study 
PLoS Medicine  2010;7(8):e1000332.
Shengxu Li and colleagues use data from a large prospective observational cohort to examine the extent to which a genetic predisposition toward obesity may be modified by living a physically active lifestyle.
Background
We have previously shown that multiple genetic loci identified by genome-wide association studies (GWAS) increase the susceptibility to obesity in a cumulative manner. It is, however, not known whether and to what extent this genetic susceptibility may be attenuated by a physically active lifestyle. We aimed to assess the influence of a physically active lifestyle on the genetic predisposition to obesity in a large population-based study.
Methods and Findings
We genotyped 12 SNPs in obesity-susceptibility loci in a population-based sample of 20,430 individuals (aged 39–79 y) from the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort with an average follow-up period of 3.6 y. A genetic predisposition score was calculated for each individual by adding the body mass index (BMI)-increasing alleles across the 12 SNPs. Physical activity was assessed using a self-administered questionnaire. Linear and logistic regression models were used to examine main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time, assuming an additive effect for each additional BMI-increasing allele carried. Each additional BMI-increasing allele was associated with 0.154 (standard error [SE] 0.012) kg/m2 (p = 6.73×10−37) increase in BMI (equivalent to 445 g in body weight for a person 1.70 m tall). This association was significantly (pinteraction = 0.005) more pronounced in inactive people (0.205 [SE 0.024] kg/m2 [p = 3.62×10−18; 592 g in weight]) than in active people (0.131 [SE 0.014] kg/m2 [p = 7.97×10−21; 379 g in weight]). Similarly, each additional BMI-increasing allele increased the risk of obesity 1.116-fold (95% confidence interval [CI] 1.093–1.139, p = 3.37×10−26) in the whole population, but significantly (pinteraction = 0.015) more in inactive individuals (odds ratio [OR] = 1.158 [95% CI 1.118–1.199; p = 1.93×10−16]) than in active individuals (OR = 1.095 (95% CI 1.068–1.123; p = 1.15×10−12]). Consistent with the cross-sectional observations, physical activity modified the association between the genetic predisposition score and change in BMI during follow-up (pinteraction = 0.028).
Conclusions
Our study shows that living a physically active lifestyle is associated with a 40% reduction in the genetic predisposition to common obesity, as estimated by the number of risk alleles carried for any of the 12 recently GWAS-identified loci.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In the past few decades, the global incidence of obesity—defined as a body mass index (BMI, a simple index of weight-for-height that uses the weight in kilograms divided by the square of the height in meters) of 30 and over, has increased so much that this growing public health concern is now commonly referred to as the “obesity epidemic.” Once considered prevalent only in high-income countries, obesity is an increasing health problem in low- and middle-income countries, particularly in urban settings. In 2005, at least 400 million adults world-wide were obese, and the projected figure for 2015 is a substantial increase of 300 million to around 700 million. Childhood obesity is also a growing concern. Contributing factors to the obesity epidemic are a shift in diet to an increased intake of energy-dense foods that are high in fat and sugars and a trend towards decreased physical activity due to increasingly sedentary lifestyles.
However, genetics are also thought to play a critical role as genetically predisposed individuals may be more prone to obesity if they live in an environment that has abundant access to energy-dense food and labor-saving devices.
Why Was This Study Done?
Although recent genetic studies (genome-wide association studies) have identified 12 alleles (a DNA variant that is located at a specific position on a specific chromosome) associated with increased BMI, there has been no convincing evidence of the interaction between genetics and lifestyle. In this study the researchers examined the possibility of such an interaction by assessing whether individuals with a genetic predisposition to increased obesity risk could modify this risk by increasing their daily physical activity.
What Did the Researchers Do and Find?
The researchers used a population-based cohort study of 25,631 people living in Norwich, UK (The EPIC-Norfolk study) and identified individuals who were 39 to 79 years old during a health check between 1993 and 1997. The researchers invited these people to a second health examination. In total, 20,430 individuals had baseline data available, of which 11,936 had BMI data at the second health check. The researchers used genotyping methods and then calculated a genetic predisposition score for each individual and their occupational and leisure-time physical activities were assessed by using a validated self-administered questionnaire. Then, the researchers used modeling techniques to examine the main effects of the genetic predisposition score and its interaction with physical activity on BMI/obesity risk and BMI change over time. The researchers found that each additional BMI-increasing allele was associated with an increase in BMI equivalent to 445 g in body weight for a person 1.70 m tall and that the size of this effect was greater in inactive people than in active people. In individuals who have a physically active lifestyle, this increase was only 379 g/allele, or 36% lower than in physically inactive individuals in whom the increase was 592 g/allele. Furthermore, in the total sample each additional obesity-susceptibility allele increased the odds of obesity by 1.116-fold. However, the increased odds per allele for obesity risk were 40% lower in physically active individuals (1.095 odds/allele) compared to physically inactive individuals (1.158 odds/allele).
What Do These Findings Mean?
The findings of this study indicate that the genetic predisposition to obesity can be reduced by approximately 40% by having a physically active lifestyle. The findings of this study suggest that, while the whole population benefits from increased physical activity levels, individuals who are genetically predisposed to obesity would benefit more than genetically protected individuals. Furthermore, these findings challenge the deterministic view of the genetic predisposition to obesity that is often held by the public, as they show that even the most genetically predisposed individuals will benefit from adopting a healthy lifestyle. The results are limited by participants self-reporting their physical activity levels, which is less accurate than objective measures of physical activity.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000332.
This study relies on the results of previous genome-wide association studies The National Human Genome Research Institute provides an easy-to-follow guide to understanding such studies
The International Association for the Study of Obesity aims to improve global health by promoting the understanding of obesity and weight-related diseases through scientific research and dialogue
The International Obesity Taskforce is the research-led think tank and advocacy arm of the International Association for the Study of Obesity
The Global Alliance for the Prevention of Obesity and Related Chronic Disease is a global action program that addresses the issues surrounding the prevention of obesity
The National Institutes of Health has its own obesity task force, which includes 26 institutes
doi:10.1371/journal.pmed.1000332
PMCID: PMC2930873  PMID: 20824172
24.  CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer 
Clinical Cancer Research  2008;14(19):6005-6013.
Purpose
Aberrant promoter methylation and genomic instability occur frequently during colorectal cancer (CRC) development. CpG island methylator phenotype (CIMP) has been shown to associate with microsatellite instability, BRAF mutation and often found in the right-side colon. Nevertheless, the relative importance of CIMP and chromosomal instability (CIN) for tumorigenesis has yet to be thoroughly investigated in sporadic CRCs.
Experimental Design
We determined CIMP in 161 primary CRCs and 66 matched normal mucosae using a quantitative bisulfite/PCR/LDR/Universal Array assay. The validity of CIMP was confirmed in a subset of 60 primary tumors using MethyLight assay and five independent markers. In parallel, chromosomal instability was analyzed in the same study cohort using Affymetrix 50K Human Mapping arrays.
Results
The identified CIMP-positive cancers correlate with microsatellite instability (p=0.075) and the BRAF mutation V600E (p=0.00005). The array-based high-resolution analysis of chromosomal aberrations indicated that the degree of aneuploidy is spread over a wide spectrum among analyzed CRCs. Whether CIN was defined by copy number variations in selected microsatellite loci (criterion 1) or considered as a continuous variable (criterion 2), CIMP-positive samples showed a strong correlation with low-degree chromosomal aberrations (p=0.075 and 0.012, respectively). Similar correlations were observed when CIMP was determined using MethyLight assay (p=0.001 and 0.013, respectively).
Conclusion
CIMP-positive tumors generally possess lower chromosomal aberrations, which may only be revealed using a genome-wide approach. The significant difference in the degree of chromosomal aberrations between CIMP-positive and the remainder samples suggests that epigenetic (CIMP) and genetic (CIN) abnormalities may arise from independent molecular mechanisms of tumor progression.
doi:10.1158/1078-0432.CCR-08-0216
PMCID: PMC3268558  PMID: 18829479
CpG island methylator phenotype (CIMP); chromosomal instability (CIN); loss of heterozygosity (LOH); methylation and microarray
25.  Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks 
PLoS Genetics  2012;8(1):e1002440.
Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.
Author Summary
In mammals, germ-cell–specific methylation patterns and genomic imprints are established throughout large-scale de novo DNA methylation in oogenesis and spermatogenesis. These steps are required for normal germline differentiation and embryonic development; however, current DNA methylation analyses only provide us a partial picture of germ cell methylome. To the best of our knowledge, this is the first study to generate comprehensive maps of DNA methylomes and transcriptomes at single base resolution for mouse germ cells. These methylome maps revealed genome-wide opposing DNA methylation patterns and differential correlation between methylation and gene expression levels in oocyte and sperm genomes. In addition, our results indicate the presence of 2 types of methylation patterns in the oocytes: (i) methylation across the transcribed regions, which might be required for the establishment of maternal methylation imprints and normal embryogenesis, and (ii) retroviral methylation, which might be essential for silencing of retrotransposons and normal oogenesis. We believe that an extension of this work would lead to a better understanding of the epigenetic reprogramming in germline cells and of the role for gene regulations.
doi:10.1371/journal.pgen.1002440
PMCID: PMC3252278  PMID: 22242016

Results 1-25 (1106039)