PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1387042)

Clipboard (0)
None

Related Articles

1.  HIF-1alpha and HIF-2alpha Are Differentially Activated in Distinct Cell Populations in Retinal Ischaemia 
PLoS ONE  2010;5(6):e11103.
Background
Hypoxia plays a key role in ischaemic and neovascular disorders of the retina. Cellular responses to oxygen are mediated by hypoxia-inducible transcription factors (HIFs) that are stabilised in hypoxia and induce the expression of a diverse range of genes. The purpose of this study was to define the cellular specificities of HIF-1alpha and HIF-2alpha in retinal ischaemia, and to determine their correlation with the pattern of retinal hypoxia and the expression profiles of induced molecular mediators.
Methodology/Principal Findings
We investigated the tissue distribution of retinal hypoxia during oxygen-induced retinopathy (OIR) in mice using the bio-reductive drug pimonidazole. We measured the levels of HIF-1alpha and HIF-2alpha proteins by Western blotting and determined their cellular distribution by immunohistochemistry during the development of OIR. We measured the temporal expression profiles of two downstream mediators, vascular endothelial growth factor (VEGF) and erythropoietin (Epo) by ELISA. Pimonidazole labelling was evident specifically in the inner retina. Labelling peaked at 2 hours after the onset of hypoxia and gradually declined thereafter. Marked binding to Müller glia was evident during the early hypoxic stages of OIR. Both HIF-1alpha and HIF-2alpha protein levels were significantly increased during retinal hypoxia but were evident in distinct cellular distributions; HIF-1alpha stabilisation was evident in neuronal cells throughout the inner retinal layers whereas HIF-2alpha was restricted to Müller glia and astrocytes. Hypoxia and HIF-alpha stabilisation in the retina were closely followed by upregulated expression of the downstream mediators VEGF and EPO.
Conclusions/Significance
Both HIF-1alpha and HIF-2alpha are activated in close correlation with retinal hypoxia but have contrasting cell specificities, consistent with differential roles in retinal ischaemia. Our findings suggest that HIF-2alpha activation plays a key role in regulating the response of Müller glia to hypoxia.
doi:10.1371/journal.pone.0011103
PMCID: PMC2885428  PMID: 20559438
2.  Tie2-dependent knockout of HIF-1 impairs burn wound vascularization and homing of bone marrow-derived angiogenic cells 
Cardiovascular Research  2011;93(1):162-169.
Aims
Hypoxia-inducible factor 1 (HIF-1) is a heterodimer composed of HIF-1α and HIF-1β subunits. HIF-1 is known to promote tissue vascularization by activating the transcription of genes encoding angiogenic factors, which bind to receptors on endothelial cells (ECs) and bone marrow-derived angiogenic cells (BMDACs). In this study, we analysed whether HIF-1 activity in the responding ECs and BMDACs is also required for cutaneous vascularization during burn wound healing.
Methods and results
We generated mice with floxed alleles at the Hif1a or Arnt locus encoding HIF-1α and HIF-1β, respectively. Expression of Cre recombinase was driven by the Tie2 gene promoter, which is expressed in ECs and bone marrow cells. Tie2Cre+ and Tie2Cre− mice were subjected to burn wounds of reproducible diameter and depth. Deficiency of HIF-1α or HIF-1β in Tie2-lineage cells resulted in delayed wound closure, reduced vascularization, decreased cutaneous blood flow, impaired BMDAC mobilization, and decreased BMDAC homing to burn wounds.
Conclusion
HIF-1 activity in Tie2-lineage cells is required for the mobilization and homing of BMDACs to cutaneous burn wounds and for the vascularization of burn wound tissue.
doi:10.1093/cvr/cvr282
PMCID: PMC3243042  PMID: 22028336
Hypoxia; Wound healing; Conditional knockout; Angiogenesis
3.  Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes 
Background
Neuroinflammation has been implicated in various brain pathologies characterized by hypoxia and ischemia. Astroglia play an important role in the initiation and propagation of hypoxia/ischemia-induced inflammation by secreting inflammatory chemokines that attract neutrophils and monocytes into the brain. However, triggers of chemokine up-regulation by hypoxia/ischemia in these cells are poorly understood. Hypoxia-inducible factor-1 (HIF-1) is a dimeric transcriptional factor consisting of HIF-1α and HIF-1β subunits. HIF-1 binds to HIF-1-binding sites in the target genes and activates their transcription. We have recently shown that hypoxia-induced expression of IL-1β in astrocytes is mediated by HIF-1α. In this study, we demonstrate the role of HIF-1α in hypoxia-induced up-regulation of inflammatory chemokines, human monocyte chemoattractant protein-1 (MCP-1/CCL2) and mouse MCP-5 (Ccl12), in human and mouse astrocytes, respectively.
Methods
Primary fetal human astrocytes or mouse astrocytes generated from HIF-1α+/+ and HIF-1α+/- mice were subjected to hypoxia (<2% oxygen) or 125 μM CoCl2 for 4 h and 6 h, respectively. The expression of HIF-1α, MCP-1 and MCP-5 was determined by semi-quantitative RT-PCR, western blot or ELISA. The interaction of HIF-1α with a HIF-1-binding DNA sequence was examined by EMSA and supershift assay. HIF-1-binding sequence in the promoter of MCP-1 gene was cloned and transcriptional activation of MCP-1 by HIF-1α was analyzed by reporter gene assay.
Results
Sequence analyses identified HIF-1-binding sites in the promoters of MCP-1 and MCP-5 genes. Both hypoxia and HIF-1α inducer, CoCl2, strongly up-regulated HIF-1α expression in astrocytes. Mouse HIF-1α+/- astrocytes had lower basal levels of HIF-1α and MCP-5 expression. The up-regulation of MCP-5 by hypoxia or CoCl2 in HIF-1α+/+ and HIF-1α+/- astrocytes was correlated with the levels of HIF-1α in cells. Both hypoxia and CoCl2 also up-regulated HIF-1α and MCP-1 expression in human astrocytes. EMSA assay demonstrated that HIF-1 activated by either hypoxia or CoCl2 binds to wild-type HIF-1-binding DNA sequence, but not the mutant sequence. Furthermore, reporter gene assay demonstrated that hypoxia markedly activated MCP-1 transcription but not the mutated MCP-1 promoter in transfected astrocytes.
Conclusion
These findings suggest that both MCP-1 and MCP-5 are HIF-1 target genes and that HIF-1α is involved in transcriptional induction of these two chemokines in astrocytes by hypoxia.
doi:10.1186/1742-2094-4-12
PMCID: PMC1872020  PMID: 17474992
4.  Emerging evidence of the physiological role of hypoxia in mammary development and lactation 
Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting of α and β subunits. HIF-1β is constantly expressed, whereas HIF-1α is degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1α and the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCl in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence: i) Mice with an HIF-1α deletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions; ii) We recently observed that hypoxia significantly induces HIF-1α-dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation; and iii) Hypoxia and HIF-1α increase the phosphorylation of signal transducers and activators of transcription 5a (STAT5a) in mammary epithelial cells, whereas STAT5 phosphorylation plays important roles in the regulation of milk protein gene expression and mammary development. Based on these observations, hypoxia effects emerge as a new frontier for studying the regulation of mammary development and lactation.
doi:10.1186/2049-1891-5-9
PMCID: PMC3929241  PMID: 24444333
Glucose transporter; Hypoxia; Hypoxia inducible factor; Lactation; Mammary development; Metabolism
5.  Impaired Angiogenesis and Mobilization of Circulating Angiogenic Cells in HIF-1α Heterozygous-Null Mice after Burn Wounding 
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that controls vascular responses to hypoxia and ischemia. In this study, mice that were heterozygous for a null allele at the locus encoding the HIF-1α subunit (HET mice) and their wild type (WT) littermates were subjected to thermal injury involving 10% of body surface area. HIF-1α protein levels were increased in burn wounds of WT but not of HET mice on day 2. Serum levels of stromal-derived factor 1α, which binds to CXCR4, were increased on day 2 in WT but not in HET mice. Circulating angiogenic cells were also increased on day 2 in WT but not in HET mice and included CXCR4+Sca1+ cells. Laser Doppler perfusion imaging demonstrated increased blood flow in burn wounds of WT but not HET mice on day 7. Immunohistochemistry on day 7 revealed a reduced number of CD31+ vessels at the healing margin of burn wounds in HET as compared to WT mice. Vessel maturation was also impaired in wounds of HET mice as determined by the number of α-smooth muscle actin-positive vessels on day 21. The remaining wound area on day 14 was significantly increased in HET mice compared to WT littermates. The percentage of healed wounds on day 14 was significantly decreased in HET mice. These data delineate a signaling pathway by which HIF-1 promotes angiogenesis during burn wound healing.
doi:10.1111/j.1524-475X.2010.00570.x
PMCID: PMC4206187  PMID: 20163569
6.  Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology 
PLoS Medicine  2006;3(7):e290.
Background
The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology.
Methods and Findings
Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased.
Conclusions
The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF.
Editors' Summary
Background.
Human cells (like those of other multicellular animals) use oxygen to provide the energy needed for daily life. Having not enough oxygen is a problem, but having too much is also dangerous because it damages proteins, DNA, and other large molecules that keep cells functioning. Consequently, the physiological systems—including the heart, lungs, and circulation—work together to balance oxygen supply and demand throughout the body. When oxygen is limiting (a condition called hypoxia), as happens at high altitudes, the cellular oxygen supply is maintained by increasing the heart rate, increasing the speed and depth of breathing (hyperventilation), constricting the blood vessels in the lung (pulmonary vasoconstriction), and increasing the number of oxygen-carrying cells in the blood. All these physiological changes increase the amount of oxygen that can be absorbed from the air, but how they are regulated is poorly understood. By contrast, researchers know quite a bit about how individual cells respond to hypoxia. When oxygen is limited, a protein called hypoxia-inducible factor (or HIF) activates a number of target proteins that help the cell get enough oxygen (for example, proteins that stimulate the growth of new blood vessels). When there is plenty of oxygen, another protein, called von Hippel–Lindau tumor suppressor (abbreviated VHL), rapidly destroys HIF. Recently, researchers discovered that a genetic condition called Chuvash polycythaemia, characterised by the overproduction of red blood cells, is caused by a specific defect in VHL that reduces its ability to destroy HIF. As a result, the expression of certain HIF target proteins is increased even when oxygen levels are normal.
Why Was This Study Done?
Chuvash polycythaemia is very rare, and so far little is known about how this genetic abnormality affects the physiology and long-term health of patients. By studying heart and lung function in patients with Chuvash polycythaemia, the researchers involved in this study hoped to discover more about the health consequences of the condition and to find out whether the VHL–HIF system controls systemic responses to hypoxia as well as cellular responses.
What Did the Researchers Do and Find?
The researchers recruited and studied three patients with Chuvash polycythaemia, and, as controls for the comparison, several normal individuals and patients with an unrelated form of polycythaemia. They then measured how the lungs and hearts of these people reacted to mild hypoxia (similar to that experienced on commercial air flights) and moderate hypoxia (equiv alent to being on the top of an Alpine peak). They found that patients with Chuvash polycythaemia naturally breathe slightly quicker and deeper than normal individuals, and that their breathing rate increased dramatically and abnormally when oxygen was reduced. They also found that at normal oxygen levels the pulmonary blood vessels of these patients were more constricted than those of control individuals, and that they reacted more extremely to hypoxia. Similarly, the normal heart rate of the patients was slightly higher than that of the controls and increased much more in response to mild hypoxia.
What Do These Findings Mean?
The physiological differences measured by the researchers between Chuvash polycythaemia patients and control individuals are similar to the adaptations seen in people traveling to high altitudes where oxygen is limited. Thus, the VHL–HIF proteins may regulate the response to different oxygen concentrations both in individual cells and at the systemic level, although more physiological studies are needed to confirm this. Because the pulmonary blood vessels of patients with Chuvash polycythaemia are always abnormally constricted, and even more so when oxygen is limited, these people should avoid living at high altitude and should minimise air travel, suggest the researchers. The increased blood pressure in their lungs (pulmonary hypertension) could conceivably cause heart failure under such circumstances. Finally, this study has implications for the development of drugs directed at the VHL–HIF system. Agents are currently being designed to promote the development of new blood vessels after strokes or heart attacks by preventing the destruction of HIF, but based on the findings here such agents might have undesirable physiological affects. Conversely, HIF inhibitors (which act as anti-cancer reagents by increasing hypoxia in the centre of tumors and so inhibiting their growth) might be useful in the treatment of pulmonary hypertension.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030290.
• Online Mendelian Inheritance in Man page on Chuvash polycythaemia
• Information from the VHL Family Alliance on von Hippel–Lindau disease, including information on Chuvash polycythaemia
• Wikipedia page on polycythaemia and von Hippel–Lindau disease (note: Wikipedia is a free online encyclopaedia that anyone can edit)
Physiological study of patients with Chuvash polycythemia (caused by mutation of VHL) reveals characteristics similar to those associated with acclimatization to the hypoxia of high altitude.
doi:10.1371/journal.pmed.0030290
PMCID: PMC1479389  PMID: 16768548
7.  Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model 
The aim of the present study was to investigate the mechanisms for impaired skin wound healing in subjects with diabetes. Type 1 diabetes (T1DM) was induced in BALB/c mice using streptozotocin. One month after the establishment of the T1DM mouse model, a wound was formed on the back of the mice, and tissues from the wounds and the margins were collected on days 0, 3, 7 and 10. Protein levels of cluster of differentiation 31 (CD31) were detected using immunohistochemistry, and the mRNA levels of Akt, hypoxia-inducible factor-1α (Hif-1α), vascular endothelial growth factor (Vegf), VEGF receptor 2 (Vegfr2), stromal cell-derived growth factor-1α (Sdf-1α) and CXC chemokine receptor 4 (Cxcr4) were determined using reverse transcription-quantitative polymerase chain reaction analysis. The corresponding protein levels were determined using western blotting. The skin wound healing rate in the T1DM mice was significantly lower than that in the control mice, and the protein level of CD31 in the wounded skin of the T1DM mice was significantly decreased. Furthermore, the overall mRNA levels of Akt, Hif-1α, Vegf, Vegfr2, Sdf-1α and Cxcr4 in the T1DM mice were significantly lower than those in the control mice, and similar trends were observed in the protein levels. In conclusion, skin wound healing was impaired in the T1DM mice, and this may have been caused by a deficiency of Akt/HIF-1α and downstream signaling, as well as delayed angiogenesis.
doi:10.3892/etm.2015.2394
PMCID: PMC4473382  PMID: 26136949
Akt/hypoxia-inducible factor-1α signaling; vascular endothelial growth factor; angiogenesis; skin wound healing; diabetes mellitus
8.  The NADPH Oxidase Subunit NOX4 Is a New Target Gene of the Hypoxia-inducible Factor-1 
Molecular Biology of the Cell  2010;21(12):2087-2096.
NADPH oxidases generate reactive oxygen species (ROS). We studied the role of NOX4 under hypoxia. Hypoxia enhanced NOX4 expression in lung smooth-muscle cells and lung tissue due to HIF-1α binding and activation of the NOX4 promoter. HIF-1α–dependent NOX4 induction restored ROS levels after hypoxia and induced proliferation by hypoxia. The following citations were not referenced in the reference list or the reference/citation is not styled correctly: Kietzmann et al., 1999.
NADPH oxidases are important sources of reactive oxygen species (ROS), possibly contributing to various disorders associated with enhanced proliferation. NOX4 appears to be involved in vascular signaling and may contribute to the response to hypoxia. However, the exact mechanisms controlling NOX4 levels under hypoxia are not resolved. We found that hypoxia rapidly enhanced NOX4 mRNA and protein levels in pulmonary artery smooth-muscle cells (PASMCs) as well as in pulmonary vessels from mice exposed to hypoxia. This response was dependent on the hypoxia-inducible transcription factor HIF-1α because overexpression of HIF-1α increased NOX4 expression, whereas HIF-1α depletion prevented this response. Mutation of a putative hypoxia-responsive element in the NOX4 promoter abolished hypoxic and HIF-1α–induced activation of the NOX4 promoter. Chromatin immunoprecipitation confirmed HIF-1α binding to the NOX4 gene. Induction of NOX4 by HIF-1α contributed to maintain ROS levels after hypoxia and hypoxia-induced proliferation of PASMCs. These findings show that NOX4 is a new target gene of HIF-1α involved in the response to hypoxia. Together with our previous findings that NOX4 mediates HIF-1α induction under normoxia, these data suggest an important role of the signaling axis between NOX4 and HIF-1α in various cardiovascular disorders under hypoxic and also nonhypoxic conditions.
doi:10.1091/mbc.E09-12-1003
PMCID: PMC2883952  PMID: 20427574
9.  Cobalt stimulates HIF-1-dependent but inhibits HIF-2-dependent gene expression in liver cancer cells 
The international journal of biochemistry & cell biology  2013;45(11):10.1016/j.biocel.2013.07.025.
Hypoxia-inducible factors (HIFs) are transcriptional regulators that mediate the cellular response to low oxygen. Although HIF-1 is usually considered as the principal mediator of hypoxic adaptation, several tissues and different cell types express both HIF-1 and HIF-2 isoforms under hypoxia or when treated with hypoxia mimetic chemicals such as cobalt. However, the similarities or differences between HIF-1 and HIF-2, in terms of their tissue- and inducer-specific activation and function, are not adequately characterized. To address this issue, we investigated the effects of true hypoxia and hypoxia mimetics on HIF-1 and HIF-2 induction and specific gene transcriptional activity in two hepatic cancer cell lines, Huh7 and HepG2. Both hypoxia and cobalt caused rapid induction of both HIF-1α and HIF-2α proteins. Hypoxia induced erythropoietin (EPO) expression and secretion in a HIF-2-dependent way. Surprisingly, however, EPO expression was not induced when cells were treated with cobalt. In agreement, both HIF-1- and HIF-2-dependent promoters (of PGK and SOD2 genes, respectively) were activated by hypoxia while cobalt only activated the HIF-1-dependent PGK promoter. Unlike cobalt, other hypoxia mimetics such as DFO and DMOG activated both types of promoters. Furthermore, cobalt impaired the hypoxic stimulation of HIF-2, but not HIF-1, activity and cobalt-induced HIF-2α interacted poorly with USF-2, a HIF-2-specific co-activator. These data show that, despite similar induction of HIF-1α and HIF-2α protein expression, HIF-1 and HIF-2 specific gene activating functions respond differently to different stimuli and suggest the operation of oxygen-independent and gene- or tissue-specific regulatory mechanisms involving additional transcription factors or co-activators.
doi:10.1016/j.biocel.2013.07.025
PMCID: PMC3855297  PMID: 23958427
HIF-2α; EPO; SOD2; Hypoxia; Cobalt; USF2
10.  Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival 
British Journal of Cancer  2001;85(6):881-890.
Hypoxia inducible factors HIF1α and HIF2α are important proteins involved in the regulation of the transcription of a variety of genes related to erythropoiesis, glycolysis and angiogenesis. Hypoxic stimulation results in rapid increase of the HIF1α and 2α protein levels, as a consequence of a redox-sensitive stabilization. The HIFαs enter the nucleus, heterodimerize with the HIF1β protein, and bind to DNA at the hypoxia response elements (HREs) of target genes. In this study we evaluated the immunohistochemical expression of these proteins in 108 tissue samples from non-small-cell lung cancer (NSCLC) and in normal lung tissues. Both proteins showed a mixed cytoplasmic/nuclear pattern of expression in cancer cells, tumoural vessels and tumour-infiltrating macrophages, as well as in areas of metaplasia, while normal lung components showed negative or very weak cytoplasmic staining. Positive HIF1α and HIF2α expression was noted in 68/108 (62%) and in 54/108 (50%) of cases respectively. Correlation analysis of HIF2α expression with HIF1α expression showed a significant association (P < 0.0001, r = 0.44). A strong association of the expression of both proteins with the angiogenic factors VEGF (P < 0.004), PD-ECGF (P < 0.003) and bFGF (P < 0.04) was noted. HIF1α correlated with the expression of bek-bFGF receptor expression (P = 0.01), while HIF2α was associated with intense VEGF/KDR-activated vascularization (P = 0.002). HIF2α protein was less frequently expressed in cases with a medium microvessel density (MVD); a high rate of expression was noted in cases with both low and high MVD (P = 0.006). Analysis of overall survival showed that HIF2α expression was related to poor outcome (P = 0.008), even in the group of patients with low MVD (P = 0.009). HIF1α expression was marginally associated with poor prognosis (P = 0.08). In multivariate analysis HIF2α expression was an independent prognostic indicator (P = 0.006, t-ratio 2.7). We conclude that HIF1α and HIF2α overexpression is a common event in NSCLC, which is related to the up-regulation of various angiogenic factors and with poor prognosis. Targeting the HIF pathway may prove of importance in the treatment of NSCLC. © 2001 Cancer Research Campaignhttp://www.bjcancer.com
doi:10.1054/bjoc.2001.2018
PMCID: PMC2375073  PMID: 11556841
non-small-cell lung cancer; hypoxia inducible factors; angiogenesis; prognosis
11.  STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells 
Oncogene  2013;33(13):1670-1679.
Solid tumors often exhibit simultaneously inflammatory and hypoxic microenvironments. The ‘signal transducer and activator of transcription-3’ (STAT3)-mediated inflammatory response and the hypoxia-inducible factor (HIF)-mediated hypoxia response have been independently shown to promote tumorigenesis through the activation of HIF or STAT3 target genes and to be indicative of a poor prognosis in a variety of tumors. We report here for the first time that STAT3 is involved in the HIF1, but not HIF2-mediated hypoxic transcriptional response. We show that inhibiting STAT3 activity in MDA-MB-231 and RCC4 cells by a STAT3 inhibitor or STAT3 small interfering RNA significantly reduces the levels of HIF1, but not HIF2 target genes in spite of normal levels of hypoxia-inducible transcription factor 1α (HIF1α) and HIF2α protein. Mechanistically, STAT3 activates HIF1 target genes by binding to HIF1 target gene promoters, interacting with HIF1α protein and recruiting coactivators CREB binding protein (CBP) and p300, and RNA polymerase II (Pol II) to form enhanceosome complexes that contain HIF1α, STAT3, CBP, p300 and RNA Pol II on HIF1 target gene promoters. Functionally, the effect of STAT3 knockdown on proliferation, motility and clonogenic survival of tumor cells in vitro is phenocopied by HIF1α knockdown in hypoxic cells, whereas STAT3 knockdown in normoxic cells also reduces cell proliferation, motility and clonogenic survival. This indicates that STAT3 works with HIF1 to activate HIF1 target genes and to drive HIF1-depedent tumorigenesis under hypoxic conditions, but also has HIF-independent activity in normoxic and hypoxic cells. Identifying the role of STAT3 in the hypoxia response provides further data supporting the effectiveness of STAT3 inhibitors in solid tumor treatment owing to their usefulness in inhibiting both the STAT3 and HIF1 pro-tumorigenic signaling pathways in some cancer types.
doi:10.1038/onc.2013.115
PMCID: PMC3868635  PMID: 23604114
cotranscriptional activation; HIF; hypoxia; STAT3; transcription
12.  Epidermal or Dermal Specific Knockout of PHD-2 Enhances Wound Healing and Minimizes Ischemic Injury 
PLoS ONE  2014;9(4):e93373.
Introduction
Hypoxia-inducible factor (HIF)-1α, part of the heterodimeric transcription factor that mediates the cellular response to hypoxia, is critical for the expression of multiple angiogenic growth factors, cell motility, and the recruitment of endothelial progenitor cells. Inhibition of the oxygen-dependent negative regulator of HIF-1α, prolyl hydroxylase domain-2 (PHD-2), leads to increased HIF-1α and mimics various cellular and physiological responses to hypoxia. The roles of PHD-2 in the epidermis and dermis have not been clearly defined in wound healing.
Methods
Epidermal and dermal specific PHD-2 knockout (KO) mice were developed in a C57BL/6J (wild type) background by crossing homozygous floxed PHD-2 mice with heterozygous K14-Cre mice and heterozygous Col1A2-Cre-ER mice to get homozygous floxed PHD-2/heterozygous K14-Cre and homozygous floxed PHD-2/heterozygous floxed Col1A2-Cre-ER mice, respectively. Ten to twelve-week-old PHD-2 KO and wild type (WT) mice were subjected to wounding and ischemic pedicle flap model. The amount of healing was grossly quantified with ImageJ software. Western blot and qRT-PCR was run on protein and RNA from primary cells cultured in vitro.
Results
qRT-PCR demonstrated a significant decrease of PHD-2 in keratinocytes and fibroblasts derived from tissue specific KO mice relative to control mice (*p<0.05). Western blot analysis showed a significant increase in HIF-1α and VEGF protein levels in PHD-2 KO mice relative to control mice (*p<0.05). PHD-2 KO mice showed significantly accelerated wound closure relative to WT (*p<0.05). When ischemia was analyzed at day nine post-surgery in a flap model, the PHD-2 tissue specific knockout mice showed significantly more viable flaps than WT (*p<0.05).
Conclusions
PHD-2 plays a significant role in the rates of wound healing and response to ischemic insult in mice. Further exploration shows PHD-2 KO increases cellular levels of HIF-1α and this increase leads to the transcription of downstream angiogenic factors such as VEGF.
doi:10.1371/journal.pone.0093373
PMCID: PMC3973687  PMID: 24695462
13.  Stress-Mediated Increases in Systemic and Local Epinephrine Impair Skin Wound Healing: Potential New Indication for Beta Blockers 
PLoS Medicine  2009;6(1):e1000012.
Background
Stress, both acute and chronic, can impair cutaneous wound repair, which has previously been mechanistically ascribed to stress-induced elevations of cortisol. Here we aimed to examine an alternate explanation that the stress-induced hormone epinephrine directly impairs keratinocyte motility and wound re-epithelialization. Burn wounds are examined as a prototype of a high-stress, high-epinephrine, wound environment. Because keratinocytes express the β2-adrenergic receptor (β2AR), another study objective was to determine whether β2AR antagonists could block epinephrine effects on healing and improve wound repair.
Methods and Findings
Migratory rates of normal human keratinocytes exposed to physiologically relevant levels of epinephrine were measured. To determine the role of the receptor, keratinocytes derived from animals in which the β2AR had been genetically deleted were similarly examined. The rate of healing of burn wounds generated in excised human skin in high and low epinephrine environments was measured. We utilized an in vivo burn wound model in animals with implanted pumps to deliver β2AR active drugs to study how these alter healing in vivo. Immunocytochemistry and immunoblotting were used to examine the up-regulation of catecholamine synthetic enzymes in burned tissue, and immunoassay for epinephrine determined the levels of this catecholamine in affected tissue and in the circulation. When epinephrine levels in the culture medium are elevated to the range found in burn-stressed animals, the migratory rate of both cultured human and murine keratinocytes is impaired (reduced by 76%, 95% confidence interval [CI] 56%–95% in humans, p < 0.001, and by 36%, 95% CI 24%–49% in mice, p = 0.001), and wound re-epithelialization in explanted burned human skin is delayed (by 23%, 95% CI 10%–36%, p = 0.001), as compared to cells or tissues incubated in medium without added epinephrine. This impairment is reversed by β2AR antagonists, is absent in murine keratinocytes that are genetically depleted of the β2AR, and is reproduced by incubation of keratinocytes with other β2AR-specific agonists. Activation of the β2AR in cultured keratinocytes signals the down-regulation of the AKT pathway, accompanied by a stabilization of the actin cytoskeleton and an increase in focal adhesion formation, resulting in a nonmigratory phenotype. Burn wound injury in excised human skin also rapidly up-regulates the intra-epithelial expression of the epinephrine synthesizing enzyme phenylethanolamine-N-methyltransferase, and tissue levels of epinephrine rise dramatically (15-fold) in the burn wounded tissue (values of epinephrine expressed as pg/ug protein ± standard error of the mean: unburned control, 0.6 ± 0.36; immediately postburn, 9.6 ± 1.58; 2 h postburn, 3.1 ± 1.08; 24 h post-burn, 6.7 ± 0.94). Finally, using an animal burn wound model (20% body surface in mice), we found that systemic treatment with βAR antagonists results in a significant increase (44%, 95% CI 27%–61%, p < 0.00000001) in the rate of burn wound re-epithelialization.
Conclusions
This work demonstrates an alternate pathway by which stress can impair healing: by stress-induced elevation of epinephrine levels resulting in activation of the keratinocyte β2AR and the impairment of cell motility and wound re-epithelialization. Furthermore, since the burn wound locally generates epinephrine in response to wounding, epinephrine levels are locally, as well as systemically, elevated, and wound healing is impacted by these dual mechanisms. Treatment with beta adrenergic antagonists significantly improves the rate of burn wound re-epithelialization. This work suggests that specific β2AR antagonists may be apt, near-term translational therapeutic targets for enhancing burn wound healing, and may provide a novel, low-cost, safe approach to improving skin wound repair in the stressed individual.
Rivkah Isseroff and colleagues describe how stress-induced elevation of epinephrine levels can impair the healing of burns in mice and suggest that β2 adrenergic receptor antagonists may have a role in improving skin wound repair.
Editors' Summary
Background.
Skin—the largest organ in the human body—protects the rest of the body against infection by forming an impervious layer over the whole external body surface. Consequently, if this layer is damaged by rubbing, cutting, or burning, it must be quickly and efficiently repaired. Wound repair (healing) involves several different processes. First, the clotting cascade stops bleeding at the wound site and immune system cells attracted into the site remove any bacteria or debris in the wound. Various factors are released by the immune cells and the other cells in and near the damaged area that encourage the migration of several different sorts of cells into the wound. These cells proliferate and prepare the wound for “re-epithelialization.” In this process, keratinocytes (a type of epithelial cell that makes a tough, insoluble protein called keratin; epithelial cells cover all the surfaces of the body) migrate into the wound site and form a new, intact epithelial layer. If any of these processes fail, the result can be a chronic (long-lasting) nonhealing wound. In particular, if the wound does not re-epithelialize, it remains open and susceptible to infection and loss of body fluids.
Why Was This Study Done?
One factor that impairs the repair of skin wounds is stress. In stressful situations (including situations in which wounds are likely to occur), the human body releases several chemicals that prepare the body for “fight or flight,” including cortisol and epinephrine (also called adrenaline). Most scientists ascribe the effects of stress on wound healing to stress-induced increases in cortisol, but might stress-induced epinephrine also affect wound healing? In this study, the researchers test whether epinephrine impairs keratinocyte migration and re-epithelialization of burn wounds (keratinocytes have a receptor for epinephrine called the β2 adrenergic receptor [β2AR] on their cell surface that allows them to respond to epinephrine). They chose to study burn wounds for two reasons. First, major burns cause a massive release of stress chemicals into the bloodstream that raises blood levels (systemic levels) of cortisol and epinephrine for days or weeks after the initial trauma. Second, despite recent therapeutic advances, many people still die from major burns (4,000 every year in the USA alone) so there is a pressing need for better ways to treat this type of wound.
What Did the Researchers Do and Find?
The researchers investigated the effects of epinephrine on wound healing in three types of experiments. First, they looked at the effect of epinephrine on keratinocytes growing in dishes (in vitro experiments). Levels of epinephrine similar to those in the blood of stressed individuals greatly inhibited the motility and migration of human keratinocytes (isolated from the foreskin of newborn babies) and of mouse keratinocytes. It also inhibited the repair of scratch wounds made in monolayers of keratinocytes growing on dishes. Treatment of the cultures with a β2AR antagonist (a chemical that prevents epinephrine activating the β2AR) reversed the effects of epinephrine. In addition, the migration of mouse keratinocytes that had been genetically altered so that they did not express β2AR was not inhibited by epinephrine. Next, the researchers investigated the healing of burn wounds made in small pieces of human skin growing in dishes (ex vivo experiments). Burn injuries rapidly increased the amount of epinephrine in these tissue explants, they report, and treatment of the explants with a βAR antagonist (an inhibitor of all types of βARs) greatly increased wound re-epithelialization. Finally, the researchers report that the re-epithelialization of burn wounds in living mice was improved when the mice were treated with a β2AR antagonist.
What Do These Findings Mean?
These findings reveal a second pathway by which stress can impair wound healing. They show that stress-induced increases in systemic and local epinephrine activate β2ARs on keratinocytes and that this activation inhibits keratinocyte motility and wound re-epithelialization. Although results obtained in animals do not always reflect what happens in people, the finding that the treatment of mice with β2AR antagonists improves the rate of burn wound re-epithelialization, suggests that beta blockers—drugs that inhibit all βARs and that are widely used to treat high blood pressure and to prevent heart disease—or specific β2AR antagonists might provide a new therapeutic approach to the treatment of burns and, perhaps, chronic nonhealing wounds.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000012.
Wikipedia has pages on wound healing, burn injuries, and epinephrine (Note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The MedlinePlus Encyclopedia has a page on burns (in English and Spanish)
MedlinePlus provides links to other information on burns (in English and Spanish)
doi:10.1371/journal.pmed.1000012
PMCID: PMC2621262  PMID: 19143471
14.  HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs) 
Introduction
Carcinoma-associated fibroblasts (CAFs) play a pivotal role in cancer progression by contributing to invasion, metastasis and angiogenesis. Solid tumors possess a unique microenvironment characterized by local hypoxia, which induces gene expression changes and biological features leading to poor outcomes. Hypoxia Inducible Factor 1 (HIF-1) is the main transcription factor that mediates the cell response to hypoxia through different mechanisms that include the regulation of genes strongly associated with cancer aggressiveness. Among the HIF-1 target genes, the G-protein estrogen receptor (GPER) exerts a stimulatory role in diverse types of cancer cells and in CAFs.
Methods
We evaluated the regulation and function of the key angiogenic mediator vascular endothelial growth factor (VEGF) in CAFs exposed to hypoxia. Gene expression studies, Western blotting analysis and immunofluorescence experiments were performed in CAFs and breast cancer cells in the presence of cobalt chloride (CoCl2) or cultured under low oxygen tension (2% O2), in order to analyze the involvement of the HIF-1α/GPER signaling in the biological responses to hypoxia. We also explored the role of the HIF-1α/GPER transduction pathway in functional assays like tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in CAFs.
Results
We first determined that hypoxia induces the expression of HIF-1α and GPER in CAFs, then we ascertained that the HIF-1α/GPER signaling is involved in the regulation of VEGF expression in breast cancer cells and in CAFs exposed to hypoxia. We also assessed by ChIP assay that HIF-1α and GPER are both recruited to the VEGF promoter sequence and required for VEGF promoter stimulation upon hypoxic condition. As a biological counterpart of these findings, conditioned medium from hypoxic CAFs promoted tube formation in HUVECs in a HIF-1α/GPER dependent manner. The functional cooperation between HIF-1α and GPER in CAFs was also evidenced in the hypoxia-induced cell migration, which involved a further target of the HIF-1α/GPER signaling like connective tissue growth factor (CTGF).
Conclusions
The present results provide novel insight into the role elicited by the HIF-1α/GPER transduction pathway in CAFs towards the hypoxia-dependent tumor angiogenesis. Our findings further extend the molecular mechanisms through which the tumor microenvironment may contribute to cancer progression.
doi:10.1186/bcr3458
PMCID: PMC3978922  PMID: 23947803
15.  HIF-1α Promotes A Hypoxia-Independent Cell Migration 
Hypoxia-inducible factor-1α (HIF-1α) is known as a transactivator for VEGF gene promoter. It can be induced by hypoxia. However, no study has been done so far to dissect HIF-1α-mediated effects from hypoxia or VEGF-mediated effects. By using a HIF-1α knockout (HIF-1α KO) cell system in mouse embryonic fibroblast (MEF) cells, this study analyzes cell migration and HIF-1α, hypoxia and VEGF activation. A hypoxia-mediated HIF-1α induction and VEGF transactivation were observed: both HIF-1α WT lines had significantly increased VEGF transactivation, as an indicator for HIF-1α induction, in hypoxia compared to normoxia; in contrast, HIF-1α KO line had no increased VEGF transactivation under hypoxia. HIF-1α promotes cell migration: HIF-1α-KO cells had a significantly reduced migration compared to that of the HIF-1α WT cells under both normoxia and hypoxia. The significantly reduced cell migration in HIF-1α KO cells can be partially rescued by the restoration of WT HIF-1α expression mediated by adenoviral-mediated gene transfer. Interestingly, hypoxia has no effect on cell migration: the cells had a similar cell migration rate under hypoxic and normoxic conditions for both HIF-1α WT and HIF-1α KO lines, respectively. Collectively, these data suggest that HIF-1α plays a role in MEF cell migration that is independent from hypoxia-mediated effects.
doi:10.2174/1874196701003010008
PMCID: PMC2946250  PMID: 20882121
VEGF; cell migration; hypoxia; HIF-1α
16.  Myocardial Hypertrophy Overrides the Angiogenic Response to Hypoxia 
PLoS ONE  2008;3(12):e4042.
Background
Cyanosis and myocardial hypertrophy frequently occur in combination. Hypoxia or cyanosis can be potent inducers of angiogenesis, regulating the expression of hypoxia-inducible factors (HIF), vascular endothelial growth factors (VEGF), and VEGF receptors (VEGFR-1 and 2); in contrast, pressure overload hypertrophy is often associated with impaired pro-angiogenic signaling and decreased myocardial capillary density. We hypothesized that the physiological pro-angiogenic response to cyanosis in the hypertrophied myocardium is blunted through differential HIF and VEGF-associated signaling.
Methods and Results
Newborn rabbits underwent aortic banding and, together with sham-operated littermates, were transferred into a hypoxic chamber (FiO2 = 0.12) at 3 weeks of age. Control banded or sham-operated rabbits were housed in normoxia. Systemic cyanosis was confirmed (hematocrit, arterial oxygen saturation, and serum erythropoietin). Myocardial tissue was assayed for low oxygen concentrations using a pimonidazole adduct. At 4 weeks of age, HIF-1α and HIF-2α protein levels, HIF-1α DNA-binding activity, and expression of VEGFR-1, VEGFR-2, and VEGF were determined in hypoxic and normoxic rabbits. At 6 weeks of age, left-ventricular capillary density was assessed by immunohistochemistry. Under normoxia, capillary density was decreased in the banded rabbits compared to non-banded littermates. As expected, non-hypertrophied hearts responded to hypoxia with increased capillary density; however, banded hypoxic rabbits demonstrated no increase in angiogenesis. This blunted pro-angiogenic response to hypoxia in the hypertrophied myocardium was associated with lower HIF-2α and VEGFR-2 levels and increased HIF-1α activity and VEGFR-1 expression. In contrast, non-hypertrophied hearts responded to hypoxia with increased HIF-2α and VEGFR-2 expression with lower VEGFR-1 expression.
Conclusion
The participation of HIF-2α and VEGFR-2 appear to be required for hypoxia-stimulated myocardial angiogenesis. In infant rabbit hearts with pressure overload hypertrophy, this pro-angiogenic response to hypoxia is effectively uncoupled, apparently in part due to altered HIF-mediated signaling and VEGFR subtype expression.
doi:10.1371/journal.pone.0004042
PMCID: PMC2603310  PMID: 19112498
17.  Induction of CD36 and Thrombospondin-1 in Macrophages by Hypoxia-Inducible Factor 1 and Its Relevance in the Inflammatory Process 
PLoS ONE  2012;7(10):e48535.
Inflammation is part of a complex biological response of vascular tissue to pathogens or damaged cells. First inflammatory cells attempt to remove the injurious stimuli and this is followed by a healing process mediated principally by phagocytosis of senescent cells. Hypoxia and p38-MAPK are associated with inflammation, and hypoxia inducible factor 1 (HIF-1) has been detected in inflamed tissues. We aimed to analyse the role of p38-MAPK and HIF-1 in the transcriptional regulation of CD36, a class B scavenger receptor, and its ligand thrombospondin (TSP-1) in macrophages and to evaluate the involvement of this pathway in phagocytosis of apoptotic neutrophils. We have also assessed HIF-1α, p38-MAPK and CD36 immunostaining in the mucosa of patients with inflammatory bowel disease. Results show that hypoxia increases neutrophil phagocytosis by macrophages and induces the expression of CD36 and TSP-1. Addition of a p38-MAPK inhibitor significantly reduced the increase in CD36 and TSP-1 expression provoked by hypoxia and decreased HIF-1α stabilization in macrophages. Transient transfection of macrophages with a miHIF-1α-targeting vector blocked the increase in mRNA expression of CD36 and TSP-1 during hypoxia and reduced phagocytosis, thus highlighting a role for the transcriptional activity of HIF-1. CD36 and TSP-1 were necessary for the phagocytosis of neutrophils induced by hypoxic macrophages, since functional blockade of these proteins undermined this process. Immunohistochemical studies revealed CD36, HIF-1α and p38-MAPK expression in the mucosa of patients with inflammatory bowel disease. A positive and significant correlation between HIF-1α and CD36 expression and CD36 and p38-MAPK expression was observed in cells of the lamina propria of the damaged mucosa. Our results demonstrate a HIF-1-dependent up-regulation of CD36 and TSP-1 that mediates the increased phagocytosis of neutrophils by macrophages during hypoxia. Moreover, they suggest that CD36 expression in the damaged mucosa of patients with inflammatory bowel disease depends on p38-MAPK and HIF-1 activity.
doi:10.1371/journal.pone.0048535
PMCID: PMC3485304  PMID: 23119050
18.  Oxygen: Implications for Wound Healing 
Advances in Wound Care  2012;1(6):225-230.
Background
Oxygen is vital for healing wounds. It is intricately involved in numerous biological processes including cell proliferation, angiogenesis, and protein synthesis, which are required for restoration of tissue function and integrity. Adequate wound tissue oxygenation can trigger healing responses and favorably influence the outcomes of other treatment modalities.
The Problem
Chronic ischemic wounds fail to heal appropriately secondary to extreme hypoxia that leads to cellular demise. Wound tissue hypoxia is typically greater at the center of the wound. Accordingly, oxygen requirements of the regenerating tissue will vary.
Basic/Clinical Science Advances
As oxygen levels decrease within the wound, cell response mechanisms (hypoxia inducible factor [HIF]) trigger the transcription of genes that promote cell survival and angiogenesis. HIF stabilizers are currently being tested to determine wound healing potential. Clinically, topical oxygen therapy (TOT) has been proved as an effective therapeutic modality for chronic wounds. TOT is reputed to have several advantages over hyperbaric oxygen therapy. Namely, TOT has a lower risk of oxygen toxicity, it is less expensive and is relatively easy to apply to target areas.
Clinical Care Relevance
Wound tissue oxygen is necessary for appropriate wound healing; however, the relative complexity of the healing process requires a multifaceted approach for successful healing outcomes. A key component of this multifaceted approach should be specific oxygen dosing as a function of tissue hypoxia.
Conclusion
New treatment approaches that exploit cell hypoxia sensing and response mechanisms and that enable the precise application of oxygen therapy to hypoxic areas of regenerating tissue are very promising.
doi:10.1089/wound.2011.0319
PMCID: PMC3625368  PMID: 24527310
19.  Age-dependent Impairment of HIF-1α̣Expression in Diabetic Mice: Correction with Electroporation-facilitated Gene Therapy Increases Wound Healing, Angiogenesis, and Circulating Angiogenic Cells 
Journal of cellular physiology  2008;217(2):319-327.
Wound healing is impaired in elderly patients with diabetes mellitus. We hypothesized that age-dependent impairment of cutaneous wound healing in db/db diabetic mice: (a) would correlate with reduced expression of the transcription factor hypoxia-inducible factor 1α (HIF-1α) as well as its downstream target genes; and (b) could be overcome by HIF-1α replacement therapy. Wound closure, angiogenesis, and mRNA expression in excisional skin wounds were analyzed and circulating angiogenic cells were quantified in db/db mice that were untreated or received electroporation-facilitated HIF-1α gene therapy. HIF-1α mRNA levels in wound tissue were significantly reduced in older (4–6 months) as compared to younger (1.5–2 months) db/db mice. Expression of mRNAs encoding the angiogenic cytokines vascular endothelial growth factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, platelet derived growth factor B (PDGF-B), and placental growth factor (PLGF) was also impaired in wounds of older db/db mice. Intradermal injection of plasmid gWIZ-CA5, which encodes a constitutively active form of HIF-1α, followed by electroporation, induced increased levels of HIF-1α mRNA at the injection site on day 3 and increased levels of VEGF, PLGF, PDGF-B, and ANGPT2 mRNA on day 7. Circulating angiogenic cells in peripheral blood increased 10-fold in mice treated with gWIZ-CA5. Wound closure was significantly accelerated in db/db mice treated with gWIZ-CA5 as compared to mice treated with empty vector. Thus, HIF-1α gene therapy corrects the age-dependent impairment of HIF-1α expression, angiogenic cytokine expression, and circulating angiogenic cells that contribute to the age-dependent impairment of wound healing in db/db mice.
doi:10.1002/jcp.21503
PMCID: PMC2716010  PMID: 18506785
Aging; Angiogenesis; Diabetes; Wound Healing
20.  HIF–VEGF Pathways Are Critical for Chronic Otitis Media in Junbo and Jeff Mouse Mutants 
PLoS Genetics  2011;7(10):e1002336.
Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF–mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF–mediated pathways, and we conclude that targeting molecules in HIF–VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.
Author Summary
Otitis media with effusion (OME) is the commonest cause of hearing loss in children, and treatment using grommets remains the commonest surgical procedure in children. Chronic forms of OM are known from human population studies to have a significant genetic component, but little is known of the underlying genes or pathways involved. We have analyzed two chronic OM mouse models, the Junbo and Jeff mutants, and have found that both demonstrate hypoxia and hypoxia-inducible factor (HIF) mediated responses. There is upregulation of inflammatory pathways in the mutant middle ears and in Junbo elevation of cytokines that modulate Hif-1α. Hif-1α levels are raised in the middle ear as well as downstream targets of HIF such as Vegfa. We explored the effects of small-molecule inhibitors of HSP90 and VEGF receptor signaling in the Junbo mutant and found significant reductions in hearing loss, the occurrence of bulla fluid, and moderation of vascular changes in the inflamed middle ear mucosa with the VEGF receptor inhibitors. The study of the Junbo and Jeff mutants demonstrates the role of hypoxia and HIF mediated pathways in OM pathogenesis, and it indicates that targeting the HIF–VEGF pathway may represent a novel approach to therapeutic intervention in chronic OM.
doi:10.1371/journal.pgen.1002336
PMCID: PMC3197687  PMID: 22028672
21.  Hypoxia-Inducible Factor-2α Is an Essential Catabolic Regulator of Inflammatory Rheumatoid Arthritis 
PLoS Biology  2014;12(6):e1001881.
Hypoxia-inducible factor-2α (HIF-2α) is sufficient to cause experimental rheumatoid arthritis and acts to regulate the functions of fibroblast-like cells from tissue surrounding joints, independent of HIF-1α.
Rheumatoid arthritis (RA) is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the hypoxia-inducible factors (HIFs), HIF-1α (encoded by HIF1A) and HIF-2α (encoded by EPAS1). HIF-2α was markedly up-regulated in the intimal lining of RA synovium, whereas HIF-1α was detected in a few cells in the sublining and deep layer of RA synovium. Overexpression of HIF-2α in joint tissues caused an RA-like phenotype, whereas HIF-1α did not affect joint architecture. Moreover, a HIF-2α deficiency in mice blunted the development of experimental RA. HIF-2α was expressed mainly in fibroblast-like synoviocytes (FLS) of RA synovium and regulated their proliferation, expression of RANKL (receptor activator of nuclear factor–κB ligand) and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2α–dependent up-regulation of interleukin (IL)-6 in FLS stimulated differentiation of TH17 cells—crucial effectors of RA pathogenesis. Additionally, in the absence of IL-6 (Il6−/− mice), overexpression of HIF-2α in joint tissues did not cause an RA phenotype. Thus, our results collectively suggest that HIF-2α plays a pivotal role in the pathogenesis of RA by regulating FLS functions, independent of HIF-1α.
Author Summary
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation in joint tissues leading to destruction of cartilage and bone. Despite some therapeutic advances, the etiology of RA pathogenesis is not yet clear, and effective treatment of RA remains a significant, unmet medical need. Hypoxia is a prominent feature of inflamed tissue within RA-affected joints, and earlier work has implicated limited involvement of hypoxia-inducible factor (HIF)-1 α. We explored the role of a second HIF family member, HIF-2α, in RA pathogenesis. We showed that HIF-2α is markedly increased in the tissue lining the RA-affected joints. Notably and in contrast to HIF-1α, when overexpressed in normal mouse joint tissues, HIF-2α is sufficient to cause RA-like symptoms. Conversely, an HIF-2α deficiency blocks the development of experimental arthritis in mice. We discovered further that HIF-2α regulates RA pathogenesis by modulating various RA-associated functions of joint-specific fibroblast-like cells, including proliferation, expression of cytokines, chemokines, and matrix-degrading enzymes, and bone-remodeling potential. HIF-2α also increases the ability of these cells to promote interleukin-6–dependent differentiation of TH17 cells, a known effector of RA pathogenesis. We thus show that HIF-1α and HIF-2α have distinct roles and act via different mechanisms in RA pathogenesis.
doi:10.1371/journal.pbio.1001881
PMCID: PMC4051611  PMID: 24914685
22.  Hypoxia Inducible Factor-1α in Astrocytes and/or Myeloid Cells Is Not Required for the Development of Autoimmune Demyelinating Disease1,2,3 
eNeuro  2015;2(2):e0050.
Hypoxia-like tissue alterations, characterized by the upregulation of hypoxia-inducible factor-1α (HIF-1α), have been described in the normal appearing white matter and pre-demyelinating lesions of multiple sclerosis (MS) patients. As HIF-1α regulates the transcription of a wide set of genes involved in neuroprotection and neuroinflammation, HIF-1α expression may contribute to the pathogenesis of inflammatory demyelination. To test this hypothesis, we analyzed the effect of cell-specific genetic ablation or overexpression of HIF-1α on the onset and progression of experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. HIF-1α was mainly expressed in astrocytes and microglia/macrophages in the mouse spinal cord at the peak of EAE. However, genetic ablation of HIF-1α in astrocytes and/or myeloid cells did not ameliorate clinical symptoms. Furthermore, conditional knock-out of Von Hippel Lindau, a negative regulator of HIF-1α stabilization, failed to exacerbate the clinical course of EAE. In accordance with clinical symptoms, genetic ablation or overexpression of HIF-1α did not change the extent of spinal cord inflammation and demyelination. Overall, our data indicate that despite dramatic upregulation of HIF-1α in astrocytes and myeloid cells in EAE, HIF-1α expression in these two cell types is not required for the development of inflammatory demyelination. Despite numerous reports indicating HIF-1α expression in glia, neurons, and inflammatory cells in the CNS of MS patients, the cell-specific contribution of HIF-1α to disease pathogenesis remains unclear. Here we show that although HIF-1α is dramatically upregulated in astrocytes and myeloid cells in EAE, cell-specific depletion of HIF-1α in these two cell types surprisingly does not affect the development of neuroinflammatory disease. Together with two recently published studies showing a role for oligodendrocyte-specific HIF-1α in myelination and T-cell-specific HIF-1α in EAE, our results demonstrate a tightly regulated cellular specificity for HIF-1α contribution in nervous system pathogenesis.
doi:10.1523/ENEURO.0050-14.2015
PMCID: PMC4511492  PMID: 26213713
astrocytes; cre/loxP; EAE; HIF-1alpha; macrophages; neuroinflammation
23.  Hypoxia Promotes Uveal Melanoma Invasion through Enhanced Notch and MAPK Activation 
PLoS ONE  2014;9(8):e105372.
The transcriptional response promoted by hypoxia-inducible factors has been associated with metastatic spread of uveal melanoma. We found expression of hypoxia-inducible factor 1α (HIF-1α) protein in well-vascularized tumor regions as well as in four cell lines grown in normoxia, thus this pathway may be important even in well-oxygenated uveal melanoma cells. HIF-1α protein accumulation in normoxia was inhibited by rapamycin. As expected, hypoxia (1% pO2) further induced HIF-1α protein levels along with its target genes VEGF and LOX. Growth in hypoxia significantly increased cellular invasion of all 5 uveal melanoma lines tested, as did the introduction of an oxygen-insensitive HIF-1α mutant into Mel285 cells with low HIF-1α baseline levels. In contrast, HIF-1α knockdown using shRNA significantly decreased growth in hypoxia, and reduced by more than 50% tumor invasion in four lines with high HIF-1α baseline levels. Pharmacologic blockade of HIF-1α protein expression using digoxin dramatically suppressed cellular invasion both in normoxia and in hypoxia. We found that Notch pathway components, including Jag1-2 ligands, Hes1-Hey1 targets and the intracellular domain of Notch1, were increased in hypoxia, as well as the phosphorylation levels of Erk1-2 and Akt. Pharmacologic and genetic inhibition of Notch largely blocked the hypoxic induction of invasion as did the pharmacologic suppression of Erk1-2 activity. In addition, the increase in Erk1-2 and Akt phosphorylation by hypoxia was partially reduced by inhibiting Notch signaling. Our findings support the functional importance of HIF-1α signaling in promoting the invasive capacity of uveal melanoma cells in both hypoxia and normoxia, and suggest that pharmacologically targeting HIF-1α pathway directly or through blockade of Notch or Erk1-2 pathways can slow tumor spread.
doi:10.1371/journal.pone.0105372
PMCID: PMC4148307  PMID: 25166211
24.  The Role of Hypoxia-Inducible Factor in Wound Healing 
Advances in Wound Care  2014;3(5):390-399.
Significance: Poor wound healing remains a significant health issue for a large number of patients in the United States. The physiologic response to local wound hypoxia plays a critical role in determining the success of the normal healing process. Hypoxia-inducible factor-1 (HIF-1), as the master regulator of oxygen homeostasis, is an important determinant of healing outcomes. HIF-1 contributes to all stages of wound healing through its role in cell migration, cell survival under hypoxic conditions, cell division, growth factor release, and matrix synthesis throughout the healing process.
Recent Advances: Positive regulators of HIF-1, such as prolyl-4-hydroxylase inhibitors, have been shown to be beneficial in enhancing diabetic ischemic wound closure and are currently undergoing clinical trials for treatment of several human-ischemia-based conditions.
Critical Issues: HIF-1 deficiency and subsequent failure to respond to hypoxic stimuli leads to chronic hypoxia, which has been shown to contribute to the formation of nonhealing ulcers. In contrast, overexpression of HIF-1 has been implicated in fibrotic disease through its role in increasing myofibroblast differentiation leading to excessive matrix production and deposition. Both positive and negative regulators of HIF-1 therefore provide important therapeutic targets that can be used to manipulate HIF-1 expression where an excess or deficiency in HIF-1 is known to correlate with pathogenesis.
Future Directions: Targeting HIF-1 during wound healing has many important clinical implications for tissue repair. Counteracting the detrimental effects of excessive or deficient HIF-1 signaling by modulating HIF-1 expression may improve future management of poorly healing wounds.
doi:10.1089/wound.2013.0520
PMCID: PMC4005494  PMID: 24804159
25.  Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing 
BMC Genomics  2014;15(1):686.
Background
Hypoxia is a critical aspect of the glioma microenvironment and has been associated with poor prognosis and resistance to various therapies. However, the mechanisms responsible for hypoxic survival of glioma cells remain unclear. Recent studies strongly suggest that microRNAs act as critical mediators of the hypoxic response. We thus hypothesized their prominent role in hypoxia resistance in glioblastoma (GBM) and aimed to identify those.
Results
With this study, we present the first detailed analysis of small RNA transcriptome of cell line U87MG, a grade IV glioma cell line, and its alteration under hypoxic condition. Based on deep sequencing and microarray data, we identify a set of hypoxia regulated microRNAs, with the miR-210-3p and its isomiRs showing highest induction in GBM cell lines U87MG and U251MG. We show miR-210-3p, miR-1275, miR-376c-3p, miR-23b-3p, miR-193a-3p and miR-145-5p to be up-regulated, while miR-92b-3p, miR-20a-5p, miR-10b-5p, miR-181a-2-3p and miR-185-5p are down-regulated by hypoxia. Interestingly, certain hypoxia-induced miRNAs are also known to be over-expressed in GBM tumors, suggesting that hypoxia may be one of the factors involved in establishing the miRNA signature of GBM. Transcription factor binding sites for Hypoxia inducible factor 1 A (HIF1A) were identified in the promoter region (5 kb upstream) of 30 hypoxia-induced miRNAs. HIF-1A over-expression and silencing studies show regulation of specific miRNAs, including miR-210-3p, to be HIF1A dependent. On the other hand, miR-210-3p leads to an increase in transcriptional activity of HIF and its target genes vascular endothelial growth factor (VEGF) and carbonic anhydrase 9 (CA9). MiR-210-3p levels were found to be high in GBM patient samples and showed good correlation with the known hypoxia markers CA9 and VEGF. We show that miR-210-3p promotes hypoxic survival and chemoresistance in GBM cells and targets a negative regulator of hypoxic response, HIF3A. Additionally, a total of 139 novel miRNAs were discovered by the analysis of deep sequencing data and three of these were found to be differentially expressed under hypoxia.
Conclusions
Overall, our study reveals a novel miRNA signature of hypoxia in GBM and suggests miR-210-3p to be an oncogenic player and a novel potential intrinsic marker of hypoxia in glioblastoma.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-686) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-686
PMCID: PMC4148931  PMID: 25129238
Glioblastoma; MicroRNA; Deep sequencing; U87MG; U251MG; A172; miR-210

Results 1-25 (1387042)