PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (574237)

Clipboard (0)
None

Related Articles

1.  An Insight into the Sialotranscriptome of Simulium nigrimanum, a Black Fly Associated with Fogo Selvagem in South America 
Pemphigus foliaceus is a life threatening skin disease that is associated with autoimmunity to desmoglein, a skin protein involved in the adhesion of keratinocytes. This disease is endemic in certain areas of South America, suggesting the mediation of environmental factors triggering autoimmunity. Among the possible environmental factors, exposure to bites of black flies, in particular Simulium nigrimanum has been suggested. In this work, we describe the sialotranscriptome of adult female S. nigrimanum flies. It reveals the complexity of the salivary potion of this insect, comprised by over 70 distinct genes within over 30 protein families, including several novel families, even when compared with the previously described sialotranscriptome of the autogenous black fly, S. vittatum. The uncovering of this sialotranscriptome provides a platform for testing pemphigus patient sera against recombinant salivary proteins from S. nigrimanum and for the discovery of novel pharmacologically active compounds.
doi:10.4269/ajtmh.2010.09-0769
PMCID: PMC2877412  PMID: 20519601
2.  An Insight into the Sialome of the Black Fly, Simulium vittatum 
Journal of proteome research  2009;8(3):1474-1488.
Adaptation to vertebrate blood feeding includes development of a salivary ‘magic potion’ that can disarm host hemostasis and inflammatory reactions. Within the lower Diptera, a vertebrate blood-sucking mode evolved in the Psychodidae (sand flies), Culicidae (mosquitoes), Ceratopogonidae (biting midges), Simuliidae (black flies), and in the frog-feeding Corethrellidae. Sialotranscriptome analyses from several species of mosquitoes and sand flies and from one biting midge indicate divergence in the evolution of the blood-sucking salivary potion, manifested in the finding of many unique proteins within each insect family, and even genus. Gene duplication and divergence events are highly prevalent, possibly driven by vertebrate host immune pressure. Within this framework, we describe the sialome (from Greek sialo, saliva) of the black fly Simulium vittatum and discuss the findings within the context of the protein families found in other blood-sucking Diptera. Sequences and results of Blast searches against several protein family databases are given in Supplemental Tables S1 and S2, which can be obtained from http://exon.niaid.nih.gov/transcriptome/S_vittatum/T1/SV-tb1.zip and http://exon.niaid.nih.gov/transcriptome/S_vittatum/T2/SV-tb2.zip.
doi:10.1021/pr8008429
PMCID: PMC2778207  PMID: 19166301
Simulium vittatum; black fly; sialotranscriptomes; salivary gland transcriptome; sialome; proteome; hematophagy; onchocerciasis
3.  Simukunin from the Salivary Glands of the Black Fly Simulium vittatum Inhibits Enzymes That Regulate Clotting and Inflammatory Responses 
PLoS ONE  2012;7(2):e29964.
Background
Black flies (Diptera: Simuliidae) feed on blood, and are important vectors of Onchocerca volvulus, the etiolytic agent of River Blindness. Blood feeding depends on pharmacological properties of saliva, including anticoagulation, but the molecules responsible for this activity have not been well characterized.
Methodology/Principal Findings
Two Kunitz family proteins, SV-66 and SV-170, were identified in the sialome of the black fly Simulium vittatum. As Kunitz proteins are inhibitors of serine proteases, we hypothesized that SV-66 and/or −170 were involved in the anticoagulant activity of black fly saliva. Our results indicated that recombinant (r) SV-66 but not rSV-170 inhibited plasma coagulation. Mutational analysis suggested that SV-66 is a canonical BPTI-like inhibitor. Functional assays indicated that rSV66 reduced the activity of ten serine proteases, including several involved in mammalian coagulation. rSV-66 most strongly inhibited the activity of Factor Xa, elastase, and cathepsin G, exhibited lesser inhibitory activity against Factor IXa, Factor XIa, and plasmin, and exhibited no activity against Factor XIIa and thrombin. Surface plasmon resonance studies indicated that rSV-66 bound with highest affinity to elastase (KD = 0.4 nM) and to the active site of FXa (KD = 3.07 nM). We propose the name “Simukunin” for this novel protein.
Conclusions
We conclude that Simukunin preferentially inhibits Factor Xa. The inhibition of elastase and cathepsin G further suggests this protein may modulate inflammation, which could potentially affect pathogen transmission.
doi:10.1371/journal.pone.0029964
PMCID: PMC3285612  PMID: 22383955
4.  An Insight into the Sialotranscriptome of the Cat Flea, Ctenocephalides felis 
PLoS ONE  2012;7(9):e44612.
Background
Saliva of hematophagous arthropods contains a diverse mixture of compounds that counteracts host hemostasis. Immunomodulatory and antiinflammatory components are also found in these organisms' saliva. Blood feeding evolved at least ten times within arthropods, providing a scenario of convergent evolution for the solution of the salivary potion. Perhaps because of immune pressure from hosts, the salivary proteins of related organisms have considerable divergence, and new protein families are often found within different genera of the same family or even among subgenera. Fleas radiated with their vertebrate hosts, including within the mammal expansion initiated 65 million years ago. Currently, only one flea species–the rat flea Xenopsylla cheopis–has been investigated by means of salivary transcriptome analysis to reveal salivary constituents, or sialome. We present the analysis of the sialome of cat flea Ctenocephaides felis.
Methodology and Critical Findings
A salivary gland cDNA library from adult fleas was randomly sequenced, assembled, and annotated. Sialomes of cat and rat fleas have in common the enzyme families of phosphatases (inactive), CD-39-type apyrase, adenosine deaminases, and esterases. Antigen-5 members are also common to both sialomes, as are defensins. FS-I/Cys7 and the 8-Cys families of peptides are also shared by both fleas and are unique to these organisms. The Gly-His-rich peptide similar to holotricin was found only in the cat flea, as were the abundantly expressed Cys-less peptide and a novel short peptide family.
Conclusions/Significance
Fleas, in contrast to bloodsucking Nematocera (mosquitoes, sand flies, and black flies), appear to concentrate a good portion of their sialome in small polypeptides, none of which have a known function but could act as inhibitors of hemostasis or inflammation. They are also unique in expansion of a phosphatase family that appears to be deficient of enzyme activity and has an unknown function.
doi:10.1371/journal.pone.0044612
PMCID: PMC3458046  PMID: 23049752
5.  An insight into the sialome of Glossina morsitans morsitans 
BMC Genomics  2010;11:213.
Background
Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae.
Results
As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken.
Conclusions
The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure.
doi:10.1186/1471-2164-11-213
PMCID: PMC2853526  PMID: 20353571
6.  The Relationship between Water Temperature and the Development Cycle Beginning and Duration in Three Black Fly Species 
Understanding environmental factors affecting the timing and rate of animal development, as well as the factors that cause their effects, is of great importance. The purpose of this study was to establish the relationship between the onset and duration of the development from egg to pupal stage and water temperature in three black fly (Diptera: Simuliidae) species: Simulium (Simulium) reptans (Linnaeus 1758), Simulium (Byssodon) maculatum (Meigen 1804), Simulium (Boophthora) erythrocephalum (De Geer 1776). The study was based on surveys conducted between April and June of 1998–2010. The water temperature on the day of larval eclosion had no statistically significant impact on the beginning of development in any of the three species studied. The date when water temperature in the river reaches a certain value is important to the initiation of development in some black fly species. The present study revealed that the most important dates to the beginning of development of S. reptans black flies are when water temperature rises above 5° C, 7° C, and 10° C, while pivotal dates to the development of S. maculatum are when water temperature exceeds 4° C and 10° C. Water temperature most often exceeds the value important to the start of the development of these black fly species during March and April. The findings of the present study show that the hatching time of the two black fly species is also related to the mean water temperature in March and April. There were no statistically significant relations established between certain temperature dates and the beginning of larval development in S. erythrocephalum. Significant relations (p < 0.01) were found to exist between the duration of the development cycle from the first instar larva to pupa and the mean water temperature during the development period in S. reptans (r = -0.84; y = 53.088e-0.0806x, R2 = 0.70), S. maculatum (r = -0.82; y = 186.48e-0.1123x, R2 = 0.69) and S. erythrocephalum (r = -0.83; y = 58.768e-0.0652x, R2 = 0.70). The present study showed that the duration of development from the first instar larva to pupa in all the three black fly species studied was shorter when water temperatures during the development period were higher and longer when water temperatures were lower. The devised model of dependence between the duration of the studied black fly species' development and water temperature was verified experimentally.
doi:10.1673/031.013.0101
PMCID: PMC3735164  PMID: 23879856
hatching; larvae; pupae; Simuliidae; temperature
7.  Individual exposure to Simulium bites and intensity of Onchocerca volvulus infection 
Parasites & Vectors  2010;3:53.
Background
Onchocerca volvulus, the causative agent of river blindness, is transmitted through the black fly Simulium damnosum s.l., which breeds in turbulent river waters. To date, the number of flies attacking humans has only been determined by standard fly collectors near the river or the village. In our study, we counted the actual number of attacking and successfully feeding S. damnosum s.l. flies landing on individual villagers during their routine day-time activities in two villages of the Sudan-savannah and rainforest of Cameroon. We compared these numbers to the number of flies caught by a standard vector-collector, one positioned near the particular villager during his/her daily activity and the other sitting at the nearest Simulium breeding site.
Results
Using these data obtained by the two vector-collectors, we were able to calculate the Actual Index of Exposure (AIE). While the AIE in the savannah was on average 6,3%, it was 34% in the rainforest. The Effective Annual Transmission Potential (EATP) for individual villagers was about 20 fold higher in the rainforest compared to the savannah.
Conclusions
Here we show for the first time that it is possible to determine the EATP. Further studies with more subjects are needed in the future. These data are important for the development of future treatment strategies.
doi:10.1186/1756-3305-3-53
PMCID: PMC2910011  PMID: 20565835
8.  An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots) 
BMC Genomics  2007;8:102.
Background
The salivary glands of hematophagous animals contain a complex cocktail that interferes with the host hemostasis and inflammation pathways, thus increasing feeding success. Fleas represent a relatively recent group of insects that evolved hematophagy independently of other insect orders.
Results
Analysis of the salivary transcriptome of the flea Xenopsylla cheopis, the vector of human plague, indicates that gene duplication events have led to a large expansion of a family of acidic phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-coding transcript of the CD39 family appears as the candidate for the salivary nucleotide hydrolysing activity in X.cheopis, the first time this family of proteins is found in any arthropod salivary transcriptome.
Conclusion
Analysis of the salivary transcriptome of the flea X. cheopis revealed the unique pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at NCBI, all from the cat flea C. felis. This work accordingly represents the only relatively extensive sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the extent that these novel polypeptide families are common throughout the Siphonaptera.
doi:10.1186/1471-2164-8-102
PMCID: PMC1876217  PMID: 17437641
9.  Simplagrin, a Platelet Aggregation Inhibitor from Simulium nigrimanum Salivary Glands Specifically Binds to the Von Willebrand Factor Receptor in Collagen and Inhibits Carotid Thrombus Formation In Vivo 
Background
Among the several challenges faced by bloodsucking arthropods, the vertebrate hemostatic response against blood loss represents an important barrier to efficient blood feeding. Here we report the first inhibitor of collagen-induced platelet aggregation derived from the salivary glands of a black fly (Simulium nigrimanum), named Simplagrin.
Methods and Findings
Simplagrin was expressed in mammalian cells and purified by affinity-and size-exclusion chromatography. Light-scattering studies showed that Simplagrin has an elongated monomeric form with a hydrodynamic radius of 5.6 nm. Simplagrin binds to collagen (type I-VI) with high affinity (2–15 nM), and this interaction does not involve any significant conformational change as determined by circular dichroism spectroscopy. Simplagrin-collagen interaction is both entropically and enthalpically driven with a large negative ΔG, indicating that this interaction is favorable and occurs spontaneously. Simplagrin specifically inhibits von Willebrand factor interaction with collagen type III and completely blocks platelet adhesion to collagen under flow conditions at high shear rates; however, Simplagrin failed to block glycoprotein VI and Iα2β1 interaction to collagen. Simplagrin binds to RGQOGVMGF peptide with an affinity (KD 11 nM) similar to that of Simplagrin for collagen. Furthermore, Simplagrin prevents laser-induced carotid thrombus formation in vivo without significant bleeding in mice and could be useful as an antithrombotic agent in thrombosis related disease.
Conclusion
Our results support the orthology of the Aegyptin clade in bloodsucking Nematocera and the hypothesis of a faster evolutionary rate of salivary function of proteins from blood feeding arthropods.
Author Summary
Blood feeding arthropods—like mosquitoes and black flies—have evolved salivary secretions rich in molecules that affect hemostasis, including vasodilators and inhibitors of blood clotting and platelet aggregation. Among the platelet inhibitors, antagonists of collagen-induced platelet aggregation and adhesion have been found in salivary glands of blood feeders. Here we report the first collagen-binding protein from salivary glands of a black fly. This molecule prevents thrombosis in mice without causing significant bleeding, making it an attractive candidate as an antithrombotic agent. Because blackflies and mosquitoes shared a common blood feeding ancestor approximately 250 million years ago, it appears that collagen-binding activity in salivary glands was an evolutionary innovation present in an ancient dipteran ancestor. Our work highlights the central role of inhibition of platelet aggregation as a vital salivary function in blood feeding arthropods.
doi:10.1371/journal.pntd.0002947
PMCID: PMC4055580  PMID: 24921659
10.  A further insight into the sialome of the tropical bont tick, Amblyomma variegatum 
BMC Genomics  2011;12:136.
Background
Ticks--vectors of medical and veterinary importance--are themselves also significant pests. Tick salivary proteins are the result of adaptation to blood feeding and contain inhibitors of blood clotting, platelet aggregation, and angiogenesis, as well as vasodilators and immunomodulators. A previous analysis of the sialotranscriptome (from the Greek sialo, saliva) of Amblyomma variegatum is revisited in light of recent advances in tick sialomes and provides a database to perform a proteomic study.
Results
The clusterized data set has been expertly curated in light of recent reviews on tick salivary proteins, identifying many new families of tick-exclusive proteins. A proteome study using salivary gland homogenates identified 19 putative secreted proteins within a total of 211 matches.
Conclusions
The annotated sialome of A. variegatum allows its comparison to other tick sialomes, helping to consolidate an emerging pattern in the salivary composition of metastriate ticks; novel protein families were also identified. Because most of these proteins have no known function, the task of functional analysis of these proteins and the discovery of novel pharmacologically active compounds becomes possible.
doi:10.1186/1471-2164-12-136
PMCID: PMC3060141  PMID: 21362191
11.  An insight into the sialome of the soft tick, Ornithodorus parkeri 
While hard ticks (Ixodidae) take several days to feed on their hosts, soft ticks (Argasidae) feed faster, usually taking less than one hour per meal. Saliva assists in the feeding process by providing a cocktail of anti-hemostatic, anti-inflammatory and immunomodullatory compounds. Saliva of hard ticks has been shown to contain several families of genes each having multiple members, while those of soft ticks are relatively unexplored.
Analysis of the salivary transcriptome of the soft tick Ornithodorus parkeri, the vector of the relapsing fever agent Borrelia parkeri, indicates that gene duplication events have led to a large expansion of the lipocalin family, as well as of several genes containing Kunitz domains indicative of serine protease inhibitors, and several other gene families also found in hard ticks. Novel protein families with sequence homology to insulin growth factor-binding protein (prostacyclin-stimulating factor), adrenomedulin, serum amyloid A protein precursor and similar to HIV envelope protein were also characterized for the first time in the salivary gland of a blood-sucking arthropod.
The sialotranscriptome of O. parkeri confirms that gene duplication events are an important driving force in the creation of salivary cocktails of blood-feeding arthropods, as was observed with hard ticks and mosquitoes. Most of the genes coding for expanded families are homologous to those found in hard ticks, indicating a strong common evolutionary path between the two families. As happens to all genera of blood-sucking arthropods, several new proteins were also found, indicating the process of adaptation to blood feeding still continues to recent times.
doi:10.1016/j.ibmb.2007.09.009
PMCID: PMC2233652  PMID: 18070662
Ornithodorus parkeri; Ixodidae; Argasidae; Sialotranscriptomes; salivary gland transcriptome; sialome; Tick salivary glands
12.  An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis 
BMC Genomics  2010;11:51.
Background
Saliva of adult female mosquitoes help sugar and blood feeding by providing enzymes and polypeptides that help sugar digestion, control microbial growth and counteract their vertebrate host hemostasis and inflammation. Mosquito saliva also potentiates the transmission of vector borne pathogens, including arboviruses. Culex tarsalis is a bird feeding mosquito vector of West Nile Virus closely related to C. quinquefasciatus, a mosquito relatively recently adapted to feed on humans, and the only mosquito of the genus Culex to have its sialotranscriptome so far described.
Results
A total of 1,753 clones randomly selected from an adult female C. tarsalis salivary glands (SG) cDNA library were sequenced and used to assemble a database that yielded 809 clusters of related sequences, 675 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 283 protein sequences, 80 of which code for putative secreted proteins.
Conclusion
Comparison of the C. tarsalis sialotranscriptome with that of C. quinquefasciatus reveals accelerated evolution of salivary proteins as compared to housekeeping proteins. The average amino acid identity among salivary proteins is 70.1%, while that for housekeeping proteins is 91.2% (P < 0.05), and the codon volatility of secreted proteins is significantly higher than those of housekeeping proteins. Several protein families previously found exclusive of mosquitoes, including only in the Aedes genus have been identified in C. tarsalis. Interestingly, a protein family so far unique to C. quinquefasciatus, with 30 genes, is also found in C. tarsalis, indicating it was not a specific C. quinquefasciatus acquisition in its evolution to optimize mammal blood feeding.
doi:10.1186/1471-2164-11-51
PMCID: PMC2823692  PMID: 20089177
13.  The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy 
BMC Genomics  2009;10:57.
Background
Mosquito saliva, consisting of a mixture of dozens of proteins affecting vertebrate hemostasis and having sugar digestive and antimicrobial properties, helps both blood and sugar meal feeding. Culicine and anopheline mosquitoes diverged ~150 MYA, and within the anophelines, the New World species diverged from those of the Old World ~95 MYA. While the sialotranscriptome (from the Greek sialo, saliva) of several species of the Cellia subgenus of Anopheles has been described thoroughly, no detailed analysis of any New World anopheline has been done to date. Here we present and analyze data from a comprehensive salivary gland (SG) transcriptome of the neotropical malaria vector Anopheles darlingi (subgenus Nyssorhynchus).
Results
A total of 2,371 clones randomly selected from an adult female An. darlingi SG cDNA library were sequenced and used to assemble a database that yielded 966 clusters of related sequences, 739 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 183 protein sequences, 114 of which code for putative secreted proteins.
Conclusion
Comparative analysis of sialotranscriptomes of An. darlingi and An. gambiae reveals significant divergence of salivary proteins. On average, salivary proteins are only 53% identical, while housekeeping proteins are 86% identical between the two species. Furthermore, An. darlingi proteins were found that match culicine but not anopheline proteins, indicating loss or rapid evolution of these proteins in the old world Cellia subgenus. On the other hand, several well represented salivary protein families in old world anophelines are not expressed in An. darlingi.
doi:10.1186/1471-2164-10-57
PMCID: PMC2644710  PMID: 19178717
14.  Interruption of Transmission of Onchocerca volvulus in the Southern Chiapas Focus, México 
Background
The Southern Chiapas focus of onchocerciasis in Southern Mexico represents one of the major onchocerciasis foci in Latin America. All 559 endemic communities of this focus have undergone semi-annual mass treatment with ivermectin since 1998. In 50 communities of this focus, ivermectin frequency shifted from twice to four times a year in 2003; an additional 113 communities were added to the quarterly treatment regimen in 2009 to achieve a rapid suppression of transmission.
Methodology/Principal findings
In-depth epidemiologic and entomologic assessments were performed in six sentinel communities (which had undergone 2 rounds of ivermectin treatment per year) and three extra-sentinel communities (which had undergone 4 rounds of ivermectin treatment per year). None of the 67,924 Simulium ochraceum s.l. collected from this focus during the dry season of 2011 were found to contain parasite DNA when tested by polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA), resulting in an upper bound of the 95% confidence interval (95%-ULCI) of the infective rate in the vectors of 0.06/2,000 flies examined. Serological assays testing for Onchocerca volvulus exposure conducted on 4,230 children 5 years of age and under (of a total population of 10,280 in this age group) revealed that 2/4,230 individuals were exposed to O. volvulus (0.05%; one sided 95% confidence interval = 0.08%).
Conclusions/Significance
The in-depth epidemiological and entomological findings from the Southern Chiapas focus meet the criteria for interruption of transmission developed by the international community.
Author Summary
The absence of infective larvae of Onchocerca volvulus in the black fly vector of this parasite and reduction of exposure to and new infections with O. volvulus are the criteria currently used to certify focal interruption of parasite transmission. In the present study, we report entomological and epidemiological assessments in the Southern Chiapas focus of Mexico that together indicates that transmission of O. volvulus has been interrupted in this focus. None of the Simulium ochraceum s.l. vector black flies collected from sentinel and extra-sentinel communities in this focus during the 2011 transmission season was found to contain parasite DNA when tested by PCR-ELISA, suggesting vector parasite contact was nearly nonexistent. In addition, there was a minimal exposure to the parasite in children 5 years of age and under, as measured by circulating antibody to a parasite-specific antigen. The Southern Chiapas focus was the major focus in Mexico and one of the largest in Latin America, with well-documented history of active transmission prior to the commencement of Mectizan mass distribution. This study demonstrates the interruption of transmission in geographically large focus in Latin America with a historically high intensity of transmission.
doi:10.1371/journal.pntd.0002133
PMCID: PMC3610615  PMID: 23556018
15.  Interruption of Onchocerca volvulus transmission in Northern Venezuela 
Parasites & Vectors  2013;6:289.
Background
Onchocerciasis is caused by Onchocerca volvulus and transmitted by Simulium species (black flies). In the Americas, the infection has been previously described in 13 discrete regional foci distributed among six countries (Brazil, Colombia, Ecuador, Guatemala, Mexico and Venezuela) where more than 370,000 people are currently considered at risk. Since 2001, disease control in Venezuela has relied on the mass drug administration to the at-risk communities. This report provides empirical evidence of interruption of Onchocerca volvulus transmission by Simulium metallicum in 510 endemic communities from two Northern foci of Venezuela, after 10–12 years of 6-monthly Mectizan® (ivermectin) treatment to all the eligible residents.
Methods
In-depth entomologic and epidemiologic surveys were serially conducted from 2001–2012 in selected (sentinel and extra-sentinel) communities from the North-central (NC) and North-east (NE) onchocerciasis foci of Venezuela in order to monitor the impact of ivermectin treatment.
Results
From 2007–2009, entomological indicators in both foci confirmed that 0 out of 112,637 S. metallicum females examined by PCR contained L3 infection in insect heads. The upper bound of the 95% confidence intervals of the infective rate of the vector reached values below 1% by 2009 (NC) and 2012 (NE). Additionally, after 14 (NC) and 22 (NE) rounds of treatment, the seasonal transmission potential (±UL CIs) of S. metallicum was under the critical threshold of 20 L3 per person per season. Serological analysis in school children < 15 years-old demonstrated that 0 out of 6,590 individuals were harboring antibodies to Ov-16. Finally, epidemiological surveys made during 2010 (NC) and 2012 (NE) showed no evidence of microfilariae in the skin and eyes of the population.
Conclusions
These results meet the WHO criteria for absence of parasite transmission and disease morbidity in these endemic areas which represent 91% of the population previously at-risk in the country. Consequently, the two Northern foci are currently under post-treatment onchocerciasis surveillance status in Venezuela.
doi:10.1186/1756-3305-6-289
PMCID: PMC3856516  PMID: 24499653
Onchocerciasis; Simulium metallicum; Interruption; Ivermectin; Venezuela
16.  Successful Interruption of Transmission of Onchocerca volvulus in the Escuintla-Guatemala Focus, Guatemala 
Background
Elimination of onchocerciasis (river blindness) through mass administration of ivermectin in the six countries in Latin America where it is endemic is considered feasible due to the relatively small size and geographic isolation of endemic foci. We evaluated whether transmission of onchocerciasis has been interrupted in the endemic focus of Escuintla-Guatemala in Guatemala, based on World Health Organization criteria for the certification of elimination of onchocerciasis.
Methodology/Principal Findings
We conducted evaluations of ocular morbidity and past exposure to Onchocerca volvulus in the human population, while potential vectors (Simulium ochraceum) were captured and tested for O. volvulus DNA; all of the evaluations were carried out in potentially endemic communities (PEC; those with a history of actual or suspected transmission or those currently under semiannual mass treatment with ivermectin) within the focus. The prevalence of microfilariae in the anterior segment of the eye in 329 individuals (≥7 years old, resident in the PEC for at least 5 years) was 0% (one-sided 95% confidence interval [CI] 0–0.9%). The prevalence of antibodies to a recombinant O. volvulus antigen (Ov-16) in 6,432 school children (aged 6 to 12 years old) was 0% (one-sided 95% IC 0–0.05%). Out of a total of 14,099 S. ochraceum tested for O. volvulus DNA, none was positive (95% CI 0–0.01%). The seasonal transmission potential was, therefore, 0 infective stage larvae per person per season.
Conclusions/Significance
Based on these evaluations, transmission of onchocerciasis in the Escuintla-Guatemala focus has been successfully interrupted. Although this is the second onchocerciasis focus in Latin America to have demonstrated interruption of transmission, it is the first focus with a well-documented history of intense transmission to have eliminated O. volvulus.
Author Summary
Brought to the Americas from Africa by the slave trade, onchocerciasis is present in six countries in Latin America. The disease is caused by a round worm and is transmitted to humans by the bite of an infected black fly. Once in a human, the adult worms produce larvae that circulate through the body, causing itching or even blindness. Ivermectin, a drug that kills the larvae, is delivered by public health authorities in countries where the disease is present. If the larvae are killed, then the disease cannot be transmitted to more people. People living in the Escuintla-Guatemala focus, a region in Guatemala where the disease was common, have been taking ivermectin for many years. The Ministry of Health of Guatemala believes that onchocerciasis is no longer being transmitted in the area. To prove that there is no more transmission of the disease, the authors examined the eyes of residents of the area to see if they could find any evidence of the worms. They also conducted analyses of blood in school children to see if they had ever been exposed to the worm, and they caught thousands of black flies and tested them to see if they were infected. These evaluations found no evidence of transmission of the disease in the Escuintla-Guatemala focus. As a result, local public health authorities can stop giving ivermectin and invest their human resources in other important diseases.
doi:10.1371/journal.pntd.0000404
PMCID: PMC2656640  PMID: 19333366
17.  Serological Responses and Biomarker Evaluation in Mice and Pigs Exposed to Tsetse Fly Bites 
Background
Tsetse flies are obligate blood-feeding insects that transmit African trypanosomes responsible for human sleeping sickness and nagana in livestock. The tsetse salivary proteome contains a highly immunogenic family of the endonuclease-like Tsal proteins. In this study, a recombinant version of Tsal1 (rTsal1) was evaluated in an indirect ELISA to quantify the contact with total Glossina morsitans morsitans saliva, and thus the tsetse fly bite exposure.
Methodology/Principal Findings
Mice and pigs were experimentally exposed to different G. m. morsitans exposure regimens, followed by a long-term follow-up of the specific antibody responses against total tsetse fly saliva and rTsal1. In mice, a single tsetse fly bite was sufficient to induce detectable IgG antibody responses with an estimated half-life of 36–40 days. Specific antibody responses could be detected for more than a year after initial exposure, and a single bite was sufficient to boost anti-saliva immunity. Also, plasmas collected from tsetse-exposed pigs displayed increased anti-rTsal1 and anti-saliva IgG levels that correlated with the exposure intensity. A strong correlation between the detection of anti-rTsal1 and anti-saliva responses was recorded. The ELISA test performance and intra-laboratory repeatability was adequate in the two tested animal models. Cross-reactivity of the mouse IgGs induced by exposure to different Glossina species (G. m. morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and other hematophagous insects (Stomoxys calcitrans and Tabanus yao) was evaluated.
Conclusion
This study illustrates the potential use of rTsal1 from G. m. morsitans as a sensitive biomarker of exposure to a broad range of Glossina species. We propose that the detection of anti-rTsal1 IgGs could be a promising serological indicator of tsetse fly presence that will be a valuable tool to monitor the impact of tsetse control efforts on the African continent.
Author Summary
Salivary proteins of hematophagous disease vectors represent potential biomarkers of exposure and could be used in serological assays that are complementary to entomological surveys. We illustrate that a recombinant version of the highly immunogenic Tsal1 protein of the savannah tsetse fly (Glossina morsitans morsitans) is a sensitive immunological probe to detect contact with tsetse flies. Experimental exposure of mice and pigs to different regimens of tsetse fly bites combined with serological testing revealed that rTsal1 is a sensitive indicator that can differentiate the various degrees of exposure of animals. Tsetse-induced antibodies persisted relatively long, and an efficient boosting of immunity was observed upon re-exposure. Recombinant Tsal1 is a promising candidate to detect contact with various tsetse species, which would enable screening of populations or herds for exposure to tsetse flies in various areas on the African continent. This exposure indicator could be a valuable tool to monitor the impact of vector control programs and to detect re-invasion of cleared areas by tsetse flies.
doi:10.1371/journal.pntd.0002911
PMCID: PMC4031185  PMID: 24853371
18.  Macrogenomic Evidence for the Origin of the Black Fly Simulium suzukii (Diptera: Simuliidae) on Okinawa Island, Japan 
PLoS ONE  2013;8(8):e70765.
To determine the geographic origin of the black fly Simulium suzukii on Okinawa Island, Japan, macrogenomic profiles derived from its polytene chromosomes were compared with those of mainland and other insular populations of S. suzukii and of the isomorphic Simulium tani species complex. The Okinawan population is a chromosomally unique cytoform, designated ‘D,’ which is essentially monomorphic and differs by about 27 fixed rearrangements from the chromosomal standard sequence for the subgenus Simulium and by two fixed differences from its nearest known relative, representing the type of S. suzukii, on the main islands of Japan. Chromosomal band sequences revealed two additional, sympatric cytoforms of S. suzukii, designated ‘A’ and ‘B,’ each with species status, in Korea, and a third cytoform, designated ‘C,’ on Hokkaido, Japan. A new cytoform, ‘K,’ of S. tani from Malaysia, representing the type of S. tani, is more closely related to cytoforms in Thailand, as are populations from Taiwan previously treated as S. suzukii but more closely aligned with S. tani and newly recognized as cytoform ‘L’ of the latter nominal species. Rooting of chromosomal band sequences by outgroup comparisons allowed directionality of chromosomal rearrangements to be established, enabling phylogenetic inference of cytoforms. Of 41 macrogenomic rearrangements discovered in the five new cytoforms, four provide evidence for a stepwise origin of the Okinawan population from populations characteristic of the main islands of Japan. The macrogenomic approach applied to black flies on Okinawa Island illustrates its potential utility in defining source areas for other species of flies including those that might pose medical and veterinary risks.
doi:10.1371/journal.pone.0070765
PMCID: PMC3739796  PMID: 23951001
19.  An insight into the sialome of blood feeding Nematocera 
Within the Diptera and outside the suborder Brachycera, the blood feeding habit occurred at least twice, producing the present day sand flies, and the Culicomorpha, including the mosquitoes (Culicidae), black flies (Simulidae), biting midges (Ceratopogonidae) and frog feeding flies (Corethrellidae). Alternatives to this scenario are also discussed. Successful blood feeding requires adaptations to antagonize the vertebrate's mechanisms of blood clotting, platelet aggregation, vasoconstriction, pain and itching, which are triggered by tissue destruction and immune reactions to insect products. Saliva of these insects provides a complex pharmacological armamentarium to block these vertebrate reactions. With the advent of transcriptomics, the sialomes (from the Greek word sialo=saliva) of at least two species of each of these families have been studied (except for the frog feeders), allowing an insight into the diverse pathways leading to today's salivary composition within the Culicomorpha, having the sand flies as an outgroup. This review catalogs 1,288 salivary proteins in 10 generic classes comprising over 150 different protein families, most of which we have no functional knowledge. These proteins and many sequence comparisons are displayed in a hyperlinked spreadsheet that hopefully will stimulate and facilitate the task of functional characterization of these proteins, and their possible use as novel pharmacological agents and epidemiological markers of insect vector exposure.
doi:10.1016/j.ibmb.2010.08.002
PMCID: PMC2950210  PMID: 20728537
20.  The impact of Merowe Dam on Simulium hamedense vector of onchocerciasis in Abu Hamed focus - Northern Sudan 
Parasites & Vectors  2014;7:168.
Background
Abu Hamed, the northernmost onchocerciasis focus in the world, is located along the River Nile banks in the Nubian Desert. Hydroelectric dams can alter activity of black flies and may provide breeding sites for black fly. Merowe Dam, the largest hydropower project in Africa, was built west of Abu Hamed focus in 2009. The impact of the Dam on onchocerciasis and its black fly vectors in Abu Hamed focus was measured in this study.
Findings
Entomological surveys for aquatic stages and adult Simulium hamedense were conducted before and after the inception of Merowe Dam in 2007/2008 and 2010/2011. There was no black fly breeding or adult activity in the previously known breeding sites upstream of the Merowe Dam with the western most breeding site found in AlSarsaf village near the center of the focus. No adult or aquatic stages of black flies were found downstream of the Dam.
Conclusions
The artificial lake of the Dam flooded all the breeding sites in the western region of the focus and no aquatic stages and/or adult black fly activity were established in the study area upstream of the Dam. The Dam seems to have positive impact on onchocerciasis and its black fly vectors in Abu Hamed focus. These outcomes of the Merowe Dam might have contributed to the recently declared interruption of onchocerciasis transmission in Abu Hamed focus. Continuous entomological surveys are needed to monitor presence of black fly vectors and its impact on the disease.
doi:10.1186/1756-3305-7-168
PMCID: PMC3976634  PMID: 24708741
Onchocerciasis; Elimination; Merowe Dam; Abu Hamed focus; Simulium hamedense; Sudan
21.  Ecdysteroids and oocyte development in the black fly Simulium vittatum 
Background
Oocyte development was studied in the autogenous black fly, Simulium vittatum (Diptera, Nematocera), a vector of Onchocerca volvulus, the causative agent of onchocerciasis.
Results
Oocyte growth was nearly linear between adult eclosion and was complete by 72 hours at 21°C. The oocyte became opaque at 14 hours after eclosion indicating the initiation of protein yolk deposition. The accumulation of vitellogenin was measured using SDS-PAGE. The density of the yolk protein bands at about 200 and 65 kDa increased during the first and second days after eclosion. The amount of protein in the 200 kDa band of vitellogenin, determined using densitometry, rapidly increased between 12 and 25 hours after eclosion. Ecdysteroid levels were measured using a competitive ELISA. Ecdysteroid levels increased rapidly and subsequently declined during the first day after eclosion.
Conclusion
These data show a correlation between the appearance of vitellogenin in the oocyte, and the rise in ecdysteroids. A possible relationship to molting of the nematode, Onchocerca volvulus, is discussed.
doi:10.1186/1471-213X-2-6
PMCID: PMC111195  PMID: 12015816
22.  An insight into the transcriptome and proteome of the salivary gland of the stable fly, Stomoxys calcitrans 
Adult stable flies are blood feeders, a nuisance, and mechanical vectors of veterinary diseases. To enable efficient feeding, blood sucking insects have evolved a sophisticated array of salivary compounds to disarm their host's hemostasis and inflammatory reaction. While the sialomes of several blood sucking Nematocera flies have been described, no thorough description has been made so far of any Brachycera, except for a detailed proteome analysis of a tabanid (Xu et al., 2008). In this work we provide an insight into the sialome of the muscid Stomoxys calcitrans, revealing a complex mixture of serine proteases, endonucleases, Kazal-containing peptides, anti-thrombins, antigen-5 related proteins, antimicrobial peptides, and the usual finding of mysterious secreted peptides that have no known partners, and may reflect the very fast evolution of salivary proteins due to the vertebrate host immune pressure. Supplemental tables S1 and S2 can be downloaded from http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T1/Sc-tb1-web.xls and http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T2/Sc-tb2-web.xls.
doi:10.1016/j.ibmb.2009.06.004
PMCID: PMC2737351  PMID: 19576987
Salivary glands; stable fly; hematophagy; sialome; cDNA library; proteome
23.  Analysis of the Salivary Gland Transcriptome of Frankliniella occidentalis 
PLoS ONE  2014;9(4):e94447.
Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.
doi:10.1371/journal.pone.0094447
PMCID: PMC3988053  PMID: 24736614
24.  The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae) 
Triatoma brasiliensis is the most important autochthon vector of Trypanosoma cruzi in Brazil, where it is widely distributed in the semiarid areas of the Northeast. In order to advance the knowledge of the salivary biomolecules of Triatominae, a salivary gland cDNA library of T. brasiliensis was mass sequenced and analyzed. Polypeptides were sequenced by HPLC/Edman degradation experiments. 1,712 cDNA sequences were obtained and grouped in 786 clusters. The housekeeping category had 24.4% and 17.8% of the clusters and sequences, respectively. The putatively secreted category contained 47.1% of the clusters and 68.2% of the sequences. Finally, 28.5% of the clusters, containing 14% of all sequences, were classified as unknown. The sialoma of T. brasiliensis showed a high amount and great variety of different lipocalins (93.8% of secreted proteins). Remarkably, a great number of serine proteases that were not observed in previous blood-sucking sialotranscriptomes were found. Nine Kazal peptides were identified, among them one with high homology to the tabanid vasodilator vasotab, suggesting that the Triatoma vasodilator could be a Kazal protein.
doi:10.1016/j.ibmb.2007.04.004
PMCID: PMC1896098  PMID: 17550826
Saliva; Transcriptome; Hematophagy; Salivary proteins; Triatoma brasiliensis
25.  Cardiocladius oliffi (Diptera: Chironomidae) as a potential biological control agent against Simulium squamosum (Diptera: Simuliidae) 
Parasites & Vectors  2009;2:20.
Background
The control of onchocerciasis in the African region is currently based mainly on the mass drug administration of ivermectin. Whilst this has been found to limit morbidity, it does not stop transmission. In the absence of a macrofilaricide, there is a need for an integrated approach for disease management, which includes vector control. Vector control using chemical insecticides is expensive to apply, and therefore the use of other measures such as biological control agents is needed. Immature stages of Simulium squamosum, reared in the laboratory from egg masses collected from the field at Boti Falls and Huhunya (River Pawnpawn) in Ghana, were observed to be attacked and fed upon by larvae of the chironomid Cardiocladius oliffi Freeman, 1956 (Diptera: Chironomidae).
Methods
Cardiocladius oliffi was successfully reared in the rearing system developed for S. damnosum s.l. and evaluated for its importance as a biological control agent in the laboratory.
Results
Even at a ratio of one C. oliffi to five S. squamosum, they caused a significant decrease in the number of adult S. squamosum emerging from the systems (treatments). Predation was confirmed by the amplification of Simulium DNA from C. oliffi observed to have fed on S. squamosum pupae. The study also established that the chironomid flies could successfully complete their development on a fish food diet only.
Conclusion
Cardiocladius oliffi has been demonstrated as potential biological control agent against S. squamosum.
doi:10.1186/1756-3305-2-20
PMCID: PMC2683824  PMID: 19393069

Results 1-25 (574237)