PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1004857)

Clipboard (0)
None

Related Articles

1.  PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis 
PLoS Biology  2005;3(4):e101.
The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was targeted in mice. PGC-1α null (PGC-1α−/−) mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1α−/− mice. With age, the PGC-1α−/− mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1α−/− mice, leading to reduced muscle performance and exercise capacity. PGC-1α−/− mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1α−/− mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1α−/− mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1α−/− mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1α−/− mice. These results demonstrate that PGC-1α is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.
Eliminating the activity of the gene PGC-1 α in mice reveals its role in post-natal metabolism and provides a link to obesity and some intriguing differences with another report of this knockout
doi:10.1371/journal.pbio.0030101
PMCID: PMC1064854  PMID: 15760270
2.  PGC1α promotes tumor growth by inducing gene expression programs supporting lipogenesis 
Cancer Research  2011;71(21):6888-6898.
Despite the role of aerobic glycolysis in cancer, recent studies highlight the importance of the mitochondria and biosynthetic pathways as well. PPARγ coactivator 1α (PGC1α) is a key transcriptional regulator of several metabolic pathways including oxidative metabolism and lipogenesis. Initial studies suggested that PGC1α expression is reduced in tumors compared to adjacent normal tissue. Paradoxically, other studies show that PGC1α is associated with cancer cell proliferation. Therefore the role of PGC1α in cancer and especially carcinogenesis is unclear. Using Pgc1α-/- and Pgc1α+/+ mice we show that loss of PGC1α protects mice from azoxymethane induced colon carcinogenesis. Similarly, diethylnitrosamine induced liver carcinogenesis is reduced in Pgc1α-/- mice compared to Pgc1α+/+ mice. Xenograft studies using gain and loss of PGC1α expression demonstrated that PGC1α also promotes tumor growth. Interestingly, while PGC1α induced oxidative phosphorylation and TCA cycle gene expression, we also observed an increase in the expression of two genes required for de novo fatty acid synthesis, ACC and FASN. In addition, SLC25A1 and ACLY, which are required for the conversion of glucose in to acetyl CoA for fatty acid synthesis, were also increased by PGC1α, thus linking the oxidative and lipogenic functions of PGC1α. Indeed, using 13C stable isotope tracer analysis we show that PGC1α increased de novo lipogenesis. Importantly, inhibition of fatty acid synthesis blunted these progrowth effects of PGC1α. In conclusion, these studies show for the first time that loss of PGC1α protects against carcinogenesis and that PGC1α coordinately regulates mitochondrial and fatty acid metabolism to promote tumor growth.
doi:10.1158/0008-5472.CAN-11-1011
PMCID: PMC3282487  PMID: 21914785
Cancer metabolism; Warburg Effect; oxidative metabolism; lipogenesis; transcriptional regulation
3.  Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis 
PLoS ONE  2010;5(7):e11707.
Background
Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.
Results
Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes.
Conclusion
Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease.
doi:10.1371/journal.pone.0011707
PMCID: PMC2908542  PMID: 20661474
4.  Endoplasmic Reticulum Stress Links Hepatitis C Virus RNA Replication to Wild-Type PGC-1α/Liver-Specific PGC-1α Upregulation 
Journal of Virology  2014;88(15):8361-8374.
ABSTRACT
Hepatitis C virus (HCV) causes not only severe liver problems but also extrahepatic manifestations, such as insulin resistance (IR). Wild-type peroxisome proliferator-activated receptor gamma coactivator 1 alpha (WT-PGC-1α) is essential in hepatic gluconeogenesis and has recently been demonstrated to link HCV infection to hepatic insulin resistance (IR). A recent study has characterized a novel human liver-specific PGC-1α (L-PGC-1α) transcript, which is proposed to reflect human adaption to more complex pathways. However, the effect of HCV infection on L-PGC-1α expression and the mechanism by which HCV modulates WT-PGC-1α/L-PGC-1α remain unclear. In this study, we showed that HCV infection upregulated both WT-PGC-1α and L-PGC-1α, which further promoted HCV production. The upregulation of both PGC-1α isoforms depended on HCV RNA replication. By using promoter-luciferase reporters, kinase inhibitors, and dominant negative mutants, we further observed that the HCV-induced upregulation of WT-PGC-1α was mediated by the phosphorylation of cyclic AMP (cAMP)-responsive element-binding protein (CREB), whereas that of L-PGC-1α was mediated by CREB phosphorylation and forkhead box O1 dephosphorylation. Moreover, HCV infection induced endoplasmic reticulum (ER) stress, and pharmacological induction of ER stress upregulated WT-PGC-1α/L-PGC-1α and phosphorylated CREB. In contrast, pharmacological inhibition of HCV-induced ER stress impaired WT-PGC-1α/L-PGC-1α upregulation along with decreased phosphorylated CREB. The correlation of hepatic mPGC-1α with ER stress was further confirmed in mice. Overall, HCV infection upregulates both WT-PGC-1α and L-PGC-1α through an ER stress-mediated, phosphorylated CREB-dependent pathway, and both PGC-1α isoforms promote HCV production in turn.
IMPORTANCE HCV causes not only severe liver problems but also extrahepatic manifestations, such as insulin resistance (IR). As a key regulator in energy metabolism, wild-type PGC-1α (WT-PGC-1α), has recently been demonstrated to link HCV infection to hepatic IR. A recent study has characterized a novel human liver-specific PGC-1α (L-PGC-1α), which reflects human adaption to more complex pathways. However, the effect of HCV infection on L-PGC-1α expression and the mechanism by which HCV regulates WT-PGC-1α/L-PGC-1α remain unclear. In this study, we showed that HCV infection upregulated both WT-PGC-1α and L-PGC-1α, which further promoted HCV production. WT-PGC-1α upregulation was mediated by CREB phosphorylation, whereas L-PGC-1α upregulation was mediated by CREB phosphorylation and FoxO1 dephosphorylation. HCV-induced ER stress mediated WT-PGC-1α/L-PGC-1α upregulation and CREB phosphorylation. Overall, this study provides new insights into the mechanism by which HCV upregulates WT-PGC-1α/L-PGC-1α and highlights the novel intervention of HCV-ER stress-PGC-1α signaling for HCV therapy and HCV-induced IR therapy.
doi:10.1128/JVI.01202-14
PMCID: PMC4135942  PMID: 24829353
5.  PGC-1 Coactivator Activity Is Required for Murine Erythropoiesis 
Molecular and Cellular Biology  2014;34(11):1956-1965.
Peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) and PGC-1β have been shown to be intimately involved in the transcriptional regulation of cellular energy metabolism as well as other biological processes, but both coactivator proteins are expressed in many other tissues and organs in which their function is, in essence, unexplored. Here, we found that both PGC-1 proteins are abundantly expressed in maturing erythroid cells. PGC-1α and PGC-1β compound null mutant (Pgc-1c) animals express less β-like globin mRNAs throughout development; consequently, neonatal Pgc-1c mice exhibit growth retardation and profound anemia. Flow cytometry shows that the number of mature erythrocytes is markedly reduced in neonatal Pgc-1c pups, indicating that erythropoiesis is severely compromised. Furthermore, hematoxylin and eosin staining revealed necrotic cell death and cell loss in Pgc-1c livers and spleen. Chromatin immunoprecipitation studies revealed that both PGC-1α and -1β, as well as two nuclear receptors, TR2 and TR4, coordinately bind to the various globin gene promoters. In addition, PGC-1α and -1β can interact with TR4 to potentiate transcriptional activation. These data provide new insights into our understanding of globin gene regulation and raise the interesting possibility that the PGC-1 coactivators can interact with TR4 to elicit differential stage-specific effects on globin gene transcription.
doi:10.1128/MCB.00247-14
PMCID: PMC4019057  PMID: 24662048
6.  Post-natal induction of PGC-1α protects against severe muscle dystrophy independently of utrophin 
Skeletal Muscle  2014;4:2.
Background
Duchenne muscle dystrophy (DMD) afflicts 1 million boys in the US and has few effective treatments. Constitutive transgenic expression of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α improves skeletal muscle function in the murine “mdx” model of DMD, but how this occurs, or whether it can occur post-natally, is not known. The leading mechanistic hypotheses for the benefits conferred by PGC-1α include the induction of utrophin, a dystrophin homolog, and/or induction and stabilization of the neuromuscular junction.
Methods
The effects of transgenic overexpression of PGC-1β, a homolog of PGC-1α in mdx mice was examined using different assays of skeletal muscle structure and function. To formally test the hypothesis that PGC-1α confers benefit in mdx mice by induction of utrophin and stabilization of neuromuscular junction, PGC-1α transgenic animals were crossed with the dystrophin utrophin double knock out (mdx/utrn-/-) mice, a more severe dystrophic model. Finally, we also examined the effect of post-natal induction of skeletal muscle-specific PGC-1α overexpression on muscle structure and function in mdx mice.
Results
We show here that PGC-1β does not induce utrophin or other neuromuscular genes when transgenically expressed in mouse skeletal muscle. Surprisingly, however, PGC-1β transgenesis protects as efficaciously as PGC-1α against muscle degeneration in dystrophin-deficient (mdx) mice, suggesting that alternate mechanisms of protection exist. When PGC-1α is overexpressed in mdx/utrn-/- mice, we find that PGC-1α dramatically ameliorates muscle damage even in the absence of utrophin. Finally, we also used inducible skeletal muscle-specific PGC-1α overexpression to show that PGC-1α can protect against dystrophy even if activated post-natally, a more plausible therapeutic option.
Conclusions
These data demonstrate that PGC-1α can improve muscle dystrophy post-natally, highlighting its therapeutic potential. The data also show that PGC-1α is equally protective in the more severely affected mdx/utrn-/- mice, which more closely recapitulates the aggressive progression of muscle damage seen in DMD patients. The data also identify PGC-1β as a novel potential target, equally efficacious in protecting against muscle dystrophy. Finally, the data also show that PGC-1α and PGC-1β protect against dystrophy independently of utrophin or of induction of the neuromuscular junction, indicating the existence of other mechanisms.
doi:10.1186/2044-5040-4-2
PMCID: PMC3914847  PMID: 24447845
PGC-1α; PGC-1β; mdx; Duchenne Muscle Dystrophy; Utrophin; Neuromuscular junction
7.  Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance 
PLoS Biology  2006;4(11):e369.
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.
The authors conduct an in-depth analysis of a PGC-1β knockout mouse; these animals posses specific defects in basal mitochondrial function and adaptation to metabolic stress.
doi:10.1371/journal.pbio.0040369
PMCID: PMC1634886  PMID: 17090215
8.  Parvalbumin Deficiency and GABAergic Dysfunction in Mice Lacking PGC-1α 
The transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a master regulator of metabolism in peripheral tissues, and it has been proposed that PGC-1α plays a similar role in the brain. Recent evidence suggests that PGC-1α is concentrated in GABAergic interneurons, so we investigated whether male and female PGC-1α −/− mice exhibit abnormalities in interneuron gene expression and/or function. We found a striking reduction in the expression of the Ca2+ binding protein parvalbumin (PV), but not other GABAergic markers, throughout the cerebrum in PGC-1α +/− and −/− mice. Furthermore, PGC-1α overexpression in cell culture was sufficient to robustly induce PV expression. Consistent with a reduction in PV rather than a loss of PV-expressing interneurons, spontaneous synaptic inhibition was not altered in PGC-1α −/− mice. However, evoked synaptic responses displayed less paired pulse depression and dramatic facilitation in response to repetitive stimulation at the gamma frequency. PV transcript expression was also significantly reduced in retina and heart of PGC-1α −/− animals, suggesting that PGC-1α is required for proper expression of PV in multiple tissues. Together these findings indicate that PGC-1α is a novel regulator of interneuron gene expression and function and a potential therapeutic target for neurological disorders associated with PGC-1α dysregulation.
doi:10.1523/JNEUROSCI.0698-10.2010
PMCID: PMC2888101  PMID: 20505089
interneuron; early postnatal development; calcium; γ-aminobutyric acid; PPARGC1A
9.  Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis 
Journal of Clinical Investigation  2000;106(7):847-856.
Cardiac mitochondrial function is altered in a variety of inherited and acquired cardiovascular diseases. Recent studies have identified the transcriptional coactivator peroxisome proliferator–activated receptor γ coactivator-1 (PGC-1) as a regulator of mitochondrial function in tissues specialized for thermogenesis, such as brown adipose. We sought to determine whether PGC-1 controlled mitochondrial biogenesis and energy-producing capacity in the heart, a tissue specialized for high-capacity ATP production. We found that PGC-1 gene expression is induced in the mouse heart after birth and in response to short-term fasting, conditions known to increase cardiac mitochondrial energy production. Forced expression of PGC-1 in cardiac myocytes in culture induced the expression of nuclear and mitochondrial genes involved in multiple mitochondrial energy-transduction/energy-production pathways, increased cellular mitochondrial number, and stimulated coupled respiration. Cardiac-specific overexpression of PGC-1 in transgenic mice resulted in uncontrolled mitochondrial proliferation in cardiac myocytes leading to loss of sarcomeric structure and a dilated cardiomyopathy. These results identify PGC-1 as a critical regulatory molecule in the control of cardiac mitochondrial number and function in response to energy demands.
PMCID: PMC517815  PMID: 11018072
10.  A Critical Function of Mad2l2 in Primordial Germ Cell Development of Mice 
PLoS Genetics  2013;9(8):e1003712.
The development of primordial germ cells (PGCs) involves several waves of epigenetic reprogramming. A major step is following specification and involves the transition from the stably suppressive histone modification H3K9me2 to the more flexible, still repressive H3K27me3, while PGCs are arrested in G2 phase of their cycle. The significance and underlying molecular mechanism of this transition were so far unknown. Here, we generated mutant mice for the Mad2l2 (Mad2B, Rev7) gene product, and found that they are infertile in both males and females. We demonstrated that Mad2l2 is essential for PGC, but not somatic development. PGCs were specified normally in Mad2l2−/− embryos, but became eliminated by apoptosis during the subsequent phase of epigenetic reprogramming. A majority of knockout PGCs failed to arrest in the G2 phase, and did not switch from a H3K9me2 to a H3K27me3 configuration. By the analysis of transfected fibroblasts we found that the interaction of Mad2l2 with the histone methyltransferases G9a and GLP lead to a downregulation of H3K9me2. The inhibitory binding of Mad2l2 to Cyclin dependent kinase 1 (Cdk1) could arrest the cell cycle in the G2 phase, and also allowed another histone methyltransferase, Ezh2, to upregulate H3K27me3. Together, these results demonstrate the potential of Mad2l2 in the regulation of both cell cycle and the epigenetic status. The function of Mad2l2 is essential in PGCs, and thus of high relevance for fertility.
Author Summary
Primordial germ cells (PGCs) are the origin of sperm and oocytes, and are responsible for transferring genetic information to the next generation faithfully. PGCs are first specified from pluripotent epiblast cells early in embryonic development. Second, they reprogram their epigenetic signature by changing histone modifications. This developmental event is specific to germ cells but not somatic cells. Although many players in the specification of PGCs are identified, only little is known about the genes essential for the regulation of the second phase. Here, we report that the Mad2l2 gene product plays an important role in the epigenetic reprogramming of PGCs. In wild type PGCs the cell cycle is arrested, and the methylation of histone 3 on residue K9 is replaced by methylation on K27. Our findings indicate that Mad2l2 is involved in this coordination of cell cycle and epigenetic reprogramming. The elucidation of this mechanism would help to identify the genetic basis of infertility.
doi:10.1371/journal.pgen.1003712
PMCID: PMC3757036  PMID: 24009519
11.  Transcriptional Control of Cardiac Fuel Metabolism and Mitochondrial Function 
As a persistent pump, the mammalian heart demands a high-capacity mitochondrial system. Significant progress has been made in delineating the gene regulatory networks that control mitochondrial biogenesis and function in striated muscle. The PPARγ coactivator-1 (PGC-1) coactivators serve as inducible boosters of downstream transcription factors that control the expression of genes involved in mitochondrial energy transduction, ATP synthesis, and biogenesis. PGC-1 gain-of-function and loss-of-function studies targeting two PGC-1 family members, PGC-1α and PGC-1β, have provided solid evidence that these factors are both necessary and sufficient for perinatal mitochondrial biogenesis and maintenance of high-capacity mitochondrial function in postnatal heart. In humans, during the development of heart failure owing to hypertension or obesity-related diabetes, the activity of the PGC-1 coactivators, and several downstream target transcription factors, is altered. Gene targeting studies in mice have demonstrated that loss of PGC-1α and PGC-1β in heart leads to heart failure. Interestingly, the pattern of dysregulation within the PGC-1 transcriptional regulatory circuit distinguishes the heart disease caused by hypertension from that caused by diabetes. This transcriptional regulatory cascade and downstream metabolic pathways should be considered as targets for novel etiology-specific therapeutics aimed at the early stages of heart failure.
doi:10.1101/sqb.2011.76.011965
PMCID: PMC3340448  PMID: 22096028
12.  ApoE−/− PGC-1α−/− Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis 
PLoS ONE  2010;5(10):e13539.
Background
Atherosclerosis is a chronic inflammatory disease that evolves from the interaction of activated endothelial cells, macrophages, lymphocytes and modified lipoproteins (LDLs). In the last years many molecules with crucial metabolic functions have been shown to prevent important steps in the progression of atherogenesis, including peroxisome proliferator activated receptors (PPARs) and the class III histone deacetylase (HDAC) SIRT1. The PPARγ coactivator 1 alpha (Ppargc1a or PGC-1α) was identified as an important transcriptional cofactor of PPARγ and is activated by SIRT1. The aim of this study was to analyze total PGC-1α deficiency in an atherosclerotic mouse model.
Methodology/Principal Findings
To investigate if total PGC-1α deficiency affects atherosclerosis, we compared ApoE−/− PGC-1α−/− and ApoE−/− PGC-1α+/+ mice kept on a high cholesterol diet. Despite having more macrophages and a higher ICAM-1 expression in plaques, ApoE−/− PGC-1α−/− did not display more or larger atherosclerotic plaques than their ApoE−/− PGC-1α+/+ littermates. In line with the previously published phenotype of PGC-1α−/− mice, ApoE−/− PGC-1α−/− mice had marked reduced body, liver and epididymal white adipose tissue (WAT) weight. VLDL/LDL-cholesterol and triglyceride contents were also reduced. Aortic expression of PPARα and PPARγ, two crucial regulators for adipocyte differentitation and glucose and lipid metabolism, as well as the expression of some PPAR target genes was significantly reduced in ApoE−/− PGC-1α−/− mice. Importantly, the epididymal WAT and aortic expression of IL-18 and IL-18 plasma levels, a pro-atherosclerotic cytokine, was markedly reduced in ApoE−/− PGC-1α−/− mice.
Conclusions/Significance
ApoE−/− PGC-1α−/− mice, similar as PGC-1α−/− mice exhibit markedly reduced total body and visceral fat weight. Since inflammation of visceral fat is a crucial trigger of atherogenesis, decreased visceral fat in PGC-1α-deficient mice may explain why these mice do not develop enhanced atherosclerosis.
doi:10.1371/journal.pone.0013539
PMCID: PMC2962638  PMID: 21042583
13.  Dynamic Partnership between TFIIH, PGC-1α and SIRT1 Is Impaired in Trichothiodystrophy 
PLoS Genetics  2014;10(10):e1004732.
The expression of protein-coding genes requires the selective role of many transcription factors, whose coordinated actions remain poorly understood. To further grasp the molecular mechanisms that govern transcription, we focused our attention on the general transcription factor TFIIH, which gives rise, once mutated, to Trichothiodystrophy (TTD), a rare autosomal premature-ageing disease causing inter alia, metabolic dysfunctions. Since this syndrome could be connected to transcriptional defects, we investigated the ability of a TTD mouse model to cope with food deprivation, knowing that energy homeostasis during fasting involves an accurate regulation of the gluconeogenic genes in the liver. Abnormal amounts of gluconeogenic enzymes were thus observed in TTD hepatic parenchyma, which was related to the dysregulation of the corresponding genes. Strikingly, such gene expression defects resulted from the inability of PGC1-α to fulfill its role of coactivator. Indeed, extensive molecular analyses unveiled that wild-type TFIIH cooperated in an ATP-dependent manner with PGC1-α as well as with the deacetylase SIRT1, thereby contributing to the PGC1-α deacetylation by SIRT1. Such dynamic partnership was, however, impaired when TFIIH was mutated, having as a consequence the disruption of PGC1-α recruitment to the promoter of target genes. Therefore, besides a better understanding of the etiology of TFIIH-related disease, our results shed light on the synergistic relationship that exist between different types of transcription factors, which is necessary to properly regulate the expression of protein coding genes.
Author Summary
In eukaryotes, the expression of genes encoding proteins requires the action of hundreds of factors, together with the RNA polymerase II. While these factors are timely and selectively required for the expression of a given gene, little is known about their partnership upon gene expression. Our results reveal a cooperation between different types of transcription factors, namely the general transcription factor TFIIH, the cofactor PGC-1α and the deacetylase SIRT1. Such partnership is however impaired when TFIIH is mutated, as observed in Trichothiodystrophy patients that develop premature ageing. These results thus shed light on the coordinated action of factors during transcription and allow us to better understand molecular deficiencies observed in many human diseases.
doi:10.1371/journal.pgen.1004732
PMCID: PMC4207666  PMID: 25340339
14.  PGC1β Mediates PPARγ Activation of Osteoclastogenesis and Rosiglitazone-Induced Bone Loss 
Cell metabolism  2010;11(6):503-516.
SUMMARY
Long-term usage of rosiglitazone, a synthetic PPARγ agonist, increases fracture rates among diabetic patients. PPARγ suppresses osteoblastogenesis while activating osteoclastogenesis, suggesting that rosiglitazone decreases bone formation while sustaining or increasing bone resorption. Using mouse models with genetically altered PPARγ, PGC1β or ERRα, here we show that PGC1β is required for the resorption-enhancing effects of rosiglitazone. PPARγ activation indirectly induces PGC1β expression by down-regulating β-catenin and derepressing c-jun. PGC1β in turn functions as a PPARγ coactivator to stimulate osteoclast differentiation. Complementarily, PPARγ also induces ERRα expression, which coordinates with PGC1β to enhance mitochondrial biogenesis and osteoclast function. ERRα knockout mice exhibit osteoclast defects, revealing ERRα as an important regulator of osteoclastogenesis. Strikingly, PGC1β deletion in osteoclasts confers complete resistance to rosiglitazone-induced bone loss. These findings identify PGC1β as an essential mediator for the PPARγ stimulation of osteoclastogenesis by targeting both PPARγ itself and ERRα, thus activating two distinct transcriptional programs.
doi:10.1016/j.cmet.2010.04.015
PMCID: PMC3521515  PMID: 20519122
15.  Truncated Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α Splice Variant Is Severely Altered in Huntington's Disease 
Neuro-Degenerative Diseases  2011;8(6):496-503.
Background
Reduced peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) gene expression has been observed in striatal cell lines, transgenic mouse models of Huntington's disease (HD), and brain tissue from HD patients. As this protein is a key transcription regulator of the expression of many mitochondrial proteins, these observations strongly support the role of aberrant mitochondrial function in the pathogenesis of HD. The PGC1α protein undergoes posttranslational modifications that affect its transcriptional activity. The N-truncated splice variant of PGC1α (NT-PGC1α) is produced in tissues, but the role of truncated splice variants of PGC1α in HD and in the regulation of mitochondrial gene expression has not been elucidated.
Objective
To examine the expression and modulation of expression of NT-PGC1α levels in HD.
Methods and Results
We found that the NT-PGC1α protein, a splice variant of ∼38 kDa, but not full-length PGC1α is severely and consistently altered in human HD brain, human HD myoblasts, mouse HD models, and HD striatal cells. NT-PGC1α levels were significantly upregulated in HD cells and mouse brown fat by physiologically relevant stimuli that are known to upregulate PGC1α gene expression. This resulted in an increase in mitochondrial gene expression and cytochrome c content.
Conclusion
Our data suggest that NT-PGC1α is an important component of the PGC1α transcriptional network, which plays a significant role in the pathogenesis of HD.
Copyright © 2011 S. Karger AG, Basel
doi:10.1159/000327910
PMCID: PMC3186722  PMID: 21757867
Neurodegeneration; PGC1α; Mitochondrial gene expression; Alternative splicing; Huntington's disease; Striatal neurons
16.  Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia 
Cardiovascular Research  2011;92(1):29-38.
Aims
Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β−/− hearts potentially associated with increased arrhythmic risk in metabolic diseases.
Methods and results
Microarray analysis in mouse PGC1β−/− hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β−/− mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β−/− hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β−/− ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca2+ transients, whose amplitude and frequency were increased by isoprenaline, and Ca2+ currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K+ currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A, KCNA5, RYR2, and Ca2+-calmodulin dependent protein kinase II expression.
Conclusion
PGC1β−/− hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca2+ homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.
doi:10.1093/cvr/cvr155
PMCID: PMC3172981  PMID: 21632884
Mitochondria; Cardiac arrhythmia; Peroxisome proliferator-activated receptor-γ coactivator 1β; Metabolic disease; Lysophosphatidylcholine
17.  Impaired PGC-1α function in muscle in Huntington's disease 
Human Molecular Genetics  2009;18(16):3048-3065.
We investigated the role of PPAR γ coactivator 1α (PGC-1α) in muscle dysfunction in Huntington's disease (HD). We observed reduced PGC-1α and target genes expression in muscle of HD transgenic mice. We produced chronic energy deprivation in HD mice by administering the catabolic stressor β-guanidinopropionic acid (GPA), a creatine analogue that reduces ATP levels, activates AMP-activated protein kinase (AMPK), which in turn activates PGC-1α. Treatment with GPA resulted in increased expression of AMPK, PGC-1α target genes, genes for oxidative phosphorylation, electron transport chain and mitochondrial biogenesis, increased oxidative muscle fibers, numbers of mitochondria and motor performance in wild-type, but not in HD mice. In muscle biopsies from HD patients, there was decreased PGC-1α, PGC-1β and oxidative fibers. Oxygen consumption, PGC-1α, NRF1 and response to GPA were significantly reduced in myoblasts from HD patients. Knockdown of mutant huntingtin resulted in increased PGC-1α expression in HD myoblast. Lastly, adenoviral-mediated delivery of PGC-1α resulted increased expression of PGC-1α and markers for oxidative muscle fibers and reversal of blunted response for GPA in HD mice. These findings show that impaired function of PGC-1α plays a critical role in muscle dysfunction in HD, and that treatment with agents to enhance PGC-1α function could exert therapeutic benefits. Furthermore, muscle may provide a readily accessible tissue in which to monitor therapeutic interventions.
doi:10.1093/hmg/ddp243
PMCID: PMC2733807  PMID: 19460884
18.  PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle 
PLoS ONE  2014;9(3):e91006.
Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.
doi:10.1371/journal.pone.0091006
PMCID: PMC3956461  PMID: 24638054
19.  A Cardiac-Specific Robotized Cellular Assay Identified Families of Human Ligands as Inducers of PGC-1α Expression and Mitochondrial Biogenesis 
PLoS ONE  2012;7(10):e46753.
Background
Mitochondrial function is dramatically altered in heart failure (HF). This is associated with a decrease in the expression of the transcriptional coactivator PGC-1α, which plays a key role in the coordination of energy metabolism. Identification of compounds able to activate PGC-1α transcription could be of future therapeutic significance.
Methodology/Principal Findings
We thus developed a robotized cellular assay to screen molecules in order to identify new activators of PGC-1α in a cardiac-like cell line. This screening assay was based on both the assessment of activity and gene expression of a secreted luciferase under the control of the human PGC-1α promoter, stably expressed in H9c2 cells. We screened part of a library of human endogenous ligands and steroid hormones, B vitamins and fatty acids were identified as activators of PGC-1α expression. The most responsive compounds of these families were then tested for PGC-1α gene expression in adult rat cardiomyocytes. These data highly confirmed the primary screening, and the increase in PGC-1α mRNA correlated with an increase in several downstream markers of mitochondrial biogenesis. Moreover, respiration rates of H9c2 cells treated with these compounds were increased evidencing their effectiveness on mitochondrial biogenesis.
Conclusions/Significance
Using our cellular reporter assay we could identify three original families, able to activate mitochondrial biogenesis both in cell line and adult cardiomyocytes. This first screening can be extended to chemical libraries in order to increase our knowledge on PGC-1α regulation in the heart and to identify potential therapeutic compounds able to improve mitochondrial function in HF.
doi:10.1371/journal.pone.0046753
PMCID: PMC3463514  PMID: 23056435
20.  Transcriptional Activity of PGC-1α and NT-PGC-1α Is Differentially Regulated by Twist-1 in Brown Fat Metabolism 
PPAR Research  2012;2012:320454.
Brown fat expresses two PGC-1α isoforms (PGC-1α and NT-PGC-1α) and both play a central role in the regulation of cellular energy metabolism and adaptive thermogenesis by interacting with a wide range of transcription factors including PPARγ, PPARα, ERRα, and NRF1. PGC-1α consists of 797 amino acids, whereas alternative splicing of the PGC-1α gene produces a shorter protein called NT-PGC-1α (aa 1–270). We report in this paper that transcriptional activity of PGC-1α and NT-PGC-1α is differently affected by the transcriptional regulator, Twist-1. Twist-1 suppresses PGC-1α but not NT-PGC-1α. The inhibition of PGC-1α activity by Twist-1 is mediated by direct interaction through the C-terminal region of PGC-1α (aa 353–797). Thus, the absence of the corresponding C-terminal domain in NT-PGC-1α allows NT-PGC-1α to be free from Twist-1-mediated inhibition. Overexpression of Twist-1 in brown adipocytes suppresses transcription of a subset of PGC-1α-target genes involved in mitochondrial fatty acid oxidation and uncoupling (CPT1β, UCP1, and ERRα). In contrast, NT-PGC-1α-mediated induction of these genes is unaffected by Twist-1. These findings show that differences in inhibitory protein-protein interactions of PGC-1α and NT-PGC-1α with Twist-1 lead to differential regulation of their function by Twist-1.
doi:10.1155/2012/320454
PMCID: PMC3474972  PMID: 23093952
21.  Telomere dysfunction induces metabolic and mitochondrial compromise 
Nature  2011;470(7334):359-365.
Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere–p53–PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.
doi:10.1038/nature09787
PMCID: PMC3741661  PMID: 21307849
22.  PGC-1α at the intersection of bioenergetics regulation and neuron function: From Huntington’s disease to Parkinson’s disease and beyond 
Progress in neurobiology  2011;97(2):142-151.
Neurons are specialized cells with unique features, including a constant high demand for energy. Mitochondria satisfy this constant demand, and are emerging as a central target for dysfunction in neurodegenerative disorders, such as Huntington’s disease (HD) and Parkinson’s disease. PPARγ co-activator-1α (PGC-1α) is a transcription co-activator for nuclear receptors such as the PPARs, and thereby coordinates a number of gene expression programs to promote mitochondrial biogenesis and oxidative phosphorylation. Studies of PGC-1α knock-out mice have yielded important insights into the role of PGC-1α in normal nervous system function and potentially neurological disease. HD is caused by a polyglutamine repeat expansion in the huntingtin protein, and decades of work have established mitochondrial dysfunction as a key feature of HD pathogenesis. However, after the discovery of the HD gene, numerous reports produced strong evidence for altered transcription in HD. In 2006, a series of studies revealed that PGC-1α transcription interference contributes to HD neurodegeneration, linking the nuclear transcriptionopathy with the mitochondrial dysfunction. Subsequent work has strengthened this view, and further extended the role of PGC-1α within the CNS. Within the last year, studies of Parkinson’s disease, another involuntary movement disorder long associated with mitochondrial dysfunction, have shown that PGC-1α dysregulation is contributing to its pathogenesis. As PGC-1α is likely also important for aging, a process with considerable relevance to neuron function, translational studies aimed at developing therapies based upon the PGC-1α pathway as a high priority target are underway.
doi:10.1016/j.pneurobio.2011.10.004
PMCID: PMC3506171  PMID: 22100502
23.  A Role for PGC-1 Coactivators in the Control of Mitochondrial Dynamics during Postnatal Cardiac Growth 
Circulation research  2013;114(4):626-636.
Rationale
Increasing evidence has shown that proper control of mitochondrial dynamics (fusion and fission) is required for high capacity ATP production in heart. The transcriptional coactivators, peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) α and β have been shown to regulate mitochondrial biogenesis in heart at the time of birth. The function of the PGC-1 coactivators in heart after birth is incompletely understood.
Objective
To assess the role of the PGC-1 coactivators during postnatal cardiac development and in the adult heart in mice.
Methods and Results
Conditional gene targeting was used in mice to explore the role of the PGC-1 coactivators during postnatal cardiac development and in adult heart. Marked mitochondrial structural derangements were observed in hearts of PGC-1α/β-deficient mice during postnatal growth, including fragmentation and elongation, associated with the development of a lethal cardiomyopathy. The expression of genes involved in mitochondrial fusion [mitofusin 1 (Mfn1), optic atrophy 1 (Opa1)] and fission [dynamin-related protein 1 (Drp1), fission protein 1 (Fis1)] was altered in hearts of PGC-1α/β-deficient mice. PGC-lα was shown to directly regulate Mfn1 gene transcription by coactivating the estrogen-related receptor α (ERRα) upon a conserved DNA element. Surprisingly, PGC-1α/β deficiency in the adult heart did not result in evidence of abnormal mitochondrial dynamics or heart failure. However, transcriptional profiling demonstrated that the PGC-1 coactivators are required for high level expression of nuclear- and mitochondrial-encoded genes involved in mitochondrial dynamics and energy transduction in adult heart.
Conclusion
These results reveal distinct developmental stage-specific programs involved in cardiac mitochondrial dynamics.
doi:10.1161/CIRCRESAHA.114.302562
PMCID: PMC4061768  PMID: 24366168
PGC-1 coactivators; mitochondrial fusion; cardiac energy metabolism; cardiomyopathy; mitofusin
24.  Reversible acetylation of PGC-1: Connecting energy sensors and effectors to guarantee metabolic flexibility 
Oncogene  2010;29(33):10.1038/onc.2010.206.
Organisms adapt their metabolism to meet ever changing environmental conditions. This metabolic adaptation involves at a cellular level the fine-tuning of mitochondrial function, which is mainly under the control of the transcriptional coactivator PGC-1α. Changes in PGC-1α activity coordinate a transcriptional response, that boosts mitochondrial activity in times of energy needs and attenuates it when energy demands are low. Reversible acetylation has emerged as a key way to alter PGC-1α activity. Although it is well-established that PGC-1α is deacetylated and activated by Sirt1 and acetylated and inhibited by GCN5, less is known about how these enzymes themselves are regulated. Recently, it became clear that the energy sensor, AMP-activated kinase (AMPK) translates the effects of energy stress into altered Sirt1 activity by regulating the intracellular level of its co-substrate NAD+. Conversely, the enzyme ATP citrate lyase (ACL), relates energy balance to GCN5, through the control of the nuclear production of acetyl-CoA, the substrate for GCN5’s acetyltransferase activity. We review here how these metabolic signalling pathways, affecting GCN5 and Sirt1 activity, allow the reversible acetylation/deacetylation of PGC-1α and the adaptation of mitochondrial energy homeostasis to energy levels.
doi:10.1038/onc.2010.206
PMCID: PMC3843141  PMID: 20531298
acetyl transferases; AMPK; ATP citrate lyase; deacetylases; GCN5; mitochondria; oxidative phosphorylation; PGC-1α; SIRT1
25.  Down-regulating peroxisome proliferator-activated receptor-gamma coactivator-1beta alleviates the proinflammatory effect of rheumatoid arthritis fibroblast-like synoviocytes through inhibiting extracellular signal-regulated kinase, p38 and nuclear factor-kappaB activation 
Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction and disability. Peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1β) is a transcriptional coactivator that plays important roles in regulating multiple aspects of energy metabolism and cytokine signaling pathways. PGC-1β overexpression leads to the attenuation of macrophage-mediated inflammation. In this study, we aimed to determine the expression of PGC-1β in RA synovium and fibroblast-like synoviocytes (FLS), and explore the mechanisms of PGC-1β on both the proinflammatory effects and apoptosis in RA-FLS.
Methods
Synovium was obtained from 31 patients with active RA, as well as 13 osteoarthritis (OA) and 10 orthopedic arthropathies (Orth.A) as “less inflamed” disease controls. FLS were then isolated and cultured. Synovial PGC-1β expression was determined by immunohistochemistry staining, while FLS PGC-1β expression was detected by immunofluorescence staining, quantitative real-time PCR (qPCR) assay and western blot. PGC-1β was depleted by lentivirus sh-RNA, and up-regulated by pcDNA3.1- PGC-1β. The expression of proinflammatory cytokines, matrix metalloproteinases and receptor activator of nuclear factor-kappaB ligand was analyzed by qPCR, cytometric bead array and western blot. The expression of mitogen-activated protein kinases and nuclear factor-kappaB (NF-κB) was determined by qPCR and western blot. Besides, cell apoptosis was examined using flow cytometry. The interaction between PGC-1β and NF-κB was performed by dual-luciferase reporter gene assays.
Results
(A) Synovial PGC-1β was over-expressed in RA patients compared with OA or Orth.A patients. (B) PGC-1β expression significantly increased in RA-FLS compared with OA-FLS. (C) PGC-1β mediated the expression of proinflammatory cytokines and apoptosis through extracellular signal-regulated kinase (ERK), p38 and NF-κB in RA-FLS. (D) PGC-1β mediated NF-κB transcription in RA-FLS, but did not affect ERK and p38.
Conclusion
The results indicate that PGC-1β may play important roles in the proinflammatory effects and apoptosis of RA-FLS.
doi:10.1186/s13075-014-0472-6
PMCID: PMC4237730  PMID: 25367151

Results 1-25 (1004857)