PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1092615)

Clipboard (0)
None

Related Articles

1.  Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2 
Molecular Biology of the Cell  2014;25(10):1666-1675.
To assess the redundancy of lamins B1 and B2, knock-in lines were created that produce lamin B2 from the Lmnb1 locus and lamin B1 from the Lmnb2 locus. Both lines developed severe neurodevelopmental abnormalities, indicating that the abnormalities elicited by the loss of one B-type lamin cannot be prevented by increased synthesis of the other.
Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated “reciprocal knock-in mice”—mice that make lamin B2 from the Lmnb1 locus (Lmnb1B2/B2) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2B1/B1). Lmnb1B2/B2 mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1B2/B2 mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2B1/B1 mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other.
doi:10.1091/mbc.E14-01-0683
PMCID: PMC4019497  PMID: 24672053
2.  Are B-type lamins essential in all mammalian cells? 
Nucleus  2011;2(6):562-569.
The B-type lamins are widely assumed to be essential for mammalian cells. In part, this assumption is based on a highly cited study that found that RNAi-mediated knockdown of lamin B1 or lamin B2 in HeLa cells arrested cell growth and led to apoptosis. Studies indicating that B-type lamins play roles in DNA replication, the formation of the mitotic spindle, chromatin organization and regulation of gene expression have fueled the notion that B-type lamins must be essential. But surprisingly, this idea had never been tested with genetic approaches. Earlier this year, a research group from UCLA reported the development of genetically modified mice that lack expression of both Lmnb1 and Lmnb2 in skin keratinocytes (a cell type that proliferates rapidly and participates in complex developmental programs). They reasoned that if lamins B1 and B2 were truly essential, then keratinocyte-specific lamin B1/lamin B2 knockout mice would exhibit severe pathology. Contrary to expectations, the skin and hair of lamin B1/lamin B2-deficient mice were quite normal, indicating that the B-type lamins are dispensable in some cell types. The same UCLA research group has gone on to show that lamin B1 and lamin B2 are critical for neuronal migration in the developing brain and for neuronal survival.  The absence of either lamin B1 or lamin B2, or the absence of both B-type lamins, results in severe neurodevelopmental abnormalities.
doi:10.4161/nucl.2.6.18085
PMCID: PMC3324344  PMID: 22127257
lamin B1; lamin B2; nuclear envelope; nuclear lamina
3.  An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair 
Human Molecular Genetics  2011;20(18):3537-3544.
Nuclear lamins are usually classified as A-type (lamins A and C) or B-type (lamins B1 and B2). A-type lamins have been implicated in multiple genetic diseases but are not required for cell growth or development. In contrast, B-type lamins have been considered essential in eukaryotic cells, with crucial roles in DNA replication and in the formation of the mitotic spindle. Knocking down the genes for B-type lamins (LMNB1, LMNB2) in HeLa cells has been reported to cause apoptosis. In the current study, we created conditional knockout alleles for mouse Lmnb1 and Lmnb2, with the goal of testing the hypothesis that B-type lamins are crucial for the growth and viability of mammalian cells in vivo. Using the keratin 14-Cre transgene, we bred mice lacking the expression of both Lmnb1 and Lmnb2 in skin keratinocytes (Lmnb1Δ/ΔLmnb2Δ/Δ). Lmnb1 and Lmnb2 transcripts were absent in keratinocytes of Lmnb1Δ/ΔLmnb2Δ/Δ mice, and lamin B1 and lamin B2 proteins were undetectable. But despite an absence of B-type lamins in keratinocytes, the skin and hair of Lmnb1Δ/ΔLmnb2Δ/Δ mice developed normally and were free of histological abnormalities, even in 2-year-old mice. After an intraperitoneal injection of bromodeoxyuridine (BrdU), similar numbers of BrdU-positive keratinocytes were observed in the skin of wild-type and Lmnb1Δ/ΔLmnb2Δ/Δ mice. Lmnb1Δ/ΔLmnb2Δ/Δ keratinocytes did not exhibit aneuploidy, and their growth rate was normal in culture. These studies challenge the concept that B-type lamins are essential for proliferation and vitality of eukaryotic cells.
doi:10.1093/hmg/ddr266
PMCID: PMC3159554  PMID: 21659336
4.  Do lamin B1 and lamin B2 have redundant functions? 
Nucleus  2014;5(4):287-292.
Lamins B1 and B2 have a high degree of sequence similarity and are widely expressed from the earliest stages of development. Studies of Lmnb1 and Lmnb2 knockout mice revealed that both of the B-type lamins are crucial for neuronal migration in the developing brain. These observations naturally posed the question of whether the two B-type lamins might play redundant functions in the development of the brain. To explore that issue, Lee and coworkers generated “reciprocal knock-in mice” (knock-in mice that produce lamin B1 from the Lmnb2 locus and knock-in mice that produce lamin B2 from the Lmnb1 locus). Both lines of knock-in mice manifested neurodevelopmental abnormalities similar to those in conventional knockout mice, indicating that lamins B1 and B2 have unique functions and that increased production of one B-type lamin cannot compensate for the loss of the other.
doi:10.4161/nucl.29615
PMCID: PMC4152341  PMID: 25482116
lamin B1; lamin B2; nuclear envelope; nuclear lamina
5.  LINCing lamin B2 to neuronal migration: growing evidence for cell-specific roles of B-type lamins 
Nucleus (Austin, Tex.)  2010;1(5):407-411.
Nuclear lamins are major components of the nuclear lamina, and play essential roles in supporting the nucleus and organizing nuclear structures. While a large number of clinically important mutations have been mapped to the LMNA gene in humans, very few mutations have been associated with the B-type lamins. We have shown that lamin B2–deficiency in mice results in severe brain abnormalities. While the early stages of forebrain development in lamin B2–deficient mice appear to be normal, cortical neurons fail to migrate and organize into proper layers within the cerebral cortex. The morphogenesis of the hippocampus and cerebellum is also severely impaired. These phenotypes are reminiscent of lissencephaly, a human brain developmental disorder characterized by an abnormal neuronal migration. Most mutations in lissencephaly patients affect cytoplasmic regulators of nuclear translocation, which is a crucial step in neuronal migration. The phenotypes of lamin B2–deficient mice suggest that lamin B2 may also play a key role in nuclear translocation. Potential mechanisms for lamin B2 involvement, which include mechanical and non-mechanical roles, and participation in LINC complexes in the nuclear envelope, are discussed along with evidence that lamins B1 and B2 play distinct, cell-specific functions.
doi:10.4161/nucl.1.5.12830
PMCID: PMC3027074  PMID: 21278813
nuclear envelope; nuclear lamina; lamin B2; LINC complex; nesprin; SUN; lissencephaly; neuronal migration; cortical neurons; nuclear translocation
6.  LINCing lamin B2 to neuronal migration 
Nucleus  2010;1(5):407-411.
Nuclear lamins are major components of the nuclear lamina, and play essential roles in supporting the nucleus and organizing nuclear structures. While a large number of clinically important mutations have been mapped to the LMNA gene in humans, very few mutations have been associated with the B-type lamins. We have shown that lamin B2-deficiency in mice results in severe brain abnormalities. While the early stages of forebrain development in lamin B2-deficient mice appear to be normal, cortical neurons fail to migrate and organize into proper layers within the cerebral cortex. The morphogenesis of the hippocampus and cerebellum is also severely impaired. These phenotypes are reminiscent of lissencephaly, a human brain developmental disorder characterized by an abnormal neuronal migration. Most mutations in lissencephaly patients affect cytoplasmic regulators of nuclear translocation, which is a crucial step in neuronal migration. The phenotypes of lamin B2-deficient mice suggest that lamin B2 may also play a key role in nuclear translocation. Potential mechanisms for lamin B2 involvement, which include mechanical and non-mechanical roles and participation in LINC complexes in the nuclear envelope, are discussed along with evidence that lamins B1 and B2 play distinct, cell-specific functions.
doi:10.4161/nucl.1.5.12830
PMCID: PMC3027074  PMID: 21278813
nuclear envelope; nuclear lamina; lamin B2; LINC complex; nesprin; SUN; lissencephaly; neuronal migration; cortical neurons; nuclear translocation
7.  B-type lamins in health and disease☆ 
Highlights
•The role of B-type lamins in cellular organisation and function.•The role of B-type lamins in chromatin organisation.•The role of lamin B1 in cellular senescence.•The role of B-type lamins in organogenesis and tissue building.
For over two decades, B-type lamins were thought to have roles in fundamental processes including correct assembly of nuclear envelopes, DNA replication, transcription and cell survival. Recent studies have questioned these roles and have instead emphasised the role of these proteins in tissue building and tissue integrity, particularly in tissues devoid of A-type lamins. Other studies have suggested that the expression of B-type lamins in somatic cells influences the rate of entry into states of cellular senescence. In humans duplication of the LMNB1 gene (encoding lamin B1) causes an adult onset neurodegenerative disorder, termed autosomal dominant leukodystrophy, whilst very recently, LMNB1 has been implicated as a susceptibility gene in neural tube defects. This is consistent with studies in mice that reveal a critical role for B-type lamins in neuronal migration and brain development. In this review, I will consider how different model systems have contributed to our understanding of the functions of B-type lamins and which of those functions are critical for human health and disease.
doi:10.1016/j.semcdb.2013.12.012
PMCID: PMC4053831  PMID: 24380701
Lamin B1; Cellular senescence; Brain development; Autosomal dominant leukodystrophy
8.  Nuclear lamins in the brain—new insights into function and regulation 
Molecular neurobiology  2012;47(1):290-301.
The nuclear lamina is an intermediate filament meshwork composed largely of four nuclear lamins—lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Located immediately adjacent to the inner nuclear membrane, the nuclear lamina provides a structural scaffolding for the cell nucleus. It also interacts with both nuclear membrane proteins and the chromatin and is thought to participate in many important functions within the cell nucleus. Defects in A-type lamins cause cardiomyopathy, muscular dystrophy, peripheral neuropathy, lipodystrophy, and progeroid disorders. In contrast, the only bona fide link between the B-type lamins and human disease is a rare demyelinating disease of the central nervous system—adult-onset autosomal-dominant leukoencephalopathy, caused by a duplication of the gene for lamin B1. However, this leukoencephalopathy is not the only association between the brain and B-type nuclear lamins. Studies of conventional and tissue-specific knockout mice have demonstrated that B-type lamins play essential roles in neuronal migration in the developing brain and in neuronal survival. The importance of A-type lamin expression in the brain is unclear, but it is intriguing that the adult brain preferentially expresses lamin C rather than lamin A, very likely due to microRNA-mediated removal of prelamin A transcripts. Here, we review recent studies on nuclear lamins, focusing on the function and regulation of the nuclear lamins in the central nervous system.
doi:10.1007/s12035-012-8350-1
PMCID: PMC3538886  PMID: 23065386
Nuclear lamina; brain development; A-type lamins; B-type lamins; differential gene expression
9.  Nuclear Lamins and Neurobiology 
Molecular and Cellular Biology  2014;34(15):2776-2785.
Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called “laminopathies,” mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low—due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why “prelamin A diseases” such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.
doi:10.1128/MCB.00486-14
PMCID: PMC4135577  PMID: 24842906
10.  Prelamin A and lamin A appear to be dispensable in the nuclear lamina 
Journal of Clinical Investigation  2006;116(3):743-752.
Lamin A and lamin C, both products of Lmna, are key components of the nuclear lamina. In the mouse, a deficiency in both lamin A and lamin C leads to slow growth, muscle weakness, and death by 6 weeks of age. Fibroblasts deficient in lamins A and C contain misshapen and structurally weakened nuclei, and emerin is mislocalized away from the nuclear envelope. The physiologic rationale for the existence of the 2 different Lmna products lamin A and lamin C is unclear, although several reports have suggested that lamin A may have particularly important functions, for example in the targeting of emerin and lamin C to the nuclear envelope. Here we report the development of lamin C–only mice (Lmna+/+), which produce lamin C but no lamin A or prelamin A (the precursor to lamin A). Lmna+/+ mice were entirely healthy, and Lmna+/+ cells displayed normal emerin targeting and exhibited only very minimal alterations in nuclear shape and nuclear deformability. Thus, at least in the mouse, prelamin A and lamin A appear to be dispensable. Nevertheless, an accumulation of farnesyl–prelamin A (as occurs with a deficiency in the prelamin A processing enzyme Zmpste24) caused dramatically misshapen nuclei and progeria-like disease phenotypes. The apparent dispensability of prelamin A suggested that lamin A–related progeroid syndromes might be treated with impunity by reducing prelamin A synthesis. Remarkably, the presence of a single LmnaLCO allele eliminated the nuclear shape abnormalities and progeria-like disease phenotypes in Zmpste24–/– mice. Moreover, treating Zmpste24–/– cells with a prelamin A–specific antisense oligonucleotide reduced prelamin A levels and significantly reduced the frequency of misshapen nuclei. These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases.
doi:10.1172/JCI27125
PMCID: PMC1386109  PMID: 16511604
11.  Effects of Lamin A/C, Lamin B1, and Viral US3 Kinase Activity on Viral Infectivity, Virion Egress, and the Targeting of Herpes Simplex Virus UL34-Encoded Protein to the Inner Nuclear Membrane ▿  
Journal of Virology  2008;82(16):8094-8104.
Previous results indicated that the UL34 protein (pUL34) of herpes simplex virus 1 (HSV-1) is targeted to the nuclear membrane and is essential for nuclear egress of nucleocapsids. The normal localization of pUL34 and virions requires the US3-encoded kinase that phosphorylates UL34 and lamin A/C. Moreover, pUL34 was shown to interact with lamin A in vitro. In the present study, glutathione S-transferase/pUL34 was shown to specifically pull down lamin A and lamin B1 from cellular lysates. To determine the role of these interactions on viral infectivity and pUL34 targeting to the inner nuclear membrane (INM), the localization of pUL34 was determined in LmnA−/− and LmnB1−/− mouse embryonic fibroblasts (MEFs) by indirect immunofluorescence and immunogold electron microscopy in the presence or absence of US3 kinase activity. While pUL34 INM targeting was not affected by the absence of lamin B1 in MEFs infected with wild-type HSV as viewed by indirect immunofluorescence, it localized in densely staining scalloped-shaped distortions of the nuclear membrane in lamin B1 knockout cells infected with a US3 kinase-dead virus. Lamin B1 knockout cells were relatively less permissive for viral replication than wild-type MEFs, with viral titers decreased at least 10-fold. The absence of lamin A (i) caused clustering of pUL34 in the nuclear rim of cells infected with wild-type virus, (ii) produced extensions of the INM bearing pUL34 protein in cells infected with a US3 kinase-dead mutant, (iii) precluded accumulation of virions in the perinuclear space of cells infected with this mutant, and (iv) partially restored replication of this virus. The latter observation suggests that lamin A normally impedes viral infectivity and that US3 kinase activity partially alleviates this impediment. On the other hand, lamin B1 is necessary for optimal viral replication, probably through its well-documented effects on many cellular pathways. Finally, neither lamin A nor B1 was absolutely required for targeting pUL34 to the INM, suggesting that this targeting is mediated by redundant functions or can be mediated by other proteins.
doi:10.1128/JVI.00874-08
PMCID: PMC2519571  PMID: 18524819
12.  Regulation of Myelination in the Central Nervous System by Nuclear Lamin B1 and Non-coding RNAs 
Adult-onset autosomal dominant leukodystrophy (ADLD) is a progressive and fatal hereditary demyelination disorder characterized initially by autonomic dysfunction and loss of myelin in the central nervous system (CNS). Majority of ADLD is caused by a genomic duplication of the nuclear lamin B1 gene (LMNB1) encoding lamin B1 protein, resulting in increased gene dosage in brain tissue. In vitro, excessive lamin B1 at the cellular level reduces transcription of myelin genes, leading to premature arrest of oligodendrocyte differentiation. Murine models of ADLD overexpressing LMNB1 exhibited age-dependent motor deficits and myelin defects, which are associated with reduced occupancy of the Yin Yang 1 transcription factor at the promoter region of the proteolipid protein gene. Lamin B1 overexpression mediates oligodendrocyte cell-autonomous neuropathology in ADLD and suggests lamin B1 as an important regulator of myelin formation and maintenance during aging. Identification of microRNA-23 (miR-23) as a negative regulator of lamin B1 can ameliorate the consequences of excessive lamin B1 at the cellular level. miR-23a-overexpressing mice display enhanced oligodendrocyte differentiation and myelin synthesis. miR-23a targets include a protein coding transcript PTEN (phosphatase and tensin homolog on chromosome 10), and a long noncoding RNA (2700046G09Rik), indicating a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin. Here, we provide a concise review of the current literature on clinical presentations of ADLD and how lamin B1 affects myelination and other developmental processes. Moreover, we address the emerging role of non-coding RNAs (ncRNAs) in modulating gene networks, specifically investigating miR-23 as a potential target for the treatment of ADLD and other demyelinating disorders.
doi:10.1186/2047-9158-3-4
PMCID: PMC3937061  PMID: 24495672
Lamin; Long non-coding RNA; MicroRNA; Myelin
13.  A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD) 
Human Molecular Genetics  2015;24(11):3143-3154.
Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (∼660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. This second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.
doi:10.1093/hmg/ddv065
PMCID: PMC4424952  PMID: 25701871
14.  Messenger RNA processing is altered in autosomal dominant leukodystrophy† 
Human Molecular Genetics  2015;24(10):2746-2756.
Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterized by autonomic dysfunction, followed by cerebellar and pyramidal features. ADLD is caused by duplication of the lamin B1 gene (LMNB1), which leads to its increased expression. The molecular pathways involved in the disease are still poorly understood. Hence, we analyzed global gene expression in fibroblasts and whole blood of LMNB1 duplication carriers and used Gene Set Enrichment Analysis to explore their gene signatures. We found that LMNB1 duplication is associated with dysregulation of genes involved in the immune system, neuronal and skeletal development. Genes with an altered transcriptional profile clustered in specific genomic regions. Among the dysregulated genes, we further studied the role of RAVER2, which we found to be overexpressed at mRNA and protein level. RAVER2 encodes a putative trans regulator of the splicing repressor polypyrimidine tract binding protein (PTB) and is likely implicated in alternative splicing regulation. Functional studies demonstrated an abnormal splicing pattern of several PTB-target genes and of the myelin protein gene PLP1, previously demonstrated to be involved in ADLD. Mutant mice with different lamin B1 expression levels confirmed that Raver2 expression is dependent on lamin B1 in neural tissue and determines an altered splicing pattern of PTB-target genes and Plp1. Overall our results demonstrate that deregulation of lamin B1 expression induces modified splicing of several genes, likely driven by raver-2 overexpression, and suggest that an alteration of mRNA processing could be a pathogenic mechanism in ADLD.
doi:10.1093/hmg/ddv034
PMCID: PMC4406291  PMID: 25637521
15.  NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions 
PLoS Biology  2012;10(3):e1001287.
NUP1, the first example of a nuclear lamin analog in nonmetazoans, performs roles similar to those of lamins in maintaining the structure and organization of the nucleus in Trypanosoma brucei.
A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein (VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci.
Author Summary
Eukaryotes—fungi, plants, animals, and many unicellular organisms—are defined by the presence of a cell nucleus that contains the chromosomes and is enveloped by a lipid membrane lined on the inner face with a protein network called the lamina. Among other functions, the lamina serves as an anchorage site for the ends of chromosomes. In multicellular animals (metazoa), the lamina comprises a few related proteins called lamins, which are very important for many functions related to the nucleus; abnormal lamins result in multiple nuclear defects and diseases, including inappropriate gene expression and premature aging. Until now, however, lamins had been found only in metazoa; no protein of equivalent function had been identified in plants, fungi, or unicellular organisms. Here, we describe a protein from African trypanosomes—the single-cell parasites that cause sleeping sickness—that fulfils many lamin-like roles, including maintaining nuclear structure and organizing the chromosomes of this organism. We show that this protein, which we call NUP-1 for nuclear periphery protein-1, is vital for the antigenic variation mechanisms that allow the parasite to escape the host immune response. We propose that NUP-1 is a lamin analogue that performs similar functions in trypanosomes to those of authentic lamins in metazoa. These findings, we believe, have important implications for understanding the evolution of the nucleus.
doi:10.1371/journal.pbio.1001287
PMCID: PMC3313915  PMID: 22479148
16.  A Comparative Study of Drosophila and Human A-Type Lamins 
PLoS ONE  2009;4(10):e7564.
Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.
doi:10.1371/journal.pone.0007564
PMCID: PMC2762312  PMID: 19855837
17.  Lamin B1 fluctuations have differential effects on cellular proliferation and senescence 
The Journal of Cell Biology  2013;200(5):605-617.
Both LMNB1 depletion and overexpression inhibit proliferation, but only LMNB1 overexpression induces senescence.
The nuclear lamina consists of A- and B-type lamins. Mutations in LMNA cause many human diseases, including progeria, a premature aging syndrome, whereas LMNB1 duplication causes adult-onset autosomal dominant leukodystrophy (ADLD). LMNB1 is reduced in cells from progeria patients, but the significance of this reduction is unclear. In this paper, we show that LMNB1 protein levels decline in senescent human dermal fibroblasts and keratinocytes, mediated by reduced transcription and inhibition of LMNB1 messenger ribonucleic acid (RNA) translation by miRNA-23a. This reduction is also observed in chronologically aged human skin tissue. To determine whether altered LMNB1 levels cause senescence, we either increased or reduced LMNB1. Both LMNB1 depletion and overexpression inhibited proliferation, but only LMNB1 overexpression induced senescence, which was prevented by telomerase expression or inactivation of p53. This phenotype was exacerbated by a simultaneous reduction of LMNA/C. Our results demonstrate that altering LMNB1 levels inhibits proliferation and are relevant to understanding the molecular pathology of ADLD.
doi:10.1083/jcb.201206121
PMCID: PMC3587829  PMID: 23439683
18.  Lamin B1 controls oxidative stress responses via Oct-1 
The Journal of Cell Biology  2009;184(1):45-55.
Interaction of lamins with chromatin and transcription factors regulate transcription. Oct-1 has previously been shown to colocalize partly with B-type lamins and is essential for transcriptional regulation of oxidative stress response genes. Using sequential extraction, co-immunoprecipitation (IP), fluorescence loss in photobleaching, and fluorescence resonance energy transfer, we confirm Oct-1–lamin B1 association at the nuclear periphery and show that this association is lost in Lmnb1Δ/Δ cells. We show that several Oct-1–dependent genes, including a subset involved in oxidative stress response, are dysregulated in Lmnb1Δ/Δ cells. Electrophoretic mobility shift assay and chromatin IP reveal that Oct-1 binds to the putative octamer-binding sequences of the dysregulated genes and that this activity is increased in cells lacking functional lamin B1. Like Oct1−/− cells, Lmnb1Δ/Δ cells have elevated levels of reactive oxygen species and are more susceptible to oxidative stress. Sequestration of Oct-1 at the nuclear periphery by lamin B1 may be a mechanism by which the nuclear envelope can regulate gene expression and contribute to the cellular response to stress, development, and aging.
doi:10.1083/jcb.200804155
PMCID: PMC2615091  PMID: 19139261
19.  Is LMNB1 a Susceptibility Gene for Neural Tube Defects in Humans? 
BACKGROUND
Lamins are intermediate filament proteins that form a major component of the nuclear lamina, a protein complex at the surface of the inner nuclear membrane. Numerous clinically diverse conditions, termed laminopathies, have been found to result from mutation of LMNA. In contrast, coding or loss of function mutations of LMNB1, encoding lamin B1, have not been identified in human disease. In mice, polymorphism in Lmnb1 has been shown to modify risk of neural tube defects (NTDs), malformations of the central nervous system that result from incomplete closure of the neural folds.
METHODS
Mutation analysis by DNA sequencing was performed on all exons of LMNB1 in 239 samples from patients with NTDs from the United Kingdom, Sweden, and United States. Possible functional effects of missense variants were analyzed by bioinformatics prediction and fluorescence in photobleaching.
RESULTS
In NTD patients, we identified two unique missense variants that were predicted to disrupt protein structure/function and represent putative contributory mutations. Fluorescence loss in photobleaching analysis showed that the A436T variant compromised stability of lamin B1 interaction within the lamina.
CONCLUSION
The genetic basis of human NTDs appears highly heterogenous with possible involvement of multiple predisposing genes. We hypothesize that rare variants of LMNB1 may contribute to susceptibility to NTDs. Birth Defects Research (Part A) 97:398–402, 2013. © 2013 Wiley Periodicals, Inc.
doi:10.1002/bdra.23141
PMCID: PMC3738925  PMID: 23733478
anencephaly; lamin B1; neural tube defects; nuclear lamina; spina bifida
20.  Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells 
Science (New York, N.y.)  2011;334(6063):1706-1710.
B-type lamins, the major components of the nuclear lamina, are believed to be essential for cell proliferation and survival. We found that mouse embryonic stem cells (ESCs) do not need any lamins for self-renewal and pluripotency. Although genome-wide lamin-B binding profiles correlate with reduced gene expression, such binding is not directly required for gene silencing in ESCs or trophectoderm cells. However, B-type lamins are required for proper organogenesis. Defects in spindle orientation in neural progenitor cells and migration of neurons probably cause brain disorganizations found in lamin-B null mice. Thus, our studies not only disprove several prevailing views of lamin-Bs but also establish a foundation for redefining the function of the nuclear lamina in the context of tissue building and homeostasis.
doi:10.1126/science.1211222
PMCID: PMC3306219  PMID: 22116031
21.  Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model 
The Journal of Clinical Investigation  2013;123(6):2719-2729.
Adult-onset autosomal-dominant leukodystrophy (ADLD) is a progressive and fatal neurological disorder characterized by early autonomic dysfunction, cognitive impairment, pyramidal tract and cerebellar dysfunction, and white matter loss in the central nervous system. ADLD is caused by duplication of the LMNB1 gene, which results in increased lamin B1 transcripts and protein expression. How duplication of LMNB1 leads to myelin defects is unknown. To address this question, we developed a mouse model of ADLD that overexpresses lamin B1. These mice exhibited cognitive impairment and epilepsy, followed by age-dependent motor deficits. Selective overexpression of lamin B1 in oligodendrocytes also resulted in marked motor deficits and myelin defects, suggesting these deficits are cell autonomous. Proteomic and genome-wide transcriptome studies indicated that lamin B1 overexpression is associated with downregulation of proteolipid protein, a highly abundant myelin sheath component that was previously linked to another myelin-related disorder, Pelizaeus-Merzbacher disease. Furthermore, we found that lamin B1 overexpression leads to reduced occupancy of Yin Yang 1 transcription factor at the promoter region of proteolipid protein. These studies identify a mechanism by which lamin B1 overexpression mediates oligodendrocyte cell–autonomous neuropathology in ADLD and implicate lamin B1 as an important regulator of myelin formation and maintenance during aging.
doi:10.1172/JCI66737
PMCID: PMC3668844  PMID: 23676464
22.  An Absence of Nuclear Lamins in Keratinocytes Leads to Ichthyosis, Defective Epidermal Barrier Function, and Intrusion of Nuclear Membranes and Endoplasmic Reticulum into the Nuclear Chromatin 
Molecular and Cellular Biology  2014;34(24):4534-4544.
B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a “fence” and prevent the incursion of cytoplasmic organelles into the nuclear chromatin.
doi:10.1128/MCB.00997-14
PMCID: PMC4248738  PMID: 25312645
23.  LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice 
Molecular Biology of the Cell  2012;23(24):4689-4700.
Arachidonic acid (AA) is remarkably enriched in phosphatidylinositol (PI). Studies using knockout mice of lysophosphatidylinositol acyltransferase 1, which selectively incorporates AA into PI, reveal that AA-containing PI plays a crucial role in cortical lamination and neuronal migration during brain development.
Dietary arachidonic acid (AA) has roles in growth, neuronal development, and cognitive function in infants. AA is remarkably enriched in phosphatidylinositol (PI), an important constituent of biological membranes in mammals; however, the physiological significance of AA-containing PI remains unknown. In an RNA interference–based genetic screen using Caenorhabditis elegans, we recently cloned mboa-7 as an acyltransferase that selectively incorporates AA into PI. Here we show that lysophosphatidylinositol acyltransferase 1 (LPIAT1, also known as MBOAT7), the closest mammalian homologue, plays a crucial role in brain development in mice. Lpiat1−/− mice show almost no LPIAT activity with arachidonoyl-CoA as an acyl donor and show reduced AA contents in PI and PI phosphates. Lpiat1−/− mice die within a month and show atrophy of the cerebral cortex and hippocampus. Immunohistochemical analysis reveals disordered cortical lamination and delayed neuronal migration in the cortex of E18.5 Lpiat1−/− mice. LPIAT1 deficiency also causes disordered neuronal processes in the cortex and reduced neurite outgrowth in vitro. Taken together, these results demonstrate that AA-containing PI/PI phosphates play an important role in normal cortical lamination during brain development in mice.
doi:10.1091/mbc.E12-09-0673
PMCID: PMC3521678  PMID: 23097495
24.  The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse 
PLoS Genetics  2013;9(1):e1003261.
The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level.
Author Summary
Diploid germ line cells have to undergo meiosis to produce haploid gametes. Haploidization involves pairing and recombination of homologous chromosomes as a prerequisite for their proper segregation. Pairing of homologous chromosomes requires their active repositioning within meiotic nuclei, which depends on the interaction of telomeres with the nuclear envelope. This dynamic association is vital for a faithful meiosis and thus crucial for fertility. However, very little is known about the relationship between telomeres and nuclear envelope components. Here, we have investigated the role of the nuclear lamina, a structural scaffold that is intimately associated with the inner nuclear membrane. In somatic cells, the lamina is a key player in chromatin organization and fulfils various functions such as nuclear structure maintenance and regulation of transcription. In order to understand its role in meiosis, we investigated lamin C2, the only A-type lamin isoform expressed in mammalian meiotic cells. We demonstrate that lamin C2 is essential for timely repositioning of meiotic telomeres. In its absence, synapsis of homologous chromosomes and double-strand break repair are severely affected. These multiple meiotic defects lead to infertility in males. We conclude that the nuclear lamina contributes directly to fertility through facilitating meiotic chromosome movements.
doi:10.1371/journal.pgen.1003261
PMCID: PMC3561109  PMID: 23382700
25.  “Laminopathies:” a wide spectrum of human diseases 
Experimental cell research  2007;313(10):2121-2133.
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called “laminopathies.” Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasia and Pelger-Huet anomaly. While mutations and clinical phenotypes of “laminopathies” have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new “laminopathies” and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.
doi:10.1016/j.yexcr.2007.03.028
PMCID: PMC2964355  PMID: 17467691
lamin; nuclear envelope; intermediate filaments; muscular dystrophy; lipodystrophy; progeria

Results 1-25 (1092615)