PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (79777)

Clipboard (0)
None

Related Articles

1.  Transformation of Industrial Dyes by Manganese Peroxidases from Bjerkandera adusta and Pleurotus eryngii in a Manganese-Independent Reaction 
We investigated the transformation of six industrial azo and phthalocyanine dyes by ligninolytic peroxidases from Bjerkandera adusta and other white rot fungi. The dyes were not oxidized or were oxidized very little by Phanerochaete chrysosporium manganese peroxidase (MnP) or by a chemically generated Mn3+-lactate complex. Lignin peroxidase (LiP) from B. adusta also showed low activity with most of the dyes, but the specific activities increased 8- to 100-fold when veratryl alcohol was included in the reaction mixture, reaching levels of 3.9 to 9.6 U/mg. The B. adusta and Pleurotus eryngii MnP isoenzymes are unusual because of their ability to oxidize aromatic compounds like 2,6-dimethoxyphenol and veratryl alcohol in the absence of Mn2+. These MnP isoenzymes also decolorized the azo dyes and the phthalocyanine complexes in an Mn2+-independent manner. The reactions with the dyes were characterized by apparent Km values ranging from 4 to 16 μM and specific activities ranging from 3.2 to 10.9 U/mg. Dye oxidation by these peroxidases was not increased by adding veratryl alcohol as it was in LiP reactions. Moreover, the reaction was inhibited by the presence of Mn2+, which in the case of Reactive Black 5, an azo dye which is not oxidized by the Mn3+-lactate complex, was found to act as a noncompetitive inhibitor of dye oxidation by B. adusta MnP1.
PMCID: PMC106773  PMID: 9687431
2.  Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. 
Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place.
PMCID: PMC195195  PMID: 1539977
3.  Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. 
Microbiological Reviews  1993;57(3):605-622.
The white rot basidiomycete Phanerochaete chrysosporium completely degrades lignin and a variety of aromatic pollutants during the secondary metabolic phase of growth. Two families of secreted heme enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP), are major components of the extracellular lignin degradative system of this organism. MnP and LiP both are encoded by families of genes, and the lip genes appear to be clustered. The lip genes contain eight or nine short introns; the mnp genes contain six or seven short introns. The sequences surrounding active-site residues are conserved among LiP, MnP, cytochrome c peroxidase, and plant peroxidases. The eight LiP cysteine residues align with 8 of the 10 cysteines in MnP. LiPs are synthesized as preproenzymes with a 21-amino-acid signal sequence followed by a 6- or 7-amino-acid propeptide. MnPs have a 21- or 24-amino-acid signal sequence but apparently lack a propeptide. Both LiP and MnP are regulated at the mRNA level by nitrogen, and the various isozymes may be differentially regulated by carbon and nitrogen. MnP also is regulated at the level of gene transcription by Mn(II), the substrate for the enzyme, and by heat shock. The promoter regions of mnp genes contain multiple heat shock elements as well as sequences that are identical to the consensus metal regulatory elements found in mammalian metallothionein genes. DNA transformation systems have been developed for P. chrysosporium and are being used for studies on gene regulation and for gene replacement experiments.
PMCID: PMC372928  PMID: 8246842
4.  Manganese peroxidases of the white rot fungus Phanerochaete sordida. 
The ligninolytic enzymes produced by the white rot fungus Phanerochaete sordida in liquid culture were studied. Only manganese peroxidase (MnP) activity could be detected in the supernatant liquid of the cultures. Lignin peroxidase (LiP) and laccase activities were not detected under a variety of different culture conditions. The highest MnP activity levels were obtained in nitrogen-limited cultures grown under an oxygen atmosphere. The enzyme was induced by Mn(II). The initial pH of the culture medium did not significantly affect the MnP production. Three MnP isozymes were identified (MnPI, MnPII, and MnPIII) and purified to homogeneity by anion-exchange chromatography followed by hydrophobic chromatography. The isozymes are glycoproteins with approximately the same molecular mass (around 45 kDa) but have different pIs. The pIs are 5.3, 4.2, and 3.3 for MnPI, MnPII, and MnPIII, respectively. The three isozymes are active in the same range of pHs (pHs 3.0 to 6.0) and have optimal pHs between 4.5 and 5.0. Their amino-terminal sequences, although highly similar, were distinct, suggesting that each is the product of a separate gene.
Images
PMCID: PMC201355  PMID: 8135519
5.  Novel Promoter Sequence Required for Manganese Regulation of Manganese Peroxidase Isozyme 1 Gene Expression in Phanerochaete chrysosporium 
Eukaryotic Cell  2004;3(3):579-588.
Manganese peroxidase (MnP) is a major, extracellular component of the lignin-degrading system produced by the wood-rotting basidiomycetous fungus Phanerochaete chrysosporium. The transcription of MnP-encoding genes (mnps) in P. chrysosporium occurs as a secondary metabolic event, triggered by nutrient-nitrogen limitation. In addition, mnp expression occurs only under Mn2+ supplementation. Using a reporter system based on the enhanced green fluorescent protein gene (egfp), we have characterized the P. chrysosporium mnp1 promoter by examining the effects of deletion, replacement, and translocation mutations on mnp1 promoter-directed egfp expression. The 1,528-bp mnp1 promoter fragment drives egfp expression only under Mn2+-sufficient, nitrogen-limiting conditions, as required for endogenous MnP production. However, deletion of a 48-bp fragment, residing 521 bp upstream of the translation start codon in the mnp1 promoter, or replacement of this fragment with an unrelated sequence resulted in egfp expression under nitrogen limitation, both in the absence and presence of exogenous Mn2+. Translocation of the 48-bp fragment to a site 120 bp downstream of its original location resulted in Mn2+-dependent egfp expression under conditions similar to those observed with the wild-type mnp1 promoter. These results suggest that the 48-bp fragment contains at least one Mn2+-responsive cis element. Additional promoter-deletion experiments suggested that the Mn2+ element(s) is located within the 33-bp sequence at the 3′ end of the 48-bp fragment. This is the first promoter sequence containing a Mn2+-responsive element(s) to be characterized in any eukaryotic organism.
doi:10.1128/EC.3.3.579-588.2004
PMCID: PMC420142  PMID: 15189980
6.  Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi 
Two families of peroxidases—lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)—are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14CO2 from 14C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14CO2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini.
PMCID: PMC183274  PMID: 16348093
7.  Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. 
The specific enzymes associated with lignin degradation in solid lignocellulosic substrates have not been identified. Therefore, we examined extracts of cultures of Phanerochaete chrysosporium that were degrading a mechanical pulp of aspen wood. Western blot (immunoblot) analyses of the partially purified protein revealed lignin peroxidase, manganese-dependent peroxidase (MnP), and glyoxal oxidase. The dominant peroxidase, an isoenzyme of MnP (pI 4.9), was isolated, and its N-terminal amino acid sequence and amino acid composition were determined. The results reveal both similarities to and differences from the deduced amino acid sequences from cDNA clones of dominant MnP isoenzymes from liquid cultures. Our results suggest, therefore, that the ligninolytic-enzyme-encoding genes that are expressed during solid substrate degradation differ from those expressed in liquid culture or are allelic variants of their liquid culture counterparts. In addition to lignin peroxidase, MnP, and glyoxal oxidase, xylanase and protease activities were present in the extracts of the degrading pulp.
Images
PMCID: PMC182969  PMID: 1854201
8.  Mineralization of 14C-Ring-Labeled Synthetic Lignin Correlates with the Production of Lignin Peroxidase, not of Manganese Peroxidase or Laccase 
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.
PMCID: PMC184514  PMID: 16348221
9.  Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of kraft bleach plant effluent. 
The role of lignin peroxidases (LIPs) and manganese peroxidases (MNPs) of Phanerochaete chrysosporium in decolorizing kraft bleach plant effluent (BPE) was investigated. Negligible BPE decolorization was exhibited by a per mutant, which lacks the ability to produce both the LIPs and the MNPs. Also, little decolorization was seen when the wild type was grown in high-nitrogen medium, in which the production of LIPs and MNPs is blocked. A lip mutant of P. chrysosporium, which produces MNPs but not LIPs, showed about 80% of the activity exhibited by the wild type, indicating that the MNPs play an important role in BPE decolorization. When P. chrysosporium was grown in a medium with 100 ppm of Mn(II), high levels of MNPs but no LIPs were produced, and this culture also exhibited high rates of BPE decolorization, lending further support to the idea that MNPs play a key role in BPE decolorization. When P. chrysosporium was grown in a medium with no Mn(II), high levels of LIPs but negligible levels of MNPs were produced and the rate and extent of BPE decolorization by such cultures were quite low, indicating that LIPs play a relatively minor role in BPE decolorization. Furthermore, high rates of BPE decolorization were seen on days 3 and 4 of incubation, when the cultures exhibit high levels of MNP activity but little or no LIP activity. These results indicate that MNPs play a relatively more important role than LIPs in BPE decolorization by P. chrysosporium.
Images
PMCID: PMC183577  PMID: 1768105
10.  Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. 
Degradation of the BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes) group of organopollutants by the white-rot fungus Phanerochaete chrysosporium was studied. Our results show that the organism efficiently degrades all the BTEX components when these compounds are added either individually or as a composite mixture. Degradation was favored under nonligninolytic culture conditions in malt extract medium, in which extracellular lignin peroxidases (LIPs) and manganese-dependent peroxidases (MNPs) are not produced. The noninvolvement of LIPs and MNPs in BTEX degradation was also evident from in vitro studies using concentrated extracellular fluid containing LIPs and MNPs and from a comparison of the extents of BTEX degradation by the wild type and the per mutant, which lacks LIPs and MNPs. A substantially greater extent of degradation of all the BTEX compounds was observed in static than in shaken liquid cultures. Furthermore, the level of degradation was relatively higher at 25 than at 37 degrees C, but pH variations between 4.5 and 7.0 had little effect on the extent of degradation. Studies with uniformly ring-labeled [14C]benzene and [14C]toluene showed substantial mineralization of these compounds to 14CO2.
PMCID: PMC202186  PMID: 8481002
11.  Lignin peroxidase-negative mutant of the white-rot basidiomycete Phanerochaete chrysosporium. 
Journal of Bacteriology  1990;172(1):260-265.
Phanerochaete chrysosporium produces two classes of extracellular heme proteins, designated lignin peroxidases and manganese peroxidases, that play a key role in lignin degradation. In this study we isolated and characterized a lignin peroxidase-negative mutant (lip mutant) that showed 16% of the ligninolytic activity (14C-labeled synthetic lignin----14CO2) exhibited by the wild type. The lip mutant did not produce detectable levels of lignin peroxidase, whereas the wild type, under identical conditions, produced 96 U of lignin peroxidase per liter. Both the wild type and the mutant produced comparable levels of manganese peroxidase and glucose oxidase, a key H2O2-generating secondary metabolic enzyme in P. chrysosporium. Fast protein liquid chromatographic analysis of the concentrated extracellular fluid of the lip mutant confirmed that it produced only heme proteins with manganese peroxidase activity but no detectable lignin peroxidase activity, whereas both lignin peroxidase and manganese peroxidase activities were produced by the wild type. The lip mutant appears to be a regulatory mutant that is defective in the production of all the lignin peroxidases.
PMCID: PMC208426  PMID: 2294087
12.  Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. 
The ability of Phanerochaete laevis HHB-1625 to transform polycyclic aromatic hydrocarbons (PAHs) in liquid culture was studied in relation to its complement of extracellular ligninolytic enzymes. In nitrogen-limited liquid medium, P. laevis produced high levels of manganese peroxidase (MnP). MnP activity was strongly regulated by the amount of Mn2+ in the culture medium, as has been previously shown for several other white rot species. Low levels of laccase were also detected. No lignin peroxidase (LiP) was found in the culture medium, either by spectrophotometric assay or by Western blotting (immunoblotting). Despite the apparent reliance of the strain primarily on MnP, liquid cultures of P. laevis were capable of extensive transformation of anthracene, phenanthrene, benz[a]anthracene, and benzo[a]pyrene. Crude extracellular peroxidases from P. laevis transformed all of the above PAHs, either in MnP-Mn2+ reactions or in MnP-based lipid peroxidation systems. In contrast to previously published studies with Phanerochaete chrysosporium, metabolism of each of the four PAHs yielded predominantly polar products, with no significant accumulation of quinones. Further studies with benz[a]anthracene and its 7,12-dione indicated that only small amounts of quinone products were ever present in P. laevis cultures and that quinone intermediates of PAH metabolism were degraded faster and more extensively by P. laevis than by P. chrysosporium.
PMCID: PMC167933  PMID: 8633857
13.  Fungal biodegradation and enzymatic modification of lignin 
Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed.
PMCID: PMC3180040  PMID: 21968746
Lignocellulose; bioconversion; fungi; lignin; ligninases
14.  Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. 
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium rapidly mineralizes 2,4,5-trichlorophenol. The pathway for degradation of 2,4,5-trichlorophenol was elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway involves cycles of peroxidase-catalyzed oxidative dechlorination reactions followed by quinone reduction reactions to yield the key intermediate 1,2,4,5-tetrahydroxybenzene, which is presumably ring cleaved. In the first step of the pathway, 2,4,5-trichlorophenol is oxidized to 2,5-dichloro-1,4-benzoquinone by either MnP or Lip. 2,5-Dichloro-1,4-benzoquinone is then reduced to 2,5-dichloro-1,4-hydroquinone. The 2,5-dichloro-1,4-hydroquinone is oxidized by MnP to generate 5-chloro-4-hydroxy-1,2-benzoquinone. The orthoquinone is in turn reduced to 5-chloro-1,2,4-trihydroxybenzene. Finally, the 5-chlorotrihydroxybenzene undergoes another cycle of oxidative dechlorination and reduction reactions to generate 1,2,4,5-tetrahydroxybenzene. The latter is presumably ring cleaved, with subsequent degradation to CO2. In this pathway, the substrate is oxidatively dechlorinated by LiP or MnP in a reaction which produces a quinone. The quinone intermediate is recycled by a reduction reaction to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This pathway apparently results in the removal of all three chlorine atoms before ring cleavage occurs.
PMCID: PMC182161  PMID: 8328802
15.  Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. 
We studied the effect of manganese and various organic chelators on the distribution, depolymerization, and mineralization of synthetic 14C-labeled lignins (DHP) in cultures of Phanerochaete chrysosporium. In the presence of high levels of manganese [Mn(II) or Mn(III)], along with a suitable chelator, lignin peroxidase (LiP) production was repressed and manganese peroxidase (MnP) production was stimulated. Even though partial lignin depolymerization was observed under these conditions, further depolymerization of the polymer to smaller compounds was more efficient when low levels of manganese were present. LiPs were prevalent under these latter conditions, but MnPs were also present. Mineralization was more efficient with low manganese. These studies indicate that MnP performs the initial steps of DHP depolymerization but that LiP is necessary for further degradation of the polymer to lower-molecular-weight products and mineralization. We also conclude that a soluble Mn(II)-Mn(III) organic acid complex is necessary to repress LiP.
PMCID: PMC195794  PMID: 1514788
16.  Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism 
Applied and Environmental Microbiology  1997;63(11):4435-4440.
The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.
PMCID: PMC1389288  PMID: 16535732
17.  Roles of Lignin Peroxidase and Manganese Peroxidase from Phanerochaete chrysosporium in the Decolorization of Olive Mill Wastewaters 
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.
PMCID: PMC1388391  PMID: 16534959
18.  Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. 
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. PSBL-1 is a mutant of this organism that generates the ligninolytic system under nonlimiting conditions during primary metabolism. Lignin peroxidase, manganese peroxidase, and glyoxal oxidase activities for PSBL-1 under nonlimiting conditions were 4- to 10-fold higher than those of the wild type (WT) under nitrogen-limiting conditions. PSBL-1 was still in the log phase of growth while secreting the enzymes, whereas the WT had ceased to grow by this time. As in the WT, manganese(II) increased manganese peroxidase activity in the mutant. However, manganese also caused an increase in lignin peroxidase and glyoxal oxidase activities in PSBL-1. Addition of veratryl alcohol to the culture medium stimulated lignin peroxidase activity, inhibited glyoxal oxidase activity, and had little effect on manganese peroxidase activity in PSBL-1, as in the WT. Fast protein liquid chromatography (FPLC) analysis shows production of larger amounts of isozyme H2 in PSBL-1 than in the WT. These properties make PSBL-1 very useful for isolation of large amounts of all ligninolytic enzymes for biochemical study, and they open the possibility of scale-up production for pratical use.
PMCID: PMC183625  PMID: 1768132
19.  Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. 
Applied and Environmental Microbiology  1993;59(12):4017-4023.
Phanerochaete chrysosporium is rapidly becoming a model system for the study of lignin biodegradation. Numerous studies on the physiology, biochemistry, chemistry, and genetics of this system have been performed. However, P. chrysosporium is not the only fungus to have a lignin-degrading enzyme system. Many other ligninolytic species of fungi, as well as other distantly related organisms which are known to produce lignin peroxidases, are described in this paper. In this study, we demonstrated the presence of the peroxidative enzymes in nine species not previously investigated. The fungi studied produced significant manganese peroxidase activity when they were grown on an oak sawdust substrate supplemented with wheat bran, millet, and sucrose. Many of the fungi also exhibited laccase and/or glyoxal oxidase activity. Inhibitors present in the medium prevented measurement of lignin peroxidase activity. However, Western blots (immunoblots) revealed that several of the fungi produced lignin peroxidase proteins. We concluded from this work that lignin-degrading peroxidases are present in nearly all ligninolytic fungi, but may be expressed differentially in different species. Substantial variability exists in the levels and types of ligninolytic enzymes produced by different white not fungi.
Images
PMCID: PMC195861  PMID: 8285705
20.  Spatial and temporal accumulation of mRNAs encoding two common lignin peroxidases in Phanerochaete chrysosporium. 
Journal of Bacteriology  1993;175(11):3672-3678.
Accumulation of peroxidases and their mRNAs was localized in colonies of Phanerochaete chrysosporium sandwiched between perforated polycarbonate membranes. Northern (RNA) blot analyses of colonial rings and in situ hybridizations with specific probes for manganese(II)-dependent peroxidase (MnP-1) and lignin peroxidase (LiP H8) mRNAs indicated that the expression of MnP-1 and Lip H8 genes started simultaneously in the central area of 3-day-old colonies. With time the signals for both transcripts spread to more-peripheral areas while decreasing in intensity. Furthermore, the appearance of MnP protein, as detected with specific immune serum, immediately followed accumulation of the MnP-1 mRNA transcript. However, LiP protein could be detected only some time after accumulation of LiP H8 mRNA.
Images
PMCID: PMC204772  PMID: 8501073
21.  Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. 
Journal of Bacteriology  1992;174(7):2131-2137.
Under secondary metabolic conditions, the white-rot basidiomycete Phanerochaete chrysosporium degraded 2,7-dichlorodibenzo-p-dioxin (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell-free extracts. The multistep pathway involves the degradation of I and subsequent intermediates by oxidation, reduction, and methylation reactions to yield the key intermediate 1,2,4-trihydroxybenzene (III). In the first step, the oxidative cleavage of the dioxin ring of I, catalyzed by LiP, generates 4-chloro-1,2-benzoquinone (V), 2-hydroxy-1,4-benzoquinone (VIII), and chloride. The intermediate V is then reduced to 1-chloro-3,4-dihydroxybenzene (II), and the latter is methylated to form 1-chloro-3,4-dimethoxybenzene (VI). VI in turn is oxidized by LiP to generate chloride and 2-methoxy-1,4-benzoquinone (VII), which is reduced to 2-methoxy-1,4-dihydroxybenzene (IV). IV is oxidized by either LiP or MnP to generate 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (III). The other aromatic product generated by the initial LiP-catalyzed cleavage of I is 2-hydroxy-1,4-benzoquinone (VIII). This intermediate is also generated during the LiP- or MnP-catalyzed oxidation of the intermediate chlorocatechol (II). VIII is also reduced to 1,2,4-trihydroxybenzene (III). The key intermediate III is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial oxidative cleavage of both C-O-C bonds in I by LiP generates two quinone products, 4-chloro-1,2-benzoquinone (V) and 2-hydroxy-1,4-benzoquinone (VIII). The former is recycled by reduction and methylation reactions to generate an intermediate which is also a substrate for peroxidase-catalyzed oxidation, leading to the removal of a second chlorine atom. This unique pathway results in the removal of both aromatic chlorines before aromatic ring cleavage takes place.
PMCID: PMC205830  PMID: 1551837
22.  Characterization of manganese peroxidases from the hyperlignolytic fungus IZU-154. 
Applied and Environmental Microbiology  1996;62(11):4066-4072.
Four isozymes of manganese peroxidase (MnP) were identified in the culture fluid of the hyperlignolytic fungus IZU-154 under nitrogen starvation conditions. One of them was purified and characterized kinetically. The specific activity and Kcat/K(m) value of the MnP from IZU-154 were 1.6 times higher than those of the MnP from a typical lignin-degrading fungus, Phanerochaete chrysosporium. Two cDNAs encoding MnP isozymes from IZU-154 were isolated. The coding sequence of the two cDNAs, IZ-MnP1 cDNA and IZ-MnP2 cDNA, were 1,152 (384 amino acids) and 1,155 (385 amino acids) bp in length, respectively. They exhibit 96.2% identity at the nucleotide level and 95.1% identity at the amino acid level. Southern blot analysis indicated that two MnP isozyme genes exist in IZU-154 genomic DNA. The primary structures of two MnPs from IZU-154 were similar to those of MnPs from P. chrysosporium. The amino acid sequences including the important residues identified in MnPs from P. chrysosporium, such as the manganese-binding residues, the calcium-binding residues, the disulfide bonds, and the N-glycosylation site, were conserved in the two deduced IZ-MnPs. However, several discrepancies were found in the context around the distal histidine residue between MnP from IZU-154 and MnP from P. chrysosporium, which likely led to the difference in the kinetic parameters for MnP function.
PMCID: PMC168228  PMID: 8899997
23.  Is an activator protein-2-like transcription factor involved in regulating gene expression during nitrogen limitation in fungi? 
The upstream sequences of all published lignin peroxidase and manganese peroxidase genomic clones from Phanerochaete chrysosporium were analyzed. This analysis revealed the presence of putative activator protein-2 (AP-2) recognition sequences in 11 of 15 lignin peroxidase genes. The lignin peroxidase clone GLG6 and the manganese peroxidase gene (mnp-1) have two copies of putative AP-2 sequence in the upstream region. Interestingly, the lignin peroxidase gene VLG4 of another white rot fungus, Trametes versicolor, and the nit-2 gene of Neurospora crassa also contain putative AP-2-binding sequences. Since all of these genes are regulated by nutrient nitrogen, I hypothesize that an AP-2-like transcription factor may be involved in inducing gene expression during nitrogen limitation in fungi.
PMCID: PMC182281  PMID: 8357266
24.  Understanding Lignin-Degrading Reactions of Ligninolytic Enzymes: Binding Affinity and Interactional Profile 
PLoS ONE  2011;6(9):e25647.
Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity.
doi:10.1371/journal.pone.0025647
PMCID: PMC3183068  PMID: 21980516
25.  Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability 
Background
The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation.
Results
Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences.
Conclusions
The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest.
doi:10.1186/1754-6834-7-2
PMCID: PMC3902061  PMID: 24387130
Genome; Pleurotus ostreatus; Ligninolytic peroxidase genes; Heterologous expression; Crystal structure; Catalytic properties; Thermal stability; pH stability; Gene duplication; Peroxidase evolution

Results 1-25 (79777)