PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (449186)

Clipboard (0)
None

Related Articles

1.  Selective Decline of Synaptic Protein Levels in the Frontal Cortex of Female Mice Deficient in the Extracellular Metalloproteinase ADAMTS1 
PLoS ONE  2012;7(10):e47226.
The chondroitin sulfate-bearing proteoglycans, also known as lecticans, are a major component of the extracellular matrix (ECM) in the central nervous system and regulate neural plasticity. Growing evidence indicates that endogenous, extracellular metalloproteinases that cleave lecticans mediate neural plasticity by altering the structure of ECM aggregates. The bulk of this in vivo data examined the matrix metalloproteinases, but another metalloproteinase family that cleaves lecticans, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), modulates structural plasticity in vitro, although few in vivo studies have tested this concept. Thus, the purpose of this study was to examine the neurological phenotype of a mouse deficient in ADAMTS1. Adamts1 mRNA was absent in the ADAMTS1 null mouse frontal cortex, but there was no change in the abundance or proteolytic processing of the prominent lecticans brevican and versican V2. However, there was a marked increase in the perinatal lectican neurocan in juvenile ADAMTS1 null female frontal cortex. More prominently, there were declines in synaptic protein levels in the ADAMTS1 null female, but not male, frontal cortex beginning at postnatal day 28. These synaptic marker declines did not affect learning or memory in the adult female ADAMTS1 null mice when tested with the radial-arm water maze. These results indicate that in vivo Adamts1 knockout leads to sexual dimorphism in frontal cortex synaptic protein levels. Since changes in lectican abundance and proteolytic processing did not accompany the synaptic protein declines, ADAMTS1 may play a nonproteolytic role in regulating neural plasticity.
doi:10.1371/journal.pone.0047226
PMCID: PMC3469530  PMID: 23071766
2.  Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1 
Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders.
doi:10.1523/JNEUROSCI.3032-07.2008
PMCID: PMC2633411  PMID: 18272690
postsynaptic density; gene knock-out; learning and memory; dendritic spine; autism; scaffolding proteins
3.  Evidence for proteolytic cleavage of brevican by the ADAMTSs in the dentate gyrus after excitotoxic lesion of the mouse entorhinal cortex 
BMC Neuroscience  2005;6:52.
Background
Brevican is a member of the lectican family of aggregating extracellular matrix (ECM) proteoglycans that bear chondroitin sulfate (CS) chains. It is highly expressed in the central nervous system (CNS) and is thought to stabilize synapses and inhibit neural plasticity and as such, neuritic or synaptic remodeling would be less likely to occur in regions with intact and abundant, lectican-containing, ECM complexes. Neural plasticity may occur more readily when these ECM complexes are broken down by endogenous proteases, the ADAMTSs (adisintegrin and metalloproteinase with thrombospondin motifs), that selectively cleave the lecticans. The purpose of these experiments was to determine whether the production of brevican or the ADAMTS-cleaved fragments of brevican were altered after deafferentation and reinnervation of the dentate gyrus via entorhinal cortex lesion (ECL).
Results
In the C57Bl6J mouse, synaptic density in the molecular layer of the dentate gyrus, as measured by synaptophysin levels in ELISA, was significantly attenuated 2 days (nearly 50% of contralateral) and 7 days after lesion and returned to levels not different from the contralateral region at 30 days. Immunoreactive brevican in immunoblot was elevated 2 days after lesion, whereas there was a significant increase in the proteolytic product at 7, but not 30 days post-lesion. ADAMTS activity, estimated using the ratio of the specific ADAMTS-derived brevican fragment and intact brevican levels was increased at 7 days, but was not different from the contralateral side at 2 or 30 days after deafferentation.
Conclusion
These findings indicate that ADAMTS activity in the dentate outer molecular layer (OML) is elevated during the initial synaptic reinnervation period (7 days after lesion). Therefore, proteolytic processing of brevican appears to be a significant extracellular event in the remodeling of the dentate after EC lesion, and may modulate the process of sprouting and/or synaptogenesis.
doi:10.1186/1471-2202-6-52
PMCID: PMC1199600  PMID: 16122387
4.  Alteration of chondroitin sulfate composition on proteoglycan produced by knock-in mouse embryonic fibroblasts whose versican lacks the A subdomain 
Versican/proteoglycan-mesenchymal (PG-M) is a large chondroitin sulfate (CS) proteoglycan of the extracellular matrix (ECM) that is constitutively expressed in adult tissues such as dermis and blood vessels. It serves as a structural macromolecule of the ECM, while in embryonic tissue it is transiently expressed at high levels and regulates cell adhesion, migration, proliferation, and differentiation. Knock-in mouse embryonic (Cspg2Δ3/Δ3) fibroblasts whose versican lack the A subdomain of the G1 domain exhibit low proliferation rates and acquire senescence. It was suspected that chondroitin sulfate on versican core protein would be altered when the A subdomain was disrupted, so fibroblasts were made from homozygous Cspg2Δ3/Δ3 mouse embryos to investigate the hypothesis. Analysis of the resulting versican deposition demonstrated that the total versican deposited in the Cspg2Δ3/Δ3 fibroblasts culture was approximately 50% of that of the wild type (WT), while the versican deposited in the ECM of Cspg2Δ3/Δ3 fibroblasts culture was 35% of that of the WT, demonstrating the lower capacity of mutant (Cspg2Δ3/Δ3) versican deposited in the ECM. The analysis of CS expression in the Cspg2Δ3/Δ3 fibroblasts culture compared with wild-type fibroblasts showed that the composition of the non-sulfate chondroitin sulfate isomer on the versican core protein increased in the cell layer but decreased in the culture medium. Interestingly, chondroitin sulfate E isomer was found in the culture medium. The amount of CS in the Cspg2Δ3/Δ3 cell layer of fibroblasts with mutant versican was dramatically decreased, contrasted to the amount in the culture medium, which increased. It was concluded that the disruption of the A subdomain of the versican molecule leads to lowering of the amount of versican deposited in the ECM and the alteration of the composition and content of CS on the versican molecule.
doi:10.1080/03009730902761722
PMCID: PMC2852754  PMID: 19396693
Chondroitin sulfate; extracellular matrix; mouse embryonic fibroblasts; versican
5.  Differential Roles of Postsynaptic Density-93 Isoforms in Regulating Synaptic Transmission 
The Journal of Neuroscience  2013;33(39):15504-15517.
In the postsynaptic density of glutamatergic synapses, the discs large (DLG)-membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins coordinates a multiplicity of signaling pathways to maintain and regulate synaptic transmission. Postsynaptic density-93 (PSD-93) is the most variable paralog in this family; it exists in six different N-terminal isoforms. Probably because of the structural and functional variability of these isoforms, the synaptic role of PSD-93 remains controversial. To accurately characterize the synaptic role of PSD-93, we quantified the expression of all six isoforms in the mouse hippocampus and examined them individually in hippocampal synapses. Using molecular manipulations, including overexpression, gene knockdown, PSD-93 knock-out mice combined with biochemical assays, and slice electrophysiology both in rat and mice, we demonstrate that PSD-93 is required at different developmental synaptic states to maintain the strength of excitatory synaptic transmission. This strength is differentially regulated by the six isoforms of PSD-93, including regulations of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-active and inactive synapses, and activity-dependent modulations. Collectively, these results demonstrate that alternative combinations of N-terminal PSD-93 isoforms and DLG-MAGUK paralogs can fine-tune signaling scaffolds to adjust synaptic needs to regulate synaptic transmission.
doi:10.1523/JNEUROSCI.0019-12.2013
PMCID: PMC3782625  PMID: 24068818
6.  Age- and hormone-regulation of opioid peptides and synaptic proteins in the rat dorsal hippocampal formation 
Brain research  2010;1379:71-85.
Circulating estrogen levels and hippocampal-dependent cognitive functions decline with aging. Moreover, the responses of hippocampal synaptic structure to estrogens differ between aged and young rats. We recently reported that estrogens increase levels of post-synaptic proteins, including PSD-95, and opioid peptides leu-enkephalin and dynorphin in the hippocampus of young animals. However, the influence of ovarian hormones on synaptic protein and opioid peptide levels in the aging hippocampus is understudied. Here, young (3–5 mo old), middle-aged (9–12 mo old), and aged (about 22 mo old) female rats were ovariectomized for 4 weeks and then subcutaneously implanted with a silastic capsule containing vehicle or 17β-estradiol. After 48 hours, rats were subcutaneously injected with progesterone or vehicle and sacrificed one day later. Coronal sections through the dorsal hippocampus were processed for quantitative peroxidase immunohistochemistry of leu-enkephalin, dynorphin, synaptophysin, and PSD-95. With age, females showed opposing changes in leu-enkephalin and dynorphin levels in the mossy fiber pathway, particularly within the hilus, and regionally specific changes in synaptic protein levels. 17β-estradiol, with or without progesterone, altered leu-enkephalin levels in the dentate gyrus and synaptophysin levels in the CA1 of young but not middle-aged or aged females. Additionally, 17β-estradiol decreased synaptophysin levels in the CA3 of middle-aged females. Our results support and extend previous findings indicating 17β-estradiol modulation of hippocampal opioid peptides and synaptic proteins while demonstrating regional and age-specific effects. Moreover, they lend credence to the “window of opportunity” hypothesis during which hormone replacement can modulate hippocampal structure and circuitry to improve cognitive outcomes.
doi:10.1016/j.brainres.2010.08.103
PMCID: PMC3020269  PMID: 20828542
aging; estrogen; hippocampus; opioids; synaptic protein
7.  Versican Expression during Synovial Joint Morphogenesis 
The extracellular matrix (ECM) plays a critical role in governing cell behavior and phenotype during limb skeletogenesis. Chondroitin sulfate proteoglycans (Cspgs) are highly expressed in the ECM of precartilage mesenchymal condensations and are important to limb chondrogenesis and cartilage structure, but little is known regarding their involvement in formation of synovial joints in the embryonic limb. Matrix versican Cspg expression has previously been reported in the epiphysis of developing long bones and presumptive joint; however, detailed analysis has not yet been conducted. In the present study we immunolocalized versican and aggrecan Cspgs during chick elbow joint morphogenesis between HH st25-41 of development. In this study we show that versican and aggrecan expression initially overlapped in the incipient cartilage model of long bones in the wing, but versican was also highly expressed in the perichondrium and presumptive joint interzone during early stages of morphogenesis (HH st25-34). By HH st36-41 versican localization was restricted to the future articular surfaces of the developing joint and surrounding joint capsule while aggrecan localized in an immediately adjacent and predominately non-overlapping region of chondrogenic cells at the epiphyses. These results suggest a potential role for versican proteoglycan in development and maintenance of the synovial joint interzone.
PMCID: PMC1975773  PMID: 17848983
versican; synovial joint morphogenesis; chick embryo; extracellular matrix
8.  Abnormal Post-Translational and Extracellular Processing of Brevican in Plaque-Bearing Mice Overexpressing APPsw 
Journal of neurochemistry  2010;113(3):784-795.
Aggregation of amyloid-β in the forebrain of Alzheimer's disease subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that amyloid-β, or another amyloid precursor protein dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate-bearing proteoglycan, were altered in brains of amyloid-β-depositing transgenic mice (APPsw) as a model of Alzheimer's disease. The molecular size of chondroitin sulfate chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing amyloid-β deposits compared to non-transgenic mice, likely due to changes in the chondroitin sulfate chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that amyloid-β or amyloid precursor protein exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. Since proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in amyloid-β-bearing mice and potentially end-stage human Alzheimer's disease, may contribute to deficient neural plasticity.
doi:10.1111/j.1471-4159.2010.06647.x
PMCID: PMC2855738  PMID: 20180882
amyloid β protein; chondroitin sulfate; proteoglycan; Alzheimer's disease; matrix metalloproteinase (MMP); a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)
9.  Dysregulation of presynaptic calcium and synaptic plasticity in a mouse model of 22q11 deletion syndrome 
The 22q11 deletion syndrome (22q11DS) is characterized by cognitive decline and increased risk of psychiatric disorders, mainly schizophrenia. The molecular mechanisms of neuronal dysfunction in cognitive symptoms of 22q11DS are poorly understood. Here we report that a mouse model of 22q11DS, the Df(16)1/+ mouse, exhibits substantially enhanced short- and long-term synaptic plasticity at hippocampal CA3-CA1 synapses, which coincides with deficits in hippocampus-dependent spatial memory. These changes are evident in mature but not young animals. Electrophysiological, two-photon imaging and glutamate uncaging, and electron microscopic assays in acute brain slices showed that enhanced neurotransmitter release but not altered postsynaptic function or structure caused these changes. Enhanced neurotransmitter release in Df(16)1/+ mice coincided with altered calcium kinetics in CA3 presynaptic terminals and upregulated sarco(endo)plasmic reticulum calcium-ATPase type 2 (SERCA2). SERCA inhibitors rescued synaptic phenotypes of Df(16)1/+ mice. Thus, presynaptic SERCA2 upregulation may be a pathogenic event contributing to the cognitive symptoms of 22q11DS.
doi:10.1523/JNEUROSCI.1425-10.2010
PMCID: PMC3073555  PMID: 21106823
10.  The effects of chronic treatment with mood stabilizers on the rat hippocampal postsynaptic density proteome 
Journal of Neurochemistry  2011;119(3):617-629.
Bipolar disorder is a devastating illness that is marked by recurrent episodes of mania and depression. There is growing evidence that the disease is correlated with disruptions in synaptic plasticity cascades involved in cognition and mood regulation. Alleviating the symptoms of bipolar disorder involves chronic treatment with mood stabilizers like lithium or valproate. These two structurally dissimilar drugs are known to alter prominent signaling cascades in the hippocampus, but their effects on the postsynaptic density complex remain undefined. In this work, we utilized mass spectrometry for quantitative profiling of the rat hippocampal postsynaptic proteome to investigate the effects of chronic mood stabilizer treatment. Our data shows that in response to chronic treatment of mood stabilizers there were not gross qualitative changes but rather subtle quantitative perturbations in PSD proteome linked to several key signaling pathways. Our data specifically support the changes in actin dynamics on valproate treatment. Using label free quantification methods, we report that lithium and valproate significantly altered the abundance of 21 and 43 proteins, respectively. Seven proteins were affected similarly by both lithium and valproate: Ank3, Grm3, Dyhc1, and four isoforms of the 14-3-3 family. Immunoblotting the same samples confirmed the changes in Ank3 and Grm3 abundance. Our findings support the hypotheses that BPD is a synaptic disorder and that mood stabilizers modulate the protein signaling complex in the hippocampal PSD.
doi:10.1111/j.1471-4159.2011.07424.x
PMCID: PMC3192943  PMID: 21838781
Hippocampus; postsynapse; lithium; valproate; ankyrin 3; Grm3
11.  Global Analysis of Neuronal Phosphoproteome Regulation by Chondroitin Sulfate Proteoglycans 
PLoS ONE  2013;8(3):e59285.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix which mediate inhibition of axonal regeneration after injury to the central nervous system (CNS). Several neuronal receptors for CSPGs have recently been identified; however, the signaling pathways by which CSPGs restrict axonal growth are still largely unknown. In this study, we applied quantitative phosphoproteomics to investigate the global changes in protein phosphorylation induced by CSPGs in primary neurons. In combination with isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling, strong cation exchange chromatography (SCX) fractionation, immobilized metal affinity chromatography (IMAC) and LC-MS/MS, we identified and quantified 2214 unique phosphopeptides corresponding to 1118 phosphoproteins, with 118 changing significantly in abundance with CSPG treatment. The proteins that were regulated by CSPGs included key components of synaptic vesicle trafficking, axon guidance mediated by semaphorins, integrin signaling, cadherin signaling and EGF receptor signaling pathways. A significant number of the regulated proteins are cytoskeletal and related proteins that have been implicated in regulating neurite growth. Another highly represented protein category regulated by CSPGs is nucleic acid binding proteins involved in RNA post-transcriptional regulation. Together, by screening the overall phosphoproteome changes induced by CSPGs, this data expand our understanding of CSPG signaling, which provides new insights into development of strategies for overcoming CSPG inhibition and promoting axonal regeneration after CNS injury.
doi:10.1371/journal.pone.0059285
PMCID: PMC3601063  PMID: 23527152
12.  Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment 
Neuroscience  2012;217:6-18.
The extracellular matrix in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, extracellular matrix aggregate in brain, the chondroitin sulfate-bearing proteoglycans known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the chondroitin sulfate chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity—including changes in neurite outgrowth and dendritic spine remodeling—and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the proteoglycan core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
doi:10.1016/j.neuroscience.2012.05.034
PMCID: PMC3796366  PMID: 22626649
chondroitin sulfate proteoglycan; extracellular matrix; metalloproteinase; MMP; ADAMTS; neural plasticity
13.  Extracellular Matrix Abnormalities in Schizophrenia 
Neuropharmacology  2011;62(3):1584-1597.
Emerging evidence points to the involvement of the brain extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Abnormalities affecting several ECM components, including Reelin and chondroitin sulfate proteoglycans (CSPGs), have been described in subjects with this disease. Solid evidence supports the involvement of Reelin, an ECM glycoprotein involved in corticogenesis, synaptic functions and glutamate NMDA receptor regulation, expressed prevalently in distinct populations of GABAergic neurons, which secrete it into the ECM. Marked changes of Reelin expression in SZ have typically been reported in association with GABA-related abnormalities in subjects with SZ and bipolar disorder. Recent findings from our group point to substantial abnormalities affecting CSPGs, a main ECM component, in the amygdala and entorhinal cortex of subjects with schizophrenia, but not bipolar disorder. Striking increases of glial cells expressing CSPGs were accompanied by reductions of perineuronal nets, CSPG- and Reelin-enriched ECM aggregates enveloping distinct neuronal populations. CSPGs developmental and adult functions, including neuronal migration, axon guidance, synaptic and neurotransmission regulation are highly relevant to the pathophysiology of SZ. Together with reports of anomalies affecting several other ECM components, these findings point to the ECM as a key component of the pathology of SZ. We propose that ECM abnormalities may contribute to several aspects of the pathophysiology of this disease, including disrupted connectivity and neuronal migration, synaptic anomalies and altered GABAergic, glutamatergic and dopaminergic neurotransmission.
doi:10.1016/j.neuropharm.2011.08.010
PMCID: PMC3234338  PMID: 21856318
extracellular matrix; chondroitin sulphate proteoglycans; perineuronal nets; astrocytes; schizophrenia; Reelin
14.  Hippocampal Drebrin Loss in Mild Cognitive Impairment 
Neuro-Degenerative Diseases  2012;10(1-4):216-219.
Alterations in the relative abundance of synaptic proteins may contribute to hippocampal synaptic dysfunction in Alzheimer's disease (AD). The extent to which perturbations in synaptic protein expression occur during the earliest stages of cognitive decline remains unclear. We examined protein levels of presynaptic synaptophysin (SYP) and synaptotagmin (SYT), and postsynaptic drebrin (DRB), a marker for dendritic spine plasticity, in the hippocampus of people with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild/moderate AD. Although normalized SYP and SYT levels were preserved, DRB was reduced by approximately 40% in the hippocampus of MCI and AD compared to NCI subjects. This differential alteration of synaptic markers in MCI suggests a selective impairment in hippocampal postsynaptic dendritic plasticity in prodromal AD that likely heralds the onset of memory impairment in symptomatic disease.
doi:10.1159/000333122
PMCID: PMC3363353  PMID: 22310934
Alzheimer's disease; Mild cognitive impairment; Synaptic protein; Synaptophysin; Synaptotagmin; Drebrin; Hippocampus
15.  Role of ionotropic glutamate receptors in LTP in rat hippocampal CA1 oriens-lacunosum moleculare interneurons 
Some interneurons of the hippocampus exhibit NMDA receptor-independent long-term potentiation (LTP) that is induced by presynaptic glutamate release when the postsynaptic membrane potential is hyperpolarized. This ‘anti-Hebbian’ form of LTP is prevented by postsynaptic depolarization or by blocking AMPA and kainate receptors. Although both AMPA and kainate receptors are expressed in hippocampal interneurons, their relative roles in anti-Hebbian LTP are not known. Because interneuron diversity potentially conceals simple rules underlying different forms of plasticity, we focus on glutamatergic synapses onto a subset of interneurons with dendrites in stratum oriens and a main ascending axon that projects to stratum lacunosum-moleculare, the O-LM cells. We show that anti-Hebbian LTP in O-LM interneurons has consistent induction and expression properties, and is prevented by selective inhibition of AMPA receptors. The majority of the ionotropic glutamatergic synaptic current in these cells is mediated by inwardly rectifying Ca2+ -permeable AMPA receptors. Although GluR5-containing kainate receptors contribute to synaptic currents at high stimulus frequency, they are not required for LTP induction. Glutamatergic synapses on O-LM cells thus behave in a homogeneous manner, and exhibit LTP dependent on Ca2+-permeable AMPA receptors.
doi:10.1523/JNEUROSCI.3251-08.2009
PMCID: PMC2668821  PMID: 19176803
Inhibition; GABAergic; kainate; network; plasticity; interneuron
16.  Estrogen receptor alpha and beta specific agonists regulate expression of synaptic proteins in rat hippocampus 
Brain research  2009;1290:1-11.
Changes in hippocampal CA1 dendritic spine density and synaptic number across the estrous cycle in female rats correlate with increased hippocampal-dependent cognitive performance in a manner that is dependent on estrogen receptors (ERs). Two isoforms of the estrogen receptor, α and β are present in the rat hippocampus and distinct effects on cognitive behavior have been described for each receptor. The present study generated a profile of synaptic proteins altered by administration of estradiol benzoate, the ERα selective agonist PPT (1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole) and the ERβ selective agonist DPN (2,3-bis (4-hydroxyphenyl) propionitrile) alone and in combination in comparison to vehicle in the CA1 region of the dorsal hippocampus. In the stratum radiatum, estradiol, DPN, and PPT increased PSD-95 and AMPA-type glutamate receptor subunit GluR1. Only DPN administration regulated expression of AMPA receptor subunits GluR2 and GluR3, increasing and decreasingly levels respectively. DPN also increased GluR2 expression in the other lamina of the CA1. These results support previous reports that estradiol and isoform specific agonists differentially activate ERα and ERβ to regulate protein expression. The distinct effects of DPN and PPT administration on synaptic proteins, suggest that the desired therapeutic outcome of estrogen may be accomplished by using specific estrogen receptor agonists. Moreover, the effects of estradiol treatment on PSD-95 expression are consistent with a growing body of evidence that this postsynaptic protein is a key marker of estrogen action related to spine synapse formation.
doi:10.1016/j.brainres.2009.06.090
PMCID: PMC2778245  PMID: 19596275
Hippocampus; Synaptic proteins; Estradiol benzoate; PPT (1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole); DPN (2,3-bis(4-hydroxyphenyl) propionitrile); Estrogen receptor agonists
17.  PSD-95 and PSD-93 Play Critical but Distinct Roles in Synaptic Scaling Up and Down 
Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPAR abundance are incompletely understood. Further, it remains unclear to what extent scaling up and scaling down utilize distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding “slot” that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other MAGUKs drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95-MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age, and was unaffected by a superabundance of PSD-95. Taken together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95-MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that utilize distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR.
doi:10.1523/JNEUROSCI.5616-10.2011
PMCID: PMC3113607  PMID: 21543610
synaptic scaling; AMPA Receptors; PSD-95; PSD-93; synaptic plasticity; homeostasis
18.  Size and Receptor Density of Glutamatergic Synapses: A Viewpoint from Left–Right Asymmetry of CA3–CA1 Connections 
Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left–right asymmetry of hippocampal CA3–CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD) area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supralinear (GluR1 AMPA) or inverse (NR2B NMDAR) relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.
doi:10.3389/neuro.05.010.2009
PMCID: PMC2706655  PMID: 19587849
spines; glutamate; AMPAR; NMDAR; mGluR5; PSD
19.  Increased efficiency of the GABAA and GABAB receptor–mediated neurotransmission in the Ts65Dn mouse model of Down syndrome 
Neurobiology of Disease  2011;45(2):683-691.
Cognitive impairment in Down syndrome (DS) involves the hippocampus. In the Ts65Dn mouse model of DS, deficits in hippocampus-dependent learning and synaptic plasticity were linked to enhanced inhibition. However, the mechanistic basis of changes in inhibitory efficiency remains largely unexplored, and efficiency of the GABAergic synaptic neurotransmission has not yet been investigated in direct electrophysiological experiments. To investigate this important feature of neurobiology of DS, we examined synaptic and molecular properties of the GABAergic system in the dentate gyrus (DG) of adult Ts65Dn mice. Both GABAA and GABAB receptor-mediated components of evoked inhibitory postsynaptic currents (IPSCs) were significantly increased in Ts65Dn vs. control (2N) DG granule cells. These changes were unaccompanied by alterations in hippocampal levels of GABAA (α1, α2, α3, α5 and γ2) or GABAB (Gbr1a and Gbr1b) receptor subunits. Immunoreactivity for GAD65, a marker for GABAergic terminals, was also unchanged. In contrast, there was a marked change in functional parameters of GABAergic synapses. Paired stimulations showed reduced paired-pulse ratios of both GABAA and GABAB receptor-mediated IPSC components (IPSC2/IPSC1), suggesting an increase in presynaptic release of GABA. Consistent with increased gene dose, the level of the Kir3.2 subunit of potassium channels, effectors for postsynaptic GABAB receptors, was increased. This change was associated with enhanced postsynaptic GABAB/Kir3.2 signaling following application of the GABAB receptor agonist baclofen. Thus, both GABAA and GABAB receptor-mediated synaptic efficiency is increased in the Ts65Dn DG, thus likely contributing to deficient synaptic plasticity and poor learning in DS.
doi:10.1016/j.nbd.2011.10.009
PMCID: PMC3259223  PMID: 22062771
Inhibitory system; GABAA receptor; GABAB receptor; evoked inhibitory postsynaptic currents; IPSC; potassium channels; Kir3.2 subunits; dentate gyrus; Down syndrome
20.  Age-Related Synapse Loss In Hippocampal CA3 Is Not Reversed By Caloric Restriction 
Neuroscience  2010;171(2):373-382.
Caloric restriction (CR) is a reduction of total caloric intake without a decrease in micronutrients or a disproportionate reduction of any one dietary component. While CR attenuates age-related cognitive deficits in tasks of hippocampal-dependent memory, the cellular mechanisms by which CR improves this cognitive decline are poorly understood. Previously, we have reported age-related decreases in key synaptic proteins in the CA3 region of the hippocampus that are stabilized by lifelong CR. In the present study, we examined possible age-related changes in the functional microcircuitry of the synapses in the stratum lacunosum-moleculare (SL-M) of the CA3 region of the hippocampus, and whether lifelong CR might prevent these age-related alterations. We used serial electron microscopy to reconstruct and classify SL-M synapses and their postsynaptic spines. We analyzed synapse number and size as well as spine surface area and volume in young (10 mos.) and old (29 mos) ad libitum fed rats and in old rats that were calorically restricted from 4 months of age. We limited our analysis to SL-M because previous work demonstrated age-related decreases in synaptophysin confined to this specific layer and region of the hippocampus. The results revealed an age-related decrease in macular axo-spinous synapses that was not reversed by CR that occurred in the absence of changes in the size of synapses or spines. Thus, the benefits of CR for CA3 function and synaptic plasticity may involve other biological effects including the stabilization of synaptic proteins levels in the face of age-related synapse loss.
doi:10.1016/j.neuroscience.2010.09.022
PMCID: PMC2995889  PMID: 20854882
Dietary Restriction; Electron Microscopy; Serial Reconstruction; Synapses; Hippocampus; Rat
21.  Versican Mediates Mesenchymal-Epithelial TransitionD⃞ 
Molecular Biology of the Cell  2006;17(4):2009-2020.
Versican is a large extracellular chondroitin sulfate proteoglycan that belongs to the family of lecticans. Alternative splicing of versican generates at least four isoforms named V0, V1, V2, and V3. We show here that ectopic expression of versican V1 isoform induced mesenchymal-epithelial transition (MET) in NIH3T3 fibroblasts, and inhibition of endogenous versican expression abolished the MET in metanephric mesenchyme. MET in NIH3T3 cells was demonstrated by morphological changes and dramatic alterations in both membrane and cytoskeleton architecture. Molecular analysis showed that V1 promoted a “switch” in cadherin expression from N- to E-cadherin, resulting in epithelial specific adhesion junctions. V1 expression reduced vimentin levels and induced expression of occludin, an epithelial-specific marker, resulting in polarization of V1-transfected cells. Furthermore, an MSP (methylation-specific PCR) assay showed that N-cadherin expression was suppressed through methylation of its DNA promoter. Exogenous expression of N-cadherin in V1-transfected cells reversed V1's effect on cell aggregation. Reduction of E-cadherin expression by Snail transfection and siRNA targeting E-cadherin abolished V1-induced morphological alteration. Transfection of an siRNA construct targeting versican also reversed the changed morphology induced by V1 expression. Silencing of endogenous versican prevented MET of metanephric mesenchyme. Taken together, our results demonstrate the involvement of versican in MET: expression of versican is sufficient to induce MET in NIH3T3 fibroblasts and reduction of versican expression decreased MET in metanephric mesenchyme.
doi:10.1091/mbc.E05-10-0951
PMCID: PMC1415306  PMID: 16452631
22.  Impaired synaptic clustering of postsynaptic density proteins and altered signal transmission in hippocampal neurons, and disrupted learning behavior in PDZ1 and PDZ2 ligand binding-deficient PSD-95 knockin mice 
Molecular Brain  2012;5:43.
Background
Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice.
Results
The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test.
Conclusions
These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.
doi:10.1186/1756-6606-5-43
PMCID: PMC3575367  PMID: 23268962
PSD-MAGUK; Synaptic clustering; PDZ domain; PSD-95; Synaptic transmission; Dentate gyrus; Behavioral test battery
23.  Neto2 Interacts with the Scaffolding Protein GRIP and Regulates Synaptic Abundance of Kainate Receptors 
PLoS ONE  2012;7(12):e51433.
Kainate receptors (KARs) are a class of ionotropic glutamate receptors that are expressed throughout the central nervous system. The function and subcellular localization of KARs are tightly regulated by accessory proteins. We have previously identified the single-pass transmembrane proteins, Neto1 and Neto2, to be associated with native KARs. In the hippocampus, Neto1, but not Neto2, controls the abundance and modulates the kinetics of postsynaptic KARs. Here we evaluated whether Neto2 regulates synaptic KAR levels in the cerebellum where Neto1 expression is limited to the deep cerebellar nuclei. In the cerebellum, where Neto2 is present abundantly, we found a ∼40% decrease in GluK2-KARs at the postsynaptic density (PSD) of Neto2-null mice. No change, however, was observed in total level of GluK2-KARs, thereby suggesting a critical role of Neto2 on the synaptic localization of cerebellar KARs. The presence of a putative class II PDZ binding motif on Neto2 led us to also investigate whether it interacts with PDZ domain-containing proteins previously implicated in regulating synaptic abundance of KARs. We identified a PDZ-dependent interaction between Neto2 and the scaffolding protein GRIP. Furthermore, coexpression of Neto2 significantly increased the amount of GRIP associated with GluK2, suggesting that Neto2 may promote and/or stabilize GluK2:GRIP interactions. Our results demonstrate that Neto2, like Neto1, is an important auxiliary protein for modulating the synaptic levels of KARs. Moreover, we propose that the interactions of Neto1/2 with various scaffolding proteins is a critical mechanism by which KARs are stabilized at diverse synapses.
doi:10.1371/journal.pone.0051433
PMCID: PMC3516556  PMID: 23236500
24.  Phosphacan and Receptor Protein Tyrosine Phosphatase β Expression Mediates Deafferentation-Induced Synaptogenesis 
Hippocampus  2011;21(1):81-92.
This study documents the spatial and temporal expression of three structurally related chondroitin sulfated proteoglycans (CSPGs) during synaptic regeneration induced by brain injury. Using the unilateral entorhinal cortex lesion model of adaptive synaptogenesis, we documented mRNA and protein profiles of phosphacan and its two splice variants, full length receptor protein tyrosine phosphatase β (RPTPβ) and the short transmembrane receptor form (sRPTPβ), at 2, 7, and 15 d postlesion. We report that whole hippocampal sRPTPβ protein and mRNA are persistently elevated over the first two weeks after UEC. As predicted, this transmembrane family member was localized adjacent to synaptic sites in the deafferented neuropil and showed increased distribution over that zone following lesion. By contrast, whole hippocampal phosphacan protein was not elevated with deafferentation, however, its mRNA was increased during the period of sprouting and synapse formation (7d). When the zone of synaptic reorganization was sampled using molecular layer/granule cell (ML/GCL) enriched dissections, we observed an increase in phosphacan protein at 7d, concurrent with the observed hippocampal mRNA elevation. Immunohistochemistry also showed a shift in phosphacan distribution from granule cell bodies to the deafferented ML at 2 and 7d postlesion. Phosphacan and sRPTPβ were not co-localized with glial fibrillary acid protein (GFAP), suggesting that reactive astrocytes were not a major source of either proteoglycan. While transcript for the developmentally prominent full length RPTPβ was also increased at 2 and 15d, its protein was not detected in our adult samples. These results indicate that phosphacan and RPTPβ splice variants participate in both the acute degenerative and long-term regenerative phases of reactive synaptogenesis. These results suggest that increase in the transmembrane sRPTPβ tyrosine phosphatase activity is critical to this plasticity, and that local elevation of extracellular phosphacan influences dendritic organization during synaptogenesis.
doi:10.1002/hipo.20725
PMCID: PMC2889017  PMID: 20014386
entorhinal lesion; synaptic plasticity; proteoglycan; dentate gyrus; gene expression
25.  Cholinergic Axons Modulate GABAergic Signaling among Hippocampal Interneurons via Postsynaptic α7 Nicotinic Receptors 
Homopentameric α7 nicotinic receptors have a high affinity for acetylcholine (ACh), are permeable to Ca2+ ions, and are abundant in hippocampal interneurons. Although nicotinic agonists evoke inward currents and Ca2+ transients in stratum radiatum interneurons, the role of endogenous ACh in modulating synaptic integration by interneurons is incompletely understood. Many cholinergic axonal varicosities do not have postsynaptic specializations, but α7 receptors frequently occur close to synaptic GABAA receptors. These observations raise the possibility that α7 nicotinic receptors activated by ACh released from cholinergic axons modulate GABAergic transmission in interneurons. We show that agonists of α7 receptors profoundly depress GABAergic IPSCs recorded in stratum radiatum interneurons in the CA1 region of the hippocampus. This depression is accompanied by a small increase in GABA release. α7 nicotinic receptor agonists also depress GABA- or muscimol-evoked currents in interneurons, indicating that the major effect is a postsynaptic modulation of GABAA receptors. The depression of GABA-evoked currents is abolished by chelating Ca2+ in the recorded interneuron and attenuated by inhibitors of PKC. We also show that stimuli designed to release endogenous ACh from cholinergic axons evoke an α7 receptor-dependent heterosynaptic depression of GABAergic IPSCs in interneurons. This heterosynaptic modulation is amplified by blocking cholinesterases. These results reveal a novel mechanism by which cholinergic neurons modulate information processing in the hippocampus.
doi:10.1523/JNEUROSCI.1732-07.2007
PMCID: PMC2889598  PMID: 17522313
nicotinic; GABAA receptor; interneurons; cholinergic; hippocampus; inhibition

Results 1-25 (449186)